SITE-SPECIFIC LAND USE CONTROL ADDENDUM TO THE PRESIDIO TRUST LAND USE CONTROLS MASTER REFERENCE REPORT

Fuel Distribution System | Section BR11-1 Buildings 127A, 127B, and 128A

Riley Avenue, Presidio of San Francisco San Francisco, California

April 28, 2020

Prepared by:

Daniel Parsons, QSP, EIT/Project Engineer

Riley Ave/No: 285830

Prepared For:

The Presidio Trust 103 Montgomery Street San Francisco, California, 94129

Prepared By:

TRC

505 Sansome Street, Suite 1600 San Francisco, California 94111

Reviewed and Approved by: Alfonso Ang, PE/Project Manager

PROFESSIONAL CERTIFICATION

Site-Specific Land Use Control
Addendum to the Presidio Trust Land Use Controls Master Reference Report
Fuel Distribution System | Section BR11-1
Buildings 127A, 127B, and 128A
Riley Avenue, Presidio of San Francisco, San Francisco, California

This document was prepared by the staff of TRC Solutions, Inc. (TRC), under the supervision of a professional engineer whose seal and signature appear hereon. The findings, recommendations, specifications, and/or professional opinions presented in this document were prepared in accordance with generally accepted professional practices, and within the scope of the project. There is no other warranty, either express or implied.

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and attachments and that, based on my knowledge and on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete.

Alfonso Ang, PE C81007

Senior Engineer / Project Manager

FDS Section BR11-1 Buildings 127A, 127B, and 128A Land Use Control LUCMRR Addendum Riley Ave/No: 285830 i

Table of Contents

PROF	ESSIONAL CERTIFICATION	
1.0	INTRODUCTION AND DECISION DOCUMENT	1
2.0	AREAS INCLUDED IN THE LAND USE CONTROL	1
3.0	REMEDIATION SUMMARY AND REMAINING CHEMICALS OF CONCERN	1
3.1 Site	e History and Remedial Activities	<i>'</i>
3.2 Res	sidual Chemicals that Necessitate the LUC	2
4.0	SITE-SPECIFIC LAND USE RESTRICTIONS	2
5.0	INSPECTION, MAINTENANCE, AND REPAIR REQUIREMENTS	3
6.0	REFERENCES	3
TABLE	ES CONTRACTOR CONTRACT	
Table 1	1LUC Soil COC Concentrations	
Table 2	2LUC Sub-Slab/Soil Vapor COC Concentrations	
Table 3	3LUC Groundwater COC Concentrations	
FIGUR 		
•	1Vicinity Map	
Figure	2Land Use Control Boundary	
Figure	3LUC Area Soil Impacts	
Figure	4LUC Area Soil Vapor Impacts	
Figure	5LUC Area Groundwater Impacts	

1.0 INTRODUCTION AND DECISION DOCUMENT

This Site-Specific Addendum to the Presidio Trust Land Use Controls Master Reference Report (LUCMRR; Presidio Trust [Trust], 2009) has been prepared for select areas of the former FDS Section BR11-1 (Site) at the Presidio of San Francisco (Presidio) in San Francisco, California. Residual chemicals of concern (COCs) in soil, sub-slab/soil vapor, and groundwater above applicable residential cleanup levels (CULs) remain at the Site. Mitigation actions to address residual COCs have been conducted in accordance with the *Revised Feasibility Study and Corrective Action Plan* (FS/CAP) (TRC, 2020), which was approved by the San Francisco Bay Regional Water Quality Control Board (RWQCB) on January 24, 2020 (RWQCB, 2020). The mitigation actions include implementation of land use controls (LUCs), which are described herein.

2.0 AREAS INCLUDED IN THE LAND USE CONTROL

The LUC areas associated with the Site include residential units 127A, 127B, and 128A, located on the west side of Riley Avenue in the Presidio. The extent of the LUC for each unit includes the building footprint (basement and sunroom), and select exterior landscaped and hardscaped areas in front yards of units 127A and 127B. The location, extent, and coordinates of the LUC areas are presented in **Figures 1 and 2**.

The LUC limits are defined based on conditions as documented in the previously conducted investigations (TRC 2019a) and summarized in the Revised FS/CAP. The LUC areas are located within the Main Post Area within Area B of the Presidio and managed by the Trust.

3.0 REMEDIATION SUMMARY AND REMAINING CHEMICALS OF CONCERN

This section describes remedial actions implemented at the Site and identifies COCs remaining in soil, sub-slab/soil vapor, and groundwater above unrestricted CULs in the three LUC areas.

3.1 Site History and Remedial Activities

The former FDS Section BR11-1 consisted of subsurface fuel oil distribution lines, which were used to service boilers in the basements of residential buildings on the west side of Riley Avenue, including units 127A, 127B, and 128A. A 1,500-gallon capacity underground storage tank (UST) located southwest of building 127B was removed in 1978 and received a no further action (NFA) determination from the RWQCB in 2013 (RWQCB, 2013). Removal of the FDS pipelines occurred throughout the Presidio between 1996 and 1999. The Presidio Trust requested closure of 27 FDS sections, including Section BR11-1 in 2006 (Trust, 2006). On September 16, 2009, the RWQCB determined that NFA was required at Section BR11-1 (RWQCB, 2009).

The RWQCB re-opened FDS Section BR11-1 in 2017 (RWQCB, 2017) based on the discovery of petroleum contaminated soil during maintenance work in the basement of Unit 127B. Between 2017 and 2018, the Trust conducted additional investigations into petroleum contamination in soil, sub-slab/soil vapor, and groundwater at the units formerly served by Section BR11-1 FDS lines and surrounding areas. These investigations determined the presence of petroleum contamination in soil and sub-slab/soil vapor beneath the basement and

FDS Section BR11-1 Buildings 127A, 127B, and 128A Land Use Control LUCMRR Addendum Riley Ave/No: 285830 1

in soil and groundwater in the front yard of Unit 127B; in soil and sub-slab/soil vapor in the basement and in soil in the front yard of Unit 127A; and in the soil and sub-slab/soil vapor beneath the basement slab of Unit 128A.

