

103 Montgomery Street P.O. Box 29052 San Francisco, CA 94129-0052 T (415) 561-5300 www.presidio.gov

May 15, 2015

Mr. George Chow Department of Toxic Substances Control 700 Heinz Avenue, Building F, Suite 200 Berkeley, CA 94710-2721

Subject: Transmittal of the Lendrum Court Remedial Investigation Summary Report and Screening Risk Evaluation Presidio of San Francisco, California

Dear Mr. Chow:

Attached for your approval is a copy of the Lendrum Court Remedial Investigation Summary Report and Screening Risk Evaluation. This report incorporates your comments on the 30 March 2015 draft report as identified in your May 7, 2015 email. The report includes a summary of data collected by the Trust at this site, with an emphasis on the September 2014 investigation.

Separately, the Trust is preparing a Feasibility Study and Removal Action Work Plan to address residual impacts in the Lendrum Court Area.

If you have questions or need additional information, please contact me at (415) 561-5421 or John DeWitt at (650) 292-9100.

Sincerely,

an

Nina Larssen Environmental Remediation Project Manager

Attachments

cc: Denise Tsuji, DTSC (cover letter only) Bruce Handel, USCOE Eileen Fanelli, TRC John DeWitt, EKI 15 May 2015

Consulting Engineers and Scientists 1870 Ogden Drive Burlingame, CA 94010 (650) 292-9100 Fax (650) 552-9012

Ms. Nina Larssen Presidio Trust 67 Martinez Street Post Office Box 29052 San Francisco, California 94129-0052

Subject: Lendrum Court Remedial Investigation Summary Report and Screening Risk Evaluation Presidio Trust, San Francisco, California (EKI B00025.07)

Dear Ms. Larssen:

Erler & Kalinowski, Inc. is pleased to present the *Lendrum Court Remedial Investigation Summary Report and Screening Risk Evaluation*. This report provides a summary overview of remedial investigations conducted at Lendrum Court ("Site") in October 2012, June 2013, and September 2014, and evaluates potential risks to human health and the environment from exposure to chemicals in soil at the Site. The report also presents the results of the September 2014 field investigation activities conducted in conformance with the *Additional Sampling Workplan for Lendrum Court*, which was approved by the Department of Toxic Substances Control on 29 August 2014.

If you have any questions please do not hesitate to call.

Very truly yours,

ERLER & KALINOWSKI, INC.

In J. Dewlit

John T. DeWitt, P.E. Project Manager

LENDRUM COURT REMEDIAL INVESTIGATION SUMMARY REPORT AND SCREENING RISK EVALUATION

PRESIDIO OF SAN FRANCISCO, CALIFORNIA

Prepared for: The Presidio Trust San Francisco, CA

Prepared by: Erler & Kalinowski, Inc. Burlingame, California EKI B00025.07

May 2015

LENDRUM COURT REMEDIAL INVESTIGATION SUMMARY REPORT AND SCREENING RISK EVALUATION

Presidio of San Francisco, California

1	INTRODUCTION	1
2	BACKGROUND	1
2.1 2.2 2.3	Site Description Lendrum Court Site Use History Lendrum Court Site Investigation and Remediation History	1 1 2
3	SEPTEMBER 2014 FIELD INVESTIGATION	3
3.1 3.2 3.3	Purpose of the Lendrum Court Field Investigation Field Investigation Activities Field Investigation Activities Field Procedures 3.3.1 Clearing Vegetation Field Procedures 3.3.2 Trenching and Potholing Field Procedures 3.3.3 Soil Sampling and Analysis Field Procedures 3.3.4 Surveying Field Procedures 3.3.5 Winterizing the Site Field Procedures	3 3 4 4 4 5 6 6
3.4	Deviations from the Work Plan	7
4	SUBSURFACE CONDITIONS	8
4.1 4.2 4.3 4.4 4.5 4.6	Site Geology3Observed Lateral and Vertical Extent and Content of Debris Layer4Chemical Analytical Results104.3.1 Summary of Analytical Results for the Debris Layer14.3.2 Summary of Analytical Results for the Overburden12Laboratory QA/QC and Field Quality Control Samples12Limits of Debris Fill and Site Delineation12Grid Area J12	8 9 0 1 2 2 3
5	SCREENING RISK EVALUATION 12	3
5.1 5.2	Potential Chemicals of Concern12Human Health Screening Risk Evaluation145.2.1 Potential Human Receptors and Exposure Pathways145.2.2 Exposure Point Concentrations145.2.3 Human Health Risks Inside the Debris Area145.2.4 Human Health Risks Outside the Debris Area14	3 4 4 5 6
5.3	Ecological Screening Risk Evaluation	б
	5.3.1 Ecological Screening Inside the Debris Area 17	/ 7
5.4	Summary of Human Health and Ecologic Risks	, 7
6	COMMUNITY OUTREACH	8