The Revised FS/CAP was prepared based on the additional investigations and presents a comparison of alternatives to address residual soil, groundwater, and soil vapor impacts at the Site and presents a recommended corrective action plan. The Revised FS/CAP received concurrence from RWQCB in a letter dated January 24, 2020 (RWQCB, 2020) and established a course of action that utilizes a vapor mitigation system (VMS) in Unit 127B installed in 2019 (TRC, 2019b), existing basement concrete slabs and landscaped/hardscape caps, groundwater monitoring, and LUCs for the management of residual contamination beneath Units 127A, 127B, and 128A.

3.2 Residual Chemicals that Necessitate the LUC

Impacted soil, sub-slab/soil vapor, and groundwater samples that were used to define the Site LUC Area boundaries are presented in Figures 3, 4, and 5, respectively. Summaries of COCs remaining above CULs and detected maximum concentrations are summarized in Tables 1 through 3. A description of the site investigation activities used to characterize the extent of residual contamination and determined the Site LUC Areas was presented in the Revised Section BR11-1 Supplemental Site Investigation Report Fuel Distribution System (Revised Supplemental Site Investigation) report (TRC,2019a). Impacted samples exceed environmental screening levels for at least one of the following: total petroleum hydrocarbons (as diesel, gasoline, motor oil, and bunker c oil), naphthalene, benzene, ethylbenzene, and methane. Screening levels for identified COCs have been established as current RWQCB Tier 1 and Residential Environmental Screening Levels (ESLs, RWQCB, 2019) and supplemented by specific screening levels established in the Development of Presidio-Wide Cleanup Levels for Soil, Sediment, Groundwater, and Surface Water (EKI, 2002, as amended). A summary of screening levels is presented in the Revised FS/CAP.

4.0 SITE-SPECIFIC LAND USE RESTRICTIONS

The following site-specific land use restrictions and notifications apply within the Site LUC Areas:

- Health & Safety Requirements Personnel potentially exposed to soils in the Site LUC Areas shall follow a site-specific Health and Safety Plan, have the appropriate level of health and safety training, and use the appropriate level of personal protective equipment specified in a Health and Safety Plan.
- Soil Management Requirements Soil excavated from the Site LUC Areas shall be managed and/or disposed in accordance with Presidio policies and procedures and applicable federal, state, and local laws and regulations. Earthwork associated with any activity beyond general Operations and Maintenance (O&M) will be performed in accordance with the *Presidio Wide Soil Management Plan* (currently in development) or equivalent Site-Specific Soil Management Plan.
- Surface Cover Requirements Contaminated soil in the Site LUC Areas shall remain covered with a minimum of two (2) feet of clean soil or covered with hardscape elements equivalent to existing conditions.

FDS Section BR11-1 Buildings 127A, 127B, and 128A Land Use Control LUCMRR Addendum Riley Ave/No: 285830

- Groundwater Restrictions: Use of groundwater and installation of wells for beneficial groundwater reuse (i.e., drinking, irrigation, or construction) at the Site are prohibited.
- Tenant Disclosure and Restrictions Requirements Disclosure of the LUCs to tenants of Buildings 127A, 127B, and 128A and continued enforcement of prohibition on any construction, modification, repair, planting, ground disturbance, or installation in or around the premises by tenants.
- Projects involving building alterations or sub-surface work are required to go through the Presidio Trust building or dig permit process, respectively, which notifies and requires adherence by project proponents to LUC area restrictions and requirements. Dig permits are tracked and reported annually via the Annual O&M Report.
- Project proponent of future development will be notified of the presence of residual COCs at concentrations exceeding human health CULs as part of the Trust's N² and dig permit1 process.

5.0 INSPECTION, MAINTENANCE, AND REPAIR REQUIREMENTS

Post-mitigation requirements for annual inspection, repair, and upkeep of the VMS and caps, indoor air monitoring, and groundwater monitoring are presented in the Revised Operations, Monitoring, and Maintenance Plan (OMMP, TRC, in progress).

Activities completed as part of the OMMP and the results of inspections, maintenance, and monitoring sampling will be summarized in the Presidio Annual O&M Report submitted to DTSC and RWQCB during the first quarter of the following calendar year in conformance with the approved Operations & Maintenance Agreement (DTSC, 2012). The Annual O&M Report documents Trust compliance with site specific O&M plans and informs DTSC and RWQCB of changes to the OMMP or the site specific LUCMRR Addendum.

6.0 REFERENCES

California Regional Water Quality Control Board (RWQCB). 2009. No Further Action, Fuel Distribution System, FDS Closure Certification Report Phase I, Presidio of San Francisco, San Francisco County, Water Board Case No. 38D9327. September 16.

RWQCB. 2013. No Further Action for Priority Tanks, Submittal No. 1, Presidio of San Francisco, San Francisco County. January 3.

RWQCB. 2017. Water Board Review of the January 17. 2020 Revised Feasibility Study and Corrective Action Plan Report, Riley Avenue Site, Building Units 127A, 127B, and 128A, Fuel Distribution System Section BR11-1, Presidio of San Francisco, San Francisco, California. January 24.

Riley Ave/No: 285830

¹ Projects in Area B of the Presidio are screened for compliance with the National Environmental Protection Act (NEPA) and the National Historic Preservation Act (NHPA), collectively referred to as N².