LENDRUM COURT REMEDIAL INVESTIGATION SUMMARY REPORT AND SCREENING RISK EVALUATION

Presidio of San Francisco, California

7	CONCLUSIONS AND RECOMMENDATIONS	18
8	REFERENCES	20

TABLES

Table 1	Soil Sampling Analytical Matrix Table
Table 2	Summary of Soil Results for Metals
Table 3	Summary of Soil Results for Lead
Table 4	Summary of Soil Results for PAHs
Table 5	Summary of Soil Results for Dioxins and Furans
Table 6A	Screening Risk Evaluation for Chemicals Inside the Debris Fill Extents
Table 6B	Screening Risk Evaluation for Chemicals <u>Outside</u> the Debris Fill Extents

FIGURES

Figure 1	Site Location Map
Figure 2	Temporary Measures Installed at Lendrum Court in Spring 2014
Figure 3	September 2014 Sampling Locations
Figure 4	Observed Debris and Ash
Figure 5	Lead Concentrations in Surface Soil and Debris Layers at Lendrum Court

APPENDICES

Appendix A	Additional Sampling Workplan for Lendrum Court, August 2014
Appendix B	Lendrum Court Area Site Survey, PLS Surveyors, Inc., October 2014
Appendix C	Trench Logs and Select Photographs
Appendix D	Analytical Laboratory Reports (on CD-ROM)
Appendix E	Benzo(a)pyrene Potency Equivalent Concentration Calculations
Appendix F	ProUCL Output

1 INTRODUCTION

On behalf of the Presidio Trust ("Trust"), Erler & Kalinowski, Inc. ("EKI") has prepared this Remedial Investigation Summary Report and Screening Risk Evaluation. The report provides a summary overview of remedial investigations conducted in October 2012, June 2013, and September 2014, at Lendrum Court in the Presidio of San Francisco ("Site") and evaluates potential risks to human health and the environment from exposure to chemicals in soil at the Site. The report also presents the results of the September 2014 field investigation activities conducted in conformance with the *Additional Sampling Workplan for Lendrum Court* ("Workplan") (EKI, 2014d), which was approved, with comment, in an email from Department of Toxic Substances Control ("DTSC") on 29 August 2014 and finalized incorporating DTSC comments on 30 August 2014. A copy of the Workplan is included as Appendix A.

2 BACKGROUND

2.1 Site Description

Lendrum Court is located in the northwest corner of the Presidio, north of Doyle Drive, in the North Fort Scott Area (Figure 1). The North Fort Scott neighborhood includes 17 residential buildings containing 42 units housing approximately 110 residential tenants.

Army-era debris and incinerator ash are present in subsurface soils in the area of Buildings 1257, 1258, 1259, 1278, 1279, 1280, and 1282, all of which abut Lendrum Court. The area generally slopes to the northeast in a series of terraces, likely graded as building pads for the residential units and parking lot area. The sloping areas between the terraces are generally landscaped with grass and shrubs. The northeastern slope, behind buildings 1259, 1278, and 1279 is historic forest, with a thick understory of small statured trees and shrubs.

2.2 Lendrum Court Site Use History

EKI prepared a chronology of land development activities in the Lendrum Court and North Fort Scott areas based on historic maps and photos. Copies of historic maps and photos reviewed and a description of significant historical features observed in these maps and photos are provided in the Workplan (Appendix A).

Of note, a 1921 Presidio map indicates the presence of an incinerator approximately 150 feet southeast of present day Lendrum Court (see Figure 1) within the right-of-way of present-day Doyle Drive. This incinerator is not shown on other available Presidio maps. Aerial photographs dated 1922 and 1929 show a vague feature at the location of the incinerator identified in the 1921 map; this feature is not present on later aerial photos following construction of Doyle Drive in the early 1930s.¹

¹ The Doyle Drive / Presidio Parkway construction project encountered the foundation of the former incinerator in January 2015 while excavating the hook-ramp area at the interchange between Highways 1 and

Army historical maps indicate that construction of the current Lendrum Court residential buildings and parking area began around 1970 and was completed by 1975. A 1987 photograph shows the residential units at Lendrum Court, Armistead Road, Hoffman Street, and Ramsel Court completed.

2.3 Lendrum Court Site Investigation and Remediation History

Several phases of site investigation were conducted at the Lendrum Court site in response to tenant complaints of glass fragments in soil surrounding the residential buildings. Debris fill, containing glass, was observed in exploratory trenches excavated by the Trust at the site in October 2010. In February 2013, based on the results of the Trust's exploratory trenching, the DTSC directed the Trust to prepare a Preliminary Endangerment Assessment ("PEA") Workplan (DTSC, 2013a). The Trust prepared the PEA Workplan (EKI, 2013), and upon DTSC approval (DTSC, 2013b), the Trust implemented the work in June 2013.

Findings from the PEA Workplan investigation are summarized in the *Lendrum Court Investigation Summary Report and Screening Risk Evaluation* (EKI, 2014a) (the "PEA Report"). The PEA Report documented the presence of debris fill in subsurface soils and identified lead, PAHs, and dioxin and furans as potential chemicals of concern ("PCOCs"). DTSC approved the PEA Report in a letter dated 7 March 2014 (DTSC, 2014b). In that letter, DTSC stated that further investigation at Lendrum Court was required to determine the extent of debris and to evaluate the risks posed by PCOCs.

Additionally, DTSC sent a letter dated 9 January 2014 (DTSC, 2014a) requiring the Trust to develop a plan for implementation of temporary measures to minimize the potential exposure of residents to PCOCs in site soils. The Trust submitted an implementation plan to DTSC on 24 March 2014 (Trust, 2014) and following DTSC approval, in April and May 2014 the Trust implemented the planned measures. The temporary measures included installation of:

- Post and cable fencing around exposed surface soils in the moderately sloped landscape areas to restrict resident access (approximately 1,875 linear feet of fence to limit access to the majority of the exposed surface area);
- Aggregate base walkways in high-traffic areas connecting doors at the front and sides of residences;
- Sand-set paver patios near select buildings; and,
- Gopher-resistant mesh and sod in specific informal gathering areas.

These combined measures reduced the potential for human exposure to site PCOCs. The temporary measures are shown on Figure 2.

^{101.} Waste debris, including ash, was stockpiled for characterization and off-site disposal, and additional assessment is in progress to determine the extent of any residual contamination. The results of the assessment of this area will be reported to DTSC under separate cover.

Following implementation of the temporary measures, the Trust conducted the additional site investigation in two phases.

As part of Phase I, the Trust prepared and submitted a field investigation plan to evaluate if Army-era debris was present in the broader North Fort Scott and Pilots Row neighborhoods (EKI, 2014b). DTSC approved the plan on 30 April 2014. The field work was completed in May 2014, and a report of findings submitted to the DTSC in July 2014 (EKI, 2014c). The North Fort Scott and Pilots Row investigation report concludes that debris fill is limited to the Lendrum Court neighborhood. In a 24 July 2014 letter, DTSC concurred with the report findings at North Fort Scott and Pilots Row (DTSC, 2014c).

The second phase of investigation focused on delineation and characterization of the debris in the Lendrum Court area as described in the Workplan (Appendix A). The field work was conducted in September 2014 and is described below.