RWQCB. 2019. Environmental Screening Levels, Rev. 2. 2019. http://www.waterboards.ca.gov/rwqcb2/water_issues/programs/esl.shtml

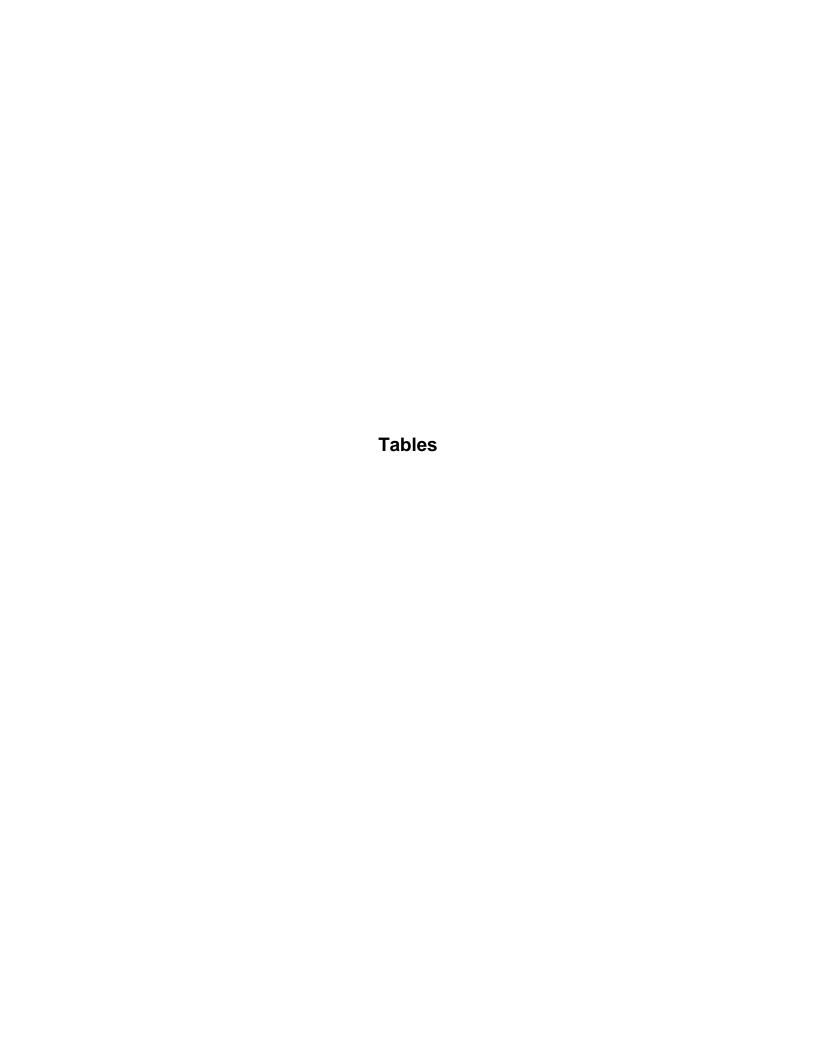
RWQCB. 2020. Presidio Trust – Re-Opening of Closed Case, FDS Section BR 11-1. Email message to Nina Larssen. January 24.

Department of Toxic Substances Control (DTSC), 2012, Operations and Maintenance Agreement. December 6.

Erler & Kalinowski, Inc. (EKI). 2002. Development of Presidio-Wide Cleanup Levels for Soil, Sediment, Groundwater, and Surface Water, Presidio of San Francisco, California. 2002. Updates through 2013.

The Presidio Trust (Trust). 2006. Fuel Distribution System, Draft FDS Closure Certification Report – Phase 1, Presidio of San Francisco, California, REQUEST FOR CLOSURE CERTIFICATION. January 27.

Presidio Trust, 2009. Presidio Trust Land Use Controls Master Reference Report, Presidio of San Francisco, California. September.


TRC. 2019a. Revised Section BR11-1 Supplemental Site Investigation Report, Fuel Distribution System, Riley Avenue, Presidio of San Francisco, San Francisco, California. August 2.

TRC. 2019b. Construction Completion Report, Vapor Mitigation System, Building 127B Riley Avenue, Section BR11-1, Fuel Distribution System, Riley Avenue, Presidio of San Francisco, San Francisco, California. August 30.

TRC. 2020. Revised Feasibility Study and Corrective Action Plan, Fuel Distribution System Section BR11-1, Buildings 127A. 127B, and 128A, Riley Avenue, Presidio of San Francisco, San Francisco, California. January 17.

TRC. In progress. Revised Operations, Monitoring, and Maintenance Plan Building 127B Vapor Mitigation System and Buildings 127A and 127B Cap, Section BR11-1 – Fuel Distribution System, Riley Avenue, Presidio of San Francisco, San Francisco, California. IN PROGRESS.

FDS Section BR11-1 Buildings 127A, 127B, and 128A Land Use Control LUCMRR Addendum Riley Ave/No: 285830 4

Table 1 LUC Soil COC Concentrations BR11-1 Riley Avenue Presidio of San Francisco, San Francisco, California