3 SEPTEMBER 2014 FIELD INVESTIGATION

3.1 Purpose of the Lendrum Court Field Investigation

The goals of the investigation were to:

- (1) Evaluate the extent of debris at the Lendrum Court site;
- (2) Conduct additional characterization of the debris fill to identify chemicals of concern ("COCs") for the Lendrum Court site and to evaluate the potential risk to human health or the environment; and
- (3) Collect data to facilitate evaluation of potential remedial alternatives, such as topography in the area of debris fill.

3.2 Field Investigation Activities

To achieve the identified goals, the following activities were performed in general accordance with the Workplan:

- Vegetation clearing in the historic forest area to provide access for equipment and allow observation of the ground surface and site topographic survey. The Trust contracted with Professional Tree Care Company of Berkeley, California ("PTC") to conduct the vegetation clearing work.
- Excavation of approximately 40 potholes and 22 trenches by hand or mini-excavator to define the limits of debris fill. The shallow trenches are listed below and shown on Figure 3.²

 $^{^2}$ From this point on, the prefix "1279TP" is generally dropped from the trench and sample labels in this report for ease of review. Note that the full samples IDs, including the prefix "1279TP", are listed in the

1279TP301	1279TPA1-2	1279TPE1-1	1279TPG1-2
1279TP302	1279TPA2-1	1279TPE1-2	1279TPI1-1
1279TP303	1279TPB1-1	1279TPF0-1	1279TPI2-1
1279TP304	1279TPC1-1	1279TPF2-1	1279TPI2-2
1279TP305	1279TPC1-2	1279TPG1-1	1279TPK-1
1279TPA1-1	1279TPD1-1		

Not all trenches were sampled; however, they were logged for visual presence of debris, and if debris was present, the nature, extent, and depth of the debris layer were noted.

- Collection of debris/ash samples from trenches 304, 305, TPA1-2, TPF0-1, TPF2-1, TPG1-2 to provide additional characterization of the debris fill, including analysis for dioxins and furans to supplement the data set from the June 2013 investigation.
- Collection of shallow surface soil samples to identify the potential limits of chemical impacts associated with debris fill.
- Site topographic survey.
- Installation of erosion control measures to reduce the potential for soil erosion following the field work.

3.3 Field Procedures

The following sections describe field procedures implemented during September 2014. Deviations from the Workplan are discussed in Section 3.4. Groundwater was not encountered in the trenches or potholes. No investigation-derived wastes were generated.

3.3.1 <u>Clearing Vegetation</u>

PTC removed the underbrush and vegetation smaller than 6 inches in diameter to the east and northeast behind Buildings 1279, 1278, and 1259 and to the west of Building 1257 to allow access for site investigation activities. In addition, three trees were removed in consultation with the Presidio Trust Forestry Department because they were unstable and posed a risk to site workers.

3.3.2 Trenching and Potholing

Potholes and trenches were advanced as outline in the Workplan. Potholes were hand- or machine-dug holes to allow a quick assessment of presence or absence of debris in the upper few feet of soil. Potholes were also used within the tree protection zones where

tables. The "TP" prefix is retained for trenches within the lettered grid area to distinguish from potholes demarcated with "SB" for soil boring.

mechanical equipment was excluded.³ Based on the pothole results, trenches were generally located between areas of known debris and areas expected to be free of debris. Trench lengths varied depending on the lateral extent of debris, presence of tree roots or tree protection zones, and the presence of subsurface utilities. EKI's subcontractor excavated trenches approximately 18 inches wide using a mini-excavator with low ground pressure. Prior to excavation, sod (if present) was cut and removed. Trench spoils were placed on plywood sheets.

Following logging and soil sample collection (if environmental samples were collected), excavated materials were replaced in the trenches and potholes approximately to the same vertical position from which they were excavated. Replaced materials were backfilled and compacted by tamping with the mini-excavator bucket. If present, the sod was restored at ground surface following soil compaction.