Sample ID	Depth (ft bgs)	Date	Total P	etroleum Hydro (EPA 8015B)	Polycyclic Aromatic Hydrocarbons (EPA 8270C-SIM)						
			Gasoline	Diesel	Motor Oil	Naphthalene					
				Soil (mg/kg)							
127BEX111	3.0	07/05/2017	11 Y	980	80 Y	< 0.015					
127BEX111	5.0	07/05/2017	29 Y	490	< 50	< 0.05					
127BEX115	1.0	07/05/2017	49 Y	590	52 Y	< 0.1					
SB001	3.0	10/02/2017	49 Y	760	48 Y	< 0.041					
SB001	5.0	10/02/2017	27 Y	550	38 Y	< 0.041					
SB001	7.0	10/02/2017	83 Y	1400	86 Y	< 0.058					
SB003	1.0	10/02/2017	50 Y	1400	120 Y	< 0.074					
SB003	3.0	10/02/2017	45 Y	1500	120 Y	< 0.058					
SB003	5.0	10/02/2017	50 Y	1600	140 Y	< 0.041					
SB003	7.0	10/02/2017	60 Y	4100	280 J,Y	< 0.12					
SB003	8.0	10/02/2017	38 Y	480	48 Y	< 0.058					
SB004	1.0	10/03/2017	0.047 J	12 Y	41	< 0.011					
SB004	5.0	10/03/2017	0.039 J	46 Y	19	< 0.0059					
SB004	10.0	10/03/2017	14 Y	1000	86 Y	< 0.059					
SB004	15.0	10/03/2017	18 Y	790	65 Y	< 0.029					
SB004 DUP	15.0	10/03/2017	25 Y	820	64 Y	< 0.06					
SB004	20.0	10/03/2017	2.5 Y	8200	640 Y	1.1					
SB004	25.0	10/03/2017	0.039 J	4.8 Y	< 5.9	< 0.0059					
SB004	27.0	10/03/2017	180 Y	12000	950 Y	< 0.59					
SB006	1.0	10/03/2017	0.0091 J	6.4 Y	35	< 0.012					
SB006	5.0	10/03/2017	1.7 Y	930	83 Y	< 0.05					
SB006 DUP	5.0	10/03/2017	16 Y	900	85 Y	< 0.059					
SB006	10.0	10/03/2017	6.4 Y	2700	180 J,Y	< 0.1					
SB006	15.0	10/03/2017	5.2 Y	1300	85 J,Y	< 0.061					
SB006	20.0	10/03/2017	0.096 J	29 Y	2.6 J	< 0.0057					
SB006 DUP	20.0	10/03/2017	0.13 J	68 Y	8.1	< 0.0057					
SB006	25.0	10/03/2017	0.071 J	0.53 J,Y	< 5.9	< 0.0059					
SB006	30.0	10/03/2017	0.025 J	0.58 J,Y	< 5.9	< 0.0059					
SB008	0.0	10/12/2017	0.044 J	9.1 Y	9.5	< 0.0062					
SB008	1.0	10/12/2017	1.5 Y	270	32	< 0.0063					
SB008	3.0	10/12/2017	1.1 Y	350	21 Y	< 0.012					
SB008	5.0	10/12/2017	5.9 Y	450	20 Y	< 0.017					
SB008 DUP	5.0	10/12/2017	0.19 J	350	17 Y	< 0.012					
SB008	6.0	10/12/2017	2.5 Y	250	12 Y	< 0.012					
BR11-1SB010	3.0	06/28/2018	0.034 J	110 Y	120	N/A					
BR11-1SB010	5.0	06/28/2018	66 Y	18000	1600 Y	N/A					
BR11-1SB010	7.0	06/28/2018	78 Y	4200	340 Y	N/A					
BR11-1SB010	10.0	06/28/2018	55 Y	2200	180 Y	N/A					
BR11-1SB010	15.0	06/28/2018	57 Y	3600	290 Y	N/A					
BR11-1SB010 DUP	15.0	06/28/2018	120 Y	7700	620 Y	N/A					
BR11-1SB010	17.5	06/28/2018	170 Y	10000	880 Y	N/A					
BR11-1SB010	20.0	06/28/2018	130 Y	15000	1400 Y	N/A					
BR11-1SB010	25.0	06/28/2018	58 Y	3500	270 Y	N/A					
BR11-1SB010	30.0	06/28/2018	0.18 J,Y	0.82 J,Y	< 6.0	N/A					
BR11-1SB010	35.0	06/28/2018	0.048 J	26	2.8 J,Y	N/A					
BR11-1SB016	3.0	06/06/2018	< 0.16	0.78 J,Y	< 6.0	N/A					
BR11-1SB016	5.0	06/06/2018	0.020 J	1.5 Y,Z	< 6.0	N/A					
BR11-1SB016	7.0	06/06/2018	0.024 J	2.8 Y	< 5.9	N/A					
BR11-1SB016	10.0	06/06/2018	0.27 Y	23 Y	3.5 J,Y	N/A					
BR11-1SB016 DUP	10.0	06/06/2018	0.64 Y	120	16	N/A					
BR11-1SB016	15.0	06/06/2018	5.7 Y	290	34	N/A					
BR11-1SB016	20.0	06/06/2018	0.18 J	0.82 J,Y	2.5 J	N/A					

Table 1 LUC Soil COC Concentrations BR11-1 Riley Avenue Presidio of San Francisco, San Francisco, California

Sample ID	Depth (ft bgs)	Date	Total P	etroleum Hydro (EPA 8015B)	Polycyclic Aromatic Hydrocarbons (EPA 8270C-SIM)		
			Gasoline	Diesel	Motor Oil	Naphthalene	
					Soil (mg/kg)		
BR11-1SB016	25.0	06/06/2018	0.013 J	1.5 Y	3.3 J	N/A	
BR11-1SB016	30.0	06/06/2018	0.028 J	4.0 Y,Z	14	N/A	
3R11-1SB016	35.0	06/06/2018	0.023 J	0.58 J,Y	< 5.9	N/A	
3R11-1SB018	3.0	06/28/2018	0.050 J	35 Y	32	N/A	
3R11-1SB018	5.0	06/28/2018	0.058 J	36 Y	39	N/A	
3R11-1SB018	7.0	06/28/2018	3.2 Y	1100	94 Y	N/A	
3R11-1SB018	10.0	06/28/2018	44 Y	1000	81 Y	N/A	
BR11-1SB018	15.0	06/28/2018	32 Y	980	82 Y	N/A	
3R11-1SB018 DUP	15.0	06/28/2018	63 Y	2200	160 Y	N/A	
3R11-1SB018	20.0	06/28/2018	0.096 J,Y	3.8 Y	< 5.7	N/A	
3R11-1SB018	25.0	06/28/2018	0.036 J,Y	1.2 Y	< 5.9	N/A	
3R11-1SB018	30.0	06/28/2018	0.036 J	1.3 Y	< 5.9	N/A	
3R11-1SB018	35.0	06/28/2018	0.034 J	0.69 J,Y	< 6.0	N/A	
Soil Cleanup Level: Huma	an Health Resi	dential ^a	1030	1380	1900	480	
RWQCB ESLs (Tier 1, Fe	bruary 2019) ^b		100	260	1600	0.042	
RWQCB ESLs (Residenti	al, 2019) ^b	_	430	260	12000	3.8	

Notes:

BOLD values indicates the concentration exceeds the cleanup level and/or the ESL.

Shading indicates that the non detected value is above the ESL.

Abbreviations:

fbg = feet below ground surface

mg/kg = milligrams per kilogram

N/A = Not Analyzed

EPA = United States Environmental Protection Agency

J = Estimated value

Y = Sample exhibits chromatographic pattern which does not resemble standard

Footnotes:

As per RWQCB ESLs Summary of Groundwater ESLs Table, the groundwater diesel value was used for the groundwater motor oil value since motor oil is not soluble.

^a Soil cleanup levels from Tables 7-2 and 7-5 and groundwater cleanup levels from Table 7-6 from EKI's 2002 (with updates through 2013) *Development* of Presidio-Wide Cleanup Levels for Soil, Sediment, Groundwater, and Surface Water. Presidio of San Francisco.

^b RWQCB ESLs are from RWQCB's 2019 (Rev. 2) Summary Tables of Soil ESLs (http://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/esl.shtml).

Table 2 LUC Sub-Slab/Soil Vapor COC Concentrations BR11-1 Riley Avenue Presidio of San Francisco, San Francisco, California

Residential Unit	Samula ID	Location	Data	Soil Vapor Constituents Method EPA TO-15					Soil Vapor Constituents Method EPA TO-03M LL	Soil Vapor Constituents Method EPA TO-17	Soil Vapor Constituents Method EPA TO-17	Fixed Gases ASTM D-1946						
	Sample ID Location	ple ID Location	Date	Benzene	Ethylbenzene	Naphthalene	Toluene	p/m-Xylene	o-Xylene	TPH-Gasoline	TPH-Gasoline	TPH-Diesel	M ethane ^b	Nitrogen	Carbon Dioxide	Carbon Monoxide	Oxygen	Helium
					Soil Vapor (μg/m³)								Soil Vapor (%volume)					
	127ASSP01		10/5/2017	21	37	<130	47	<43	81	N/A	N/A	39,000	1.51	88.7	3.85	<0.5	5.91	<0.01
	127ASSP01		2/27/2018	<8.0	<11	<4.2	<9.4	<43	<11	39,000	N/A	7,500	1.81	87.5	7.89	<0.5	2.79	<0.01
	DUP02272018-01	Sub-slab	2/27/2018	<8.0	<11	<4.2	<9.4	<43	<11	40,000	N/A	25,000	2.01	87.6	8.07	<0.5	2.34	<0.01
127A	127ASSP01		7/18/2018	5.2	13	<6.1	7.6	21 J	22	120,000	N/A	30,000	1.07	86.2	7.58	<0.5	5.12	<0.0790
1274	DUP07182018-01		7/18/2018	5.6	12	<5.7	9.9	18 J	21	190,000	N/A	25,000	1.09	86.3	7.67	<0.5	4.94	<0.0678
	127ASSP02		10/5/2017	<1.7	<2.3	<28	7.7	<9.2	<2.3	N/A	N/A	<5,000	<0.5	79.3	7.51	<0.5	13.2	<0.01
	127ASSP02	Sub-slab	2/27/2018	<1.7	<2.3	<0.88	<2.0	<9.0	<2.3	<930	N/A	<5,000	<0.5	82.3	3.54	<0.5	14.1	0.016
	127ASSP02		7/18/2018	<2.2	<2.6	<5.9	<2.6	<24	<12	1,000	N/A	<5,000	<0.5	79.8	6.64	<0.5	13.5	0.0331
127B	127BSSV01	Vent Riser	4/2/2019	11	5.1	<26	27	38	16	2,000	<6,700	10,000	<0.5	78.6	<0.5	<0.5	21.4	N/A
1276	127BSSV01	veni Risei	10/1/2019	<1.6	<2.2	<6.6	13	5.5 J	2.3	1,200	N/A	<6,700	<0.5	76.0	<0.5	<0.5	24.0	N/A
	128ASVP01	5.5	10/18/2017	4.1	<2.2	<26	16	<8.7	65	N/A	N/A	210,000 E*	<0.5	81.6	11.6	<0.5	6.8	<0.01
128A	128ASVP02		10/18/2017	3.0	<2.2	<27	12	<8.9	<2.2	N/A	N/A	10,000	<0.5	81.9	7.33	<0.5	10.8	0.0103
1204	128ASVP02	5.5	2/27/2018	<1.6	<2.2	<0.85	<1.9	<8.7	<2.2	<930	N/A	<5000	<0.5	81.6	9.94	<0.5	8.48	0.0131
	128ASVP02		7/18/2018	<2.2	<3.0	<5.8	<2.6	<24	<36	950	N/A	<5000	<0.5	80.9	10.0	<0.5	9.07	
	RWQCB ESLs (Tier 1, January 2019) ^a			3.2	37	2.8	10,000	3,500	3,500	3,300	3,300	8,900	1.25					
_	RWQCB Residential ESLs (Soil Gas, January 2019) ^a				37	2.8	10,000	3,500	3,500	20,000	20,000	8,900	1.25					

Notes:

Bold values indicates reported detected concentration exceeds the current ESL (2019, Rev 02) or established screening level. Shading indicates that the non detected value is above the ESL.

Abbreviations:

%v = percent volume N/A = Not Analyzed --= not available J = Estimated value <# = not detected above the laboratory limit provided LL = Low Level μ g/m³ = micrograms per cubic meter N/A = not analyzed

AF = attenuation factor RWQCB = Regional Water Quality Control Board

ASTM = American Society for Testing and Materials TPH = Total Petroleum Hydrocarbons

ID = identification TO = toxic organic

ESLs = Environmental Screening Levels

Footnotes:

^a RWQCB ESLs are from RWQCB's January 2019 (Rev. 02) Summary Table of Vapor ESLs (http://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/esl.shtml).