EKI established a grid system in the field to track progress and identify specific areas. The grid is shown on Figure 4. In grid areas A through H, potholes were generally hand-dug with a shovel or pick-axe, though some were also dug with the mini-excavator. Potholes were dug to about 12 inches in depth by hand (or to refusal), or about 24-inches if the mini-excavator was used. If debris was encountered, digging stopped, the location was then identified as containing debris and marked for surveying, and a step-out pothole was dug. This process continued until debris fill was not encountered. If the area was accessible to the mini-excavator, a trench was excavated perpendicular to the anticipated edge of debris to confirm the absence of debris at depth and to establish the extent of debris fill. Potholes with visible debris were not sampled.

A similar approach was used in grid areas I, J, K, and M. Initial potholes were dug in each grid to confirm presence or absence of visible debris. With the exception of Area K, trenches were excavated only if debris was observed in the potholes. In Area K, because debris had previously been encountered in a trench immediately east of this area, a trench was excavated as close as possible to the previously observed debris outside the tree protection zone. Four potholes were also excavated in Area K.

The number of potholes and trenches within a specific grid area varied based on field conditions, including topography, proximity to tree protection zones, access, and results of other potholes or trenches. EKI discussed the potholing and trenching approach with DTSC representatives in the field on 17 and 24 September 2014. Copies of trench logs and select photos are included in Appendix C.

3.3.3 Soil Sampling and Analysis

The multi-increment soil sampling method described in the Workplan was employed in the field and by the analytical laboratory. DTSC representatives observed the multi-increment sampling at trench TPF0-1 on 24 September 2014.

³ The Trust Forestry Department imposed a 20-foot radius tree protection zones around all trees that remained. Within the tree protection zones, mechanical equipment access was limited and digging restricted.

Soil samples collected from the debris layer of the trenches were submitted for chemical analysis to provide additional characterization of the debris. An analytical matrix for the samples collected is provided in Table 1. Debris layer samples were analyzed for the following:

- PAHs using U.S. EPA Method 8270C with selected ion monitoring;
- Title 22 Metals using U.S. EPA Method 6020/7471A;
- Dioxins and furans using U.S. EPA Method 1613; and
- Percent moisture.

Soil samples collected from the surface layer of the trenches and potholes where debris was not encountered were submitted for limited chemical analysis to provide an assessment of potential extent of chemical impacts associated with the debris. These samples are identified in Table 1 and were analyzed for lead using U.S. EPA Method 6020 and percent moisture.

A total of 51 multi-increment soil samples plus 3 duplicate samples were submitted to Curtis & Tompkins, Ltd. ("Curtis & Tompkins") for sample preparation. Curtis & Tompkins is certified in Incremental Sampling Methodology ("ISM") preparation protocol capable of processing multi-increment samples. The analytical laboratory employed an ISM preparation protocol in which each sample was dried, mixed, and systematically split into subsamples. A small sample from each increment was collected and mixed to create the multi-increment sample used for analysis. ISM-prepared samples were submitted to Vista Analytical Laboratory for analysis of dioxins and furans. Both laboratories are State of California-certified.

Analytical results of September 2014 soil sampling activities are discussed in Section 4.3.

3.3.4 <u>Surveying</u>

Trench extents, pothole locations, the grid system, remaining trees, existing utilities, existing improvements, and other significant features of the Lendrum Court area were surveyed by PLS Surveys, Inc., a California licensed land surveyor. Trench and pothole surveying included the ground surface elevation and the horizontal coordinates of each location. Horizontal coordinates are in North American Datum 1927 ("NAD 27"). Vertical coordinates are reported in the North American Vertical Datum 1988 ("NAVD 88"). A copy of the survey map and report are included in Appendix B.

3.3.5 <u>Winterizing the Site</u>

Because vegetation removal disturbed the site soils, upon completion of soil sampling and surveying PTC winterized the site to reduce the potential for erosion. The three areas of the site where surface soil was exposed on hillslopes during tree removal and chipping activities include grid areas A2, K, and H1. The winterization process involved removing

loose duff and vegetation that was likely to be unstable on the slope, placing and securing woven coir mats, and installing biodegradable coconut wattles at 10 foot maximum intervals along the slope. Wattles were also placed alongside the stairways next to grid areas A2 and K. Work was installed in general accordance with the California Stormwater Quality Association Construction Best Management Practices.