^b Methane screening level from *Revised Vapor Mitigation System Design, Building 127B Riley Avenue*, TRC 2019

Table 3 LUC Groundwater COC Concentrations BR11-1 Riley Avenue

Presidio of San Francisco, San Francisco, California

Sample ID	Depth	Date	Total Petroleum Hydrocarbons (EPA 8015B)							
	(ft bgs) ¹		Gasoline (C7-C12)	Diesel (C10-C24)	Diesel w/ SGC	Motor Oil (C24-C36)	Motor Oil w/ SCG	Bunker C (C12-C40)	Bunker C w/ SGC	
					Gı	roundwater (µg	ı/L)			
	23	07/06/2018	15 J	24 J,Y,Z	< 50	< 300	< 300	< 300	< 300	
BR11-1GW01	24	10/03/2018	32 J	66 Y,Z	< 50	< 300	< 300	N/A	N/A	
BRT1-IGWUT	24	1/18/2019	63	91 Y	<48	<290	<290	N/A	N/A	
	21	4/18/2019	69	460	160 Y	<290	<290	930 Y	380 Y	
SB004	27	10/03/2017	1900 Y	170000	N/A	13000 JY	N/A	450000 Y	N/A	
Groundwater Cleanup Level: Drinking Water ^a			770	880		12	200			
RWQCB ESLs (Tier 1, Febru	100	100			-					
RWQCB ESLs (MCL Priority	760	20	0	41	10 ^d	410 ^d				

Notes:

BOLD values indicates the concentration exceeds the cleanup level and/or the Tier 1 ESL.

Shading indicates that the non-detect value is above the Tier 1 ESL.

Abbreviations:

-- = not available

μg/L = micrograms per liter

fbg = feet below ground surface

N/A = not analyzed

EPA = United States Environmental Protection Agency

ESL = Environmental Screening Level

MCL = Maximum Contaminant Level

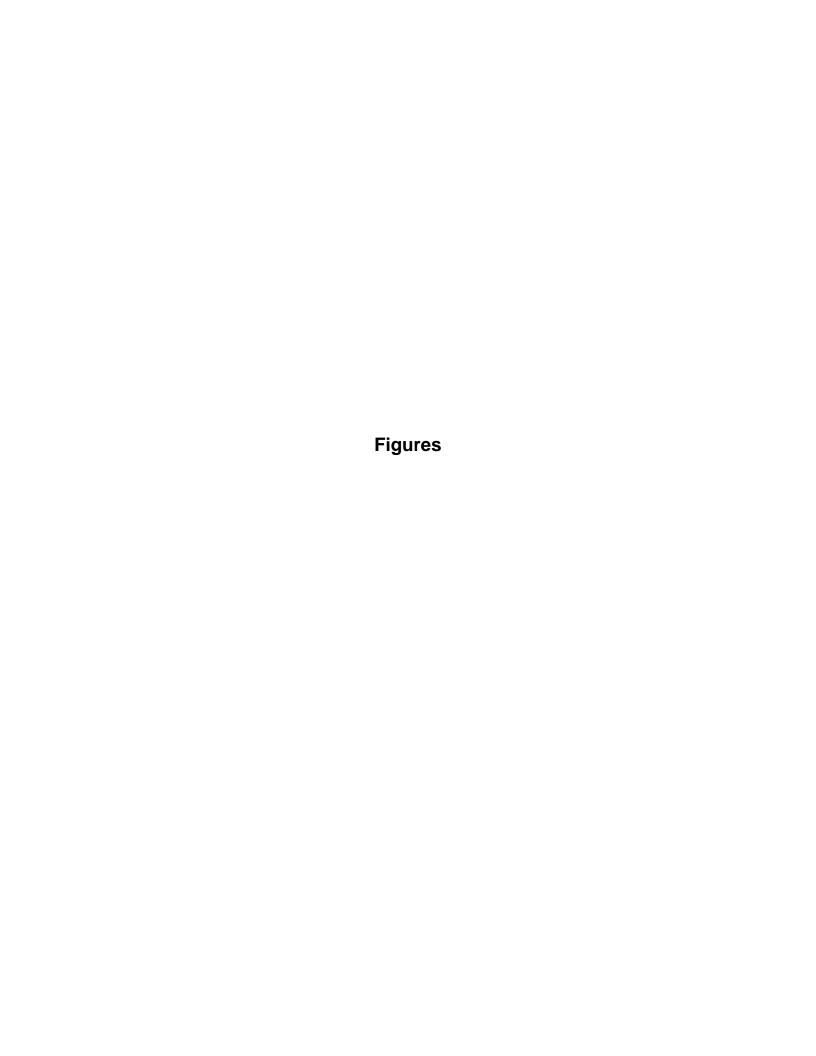
SGC = silica gel cleanup

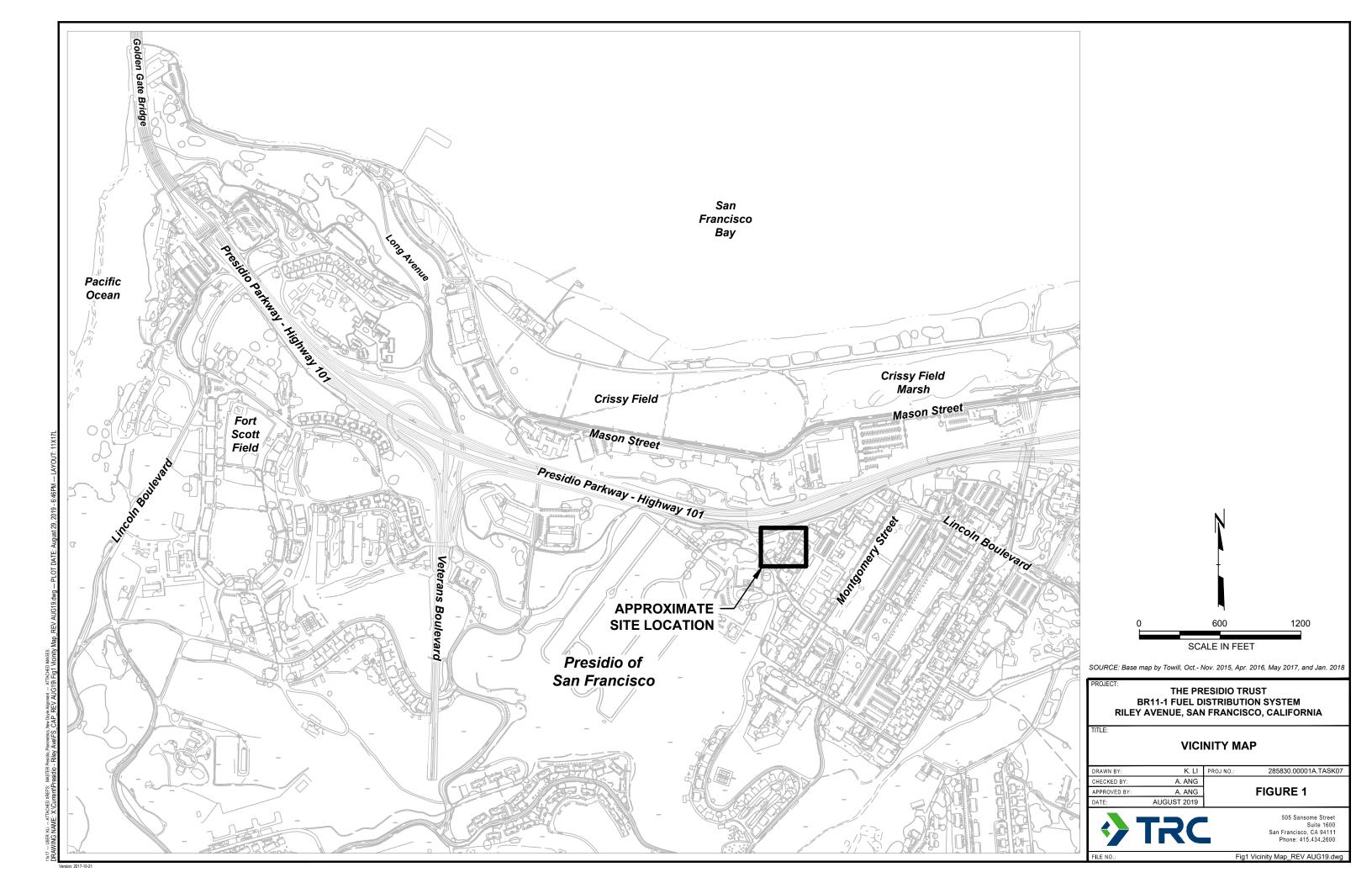
.l = Estimated value

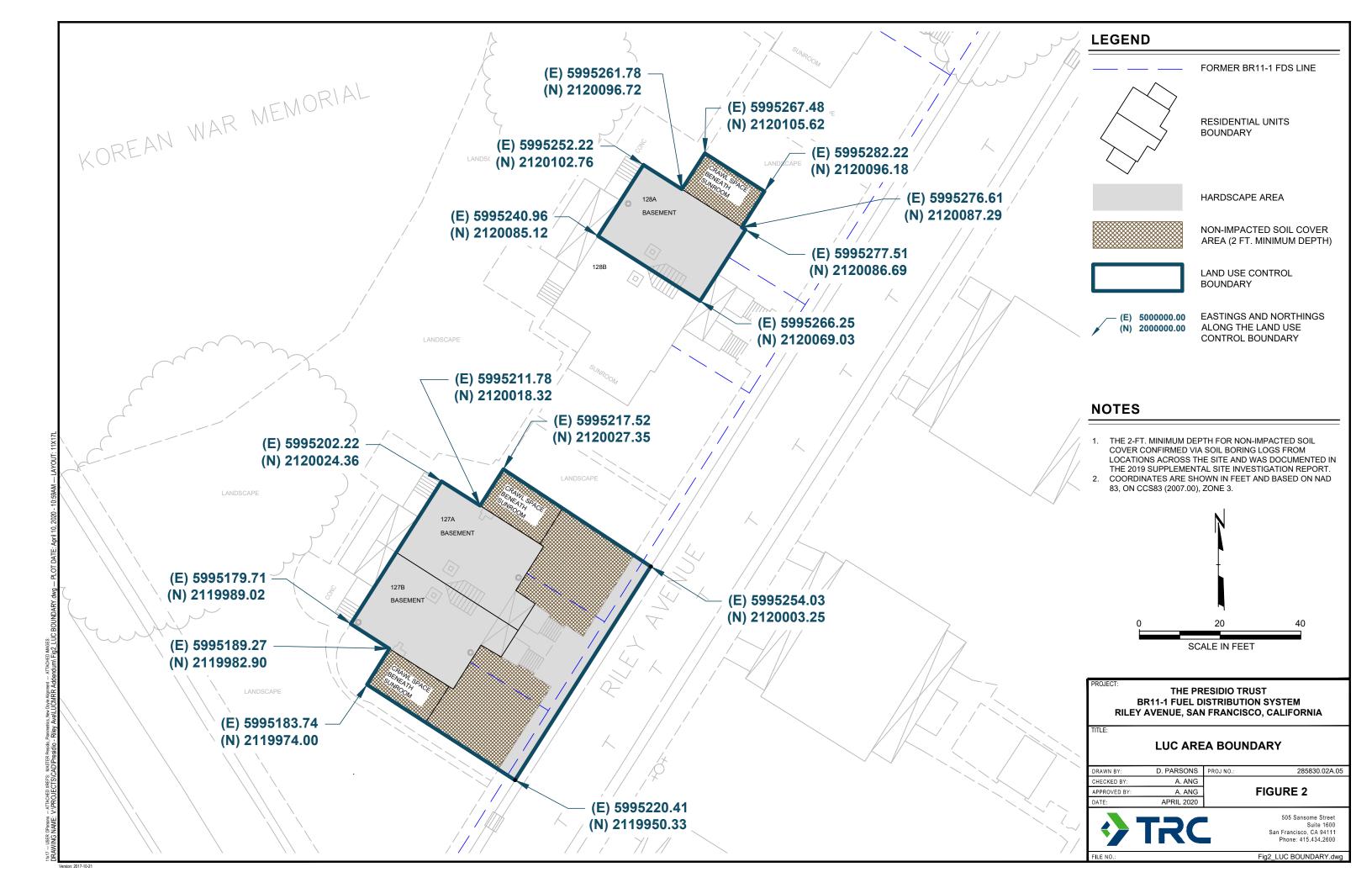
Y = Sample exhibits chromatographic pattern which does not resemble standard

Z = Sample exhibits unknown single peaks or peaks

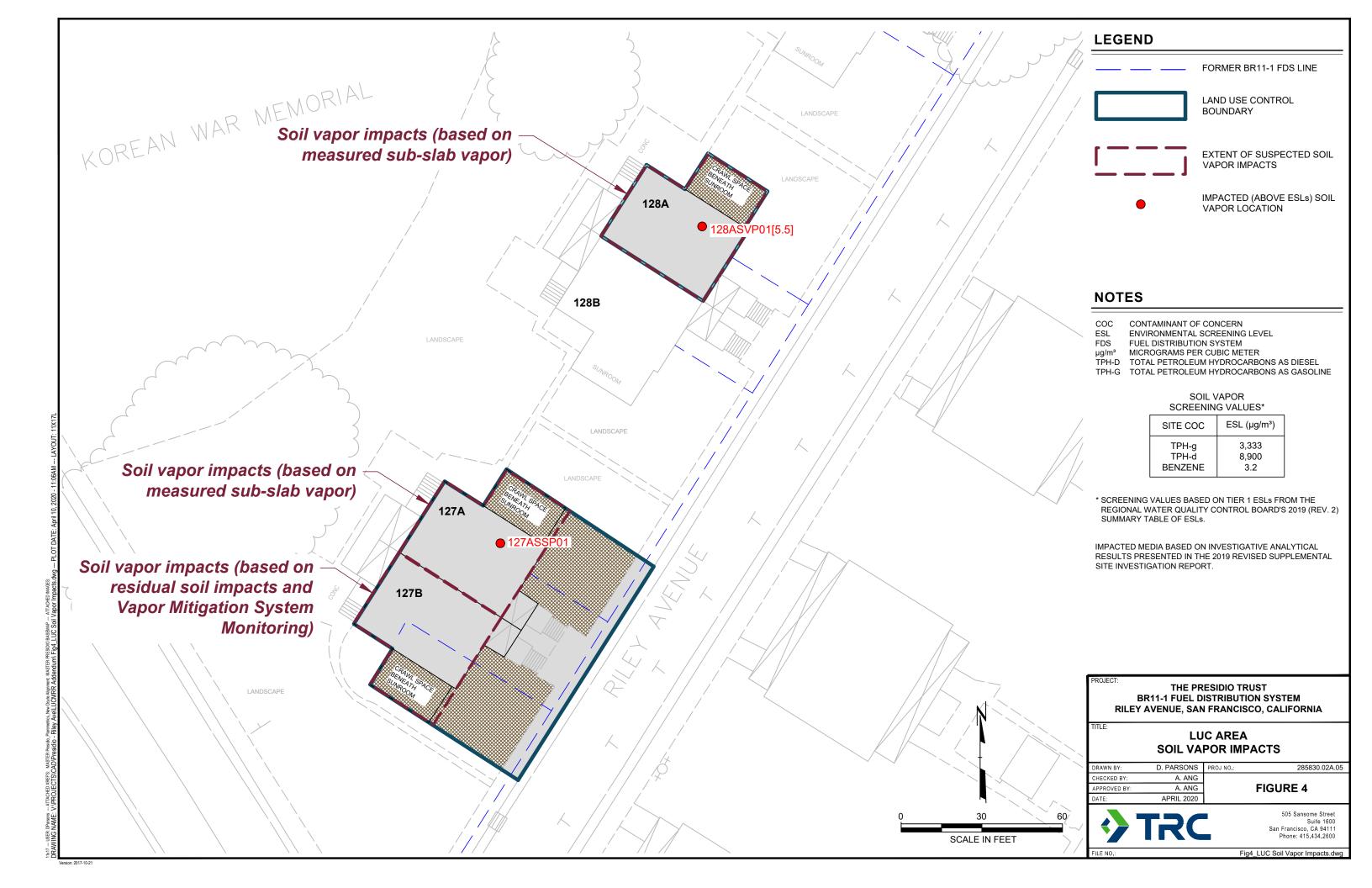
Footnotes:


¹ Measured depth to water in temporary or permanent well casing prior to sample collection.


^a Soil cleanup levels from Tables 7-2 and 7-5 and groundwater cleanup levels from Table 7-6 from EKI's 2002 (with updates through 2013)Development of Presidio-Wide Cleanup Levels for Soil, Sediment, Groundwater, and Surface Water. Presidio of San Francisco.


^b Tier 1 values from the San Francisco Regional Water Quality Control Board (RWQCB) January 2019 (Rev. 2) Summary of Environmental Screening Levels (ESLs).

c California Code of Regulations (CCR) Title 22 Division 4 Environmental Health Chapter 15. Domestic Water Quality and Monitoring Regulations. Article 16. May 2, 2006


^d ESL shown is for Petroleum-hydrocarbon oxidation product (HOP). No ESL specific for motor oil or bunker c oil is available.