3.4 Deviations from the Work Plan

Field investigations were conducted in general conformance with the Workplan. Specific deviations are described below.

The Workplan indicated that no trees over 6 inches would be removed. However, in coordination with the Trust Forestry Department, three trees with diameters greater than 6 inches were removed to provide access or because the trees were dead and posed a danger to the field team.

The Workplan indicated that potholes would be hand-dug to about 24 inches. In places, compacted or hard soil limited the depth that could be achieved by hand digging to less than 24 inches. When mechanical assistance was feasible (i.e., outside tree protection zones), EKI utilized the contractor's mini-excavator to assist with potholing.

The Workplan indicated that potholes would be dug in grid areas I, J, K, and M, and trenches would only be dug if debris were present in potholes. In grid area K a trench was dug to confirm findings even though no debris was present in potholes.

The Workplan indicated that potholes would be dug in grid areas J1 through J3 unless the edge of the debris was confirmed in trenches 301 and 302. While no debris was encountered in trenches 301 and 302, as a conservative measure, potholes were dug in grid areas J1 through J3. No debris was observed in these potholes.

The Workplan indicated that the number of potholes or trenches within a specific grid would vary based on field conditions. Because of visible surface ash and debris in grid areas E1 and F1, and the limitations of the root protection zone of the cypress tree in grid area F1, the number of potholes and trenches in these areas was limited. In addition, once surveyed, trench TPE1-2 was determined to be located in grid area E2. Locations west of grid areas 1 were labeled "0", such as trench TPF0-1 and pothole SBH0-1.

The Workplan indicated that duplicate samples would be collected at a rate of approximately 10%. A duplicate was collected and analyzed with the seven debris samples, meeting the 10% goal. Only two duplicates were collected and analyzed with the 44 surface lead samples, rather than the 4 or 5 that would meet the 10% goal. However, because the samples were collected by multi-incremental sampling and prepared for analysis by ISM protocol, these sample results are considered to be representative of the site conditions. As stated above, the RPD for these lead results from soil samples ranged from 3% to 30%, which is a small range for typically heterogeneous soil samples. Therefore, although the total number of duplicate samples did not match the goal set in the

Workplan, the duplicates analyzed demonstrate that the sampling procedure provides consistent results.

4 SUBSURFACE CONDITIONS

4.1 Site Geology

According to the *Geologic Map of the San Francisco Bay Region*, (USGS, 2006), Lendrum Court is underlain primarily by alluvial fill material, i.e., Quaternary hillslope deposits, and by serpentinite bedrock. Quaternary slope debris is also shown as the surficial deposit at the Lendrum Court area on Figure 6-1 of the *Development of Presidio-Wide Cleanup Levels for Soil, Sediment, Groundwater and Surface Water* ("Cleanup Level Document"; EKI, 2002). Based on a cut and fill map prepared by the Trust representing elevation changes from 1871 to 2000, cuts were made in native material at the Lendrum Court area to accommodate construction of roadways and building pads.

The September 2014 investigation included 22 new trenches, shown on Figure 3; 18 trenches were previously excavated at Lendrum Court (screened back on Figure 3). Trench logs and select photographs for the September 2014 field investigation are included in Appendix C.

The September 2014 investigation confirmed the previous findings at Lendrum Court. Four general layers have been identified in the shallow subsurface at Lendrum Court. These layers are listed below in order from the ground surface; however, not all layers are observed in each trench.

- Overburden, a yellow-brown to brown silty sand with minor gravel,
- Debris layer, a brown silty sand, which includes visible debris and which may or may not include visible ash,
- Bottom layer, a yellow-brown to brown silty sand with no observed debris, and
- Bedrock, a weathered serpentinite.

<u>Overburden</u>: The overburden fill extends to depths ranging between approximately 0.5 and 2.5 feet below ground surface ("ft bgs"), and appears to be consistent with the Colma Formation. The overburden material consists of yellow-brown silty sand and may represent fills of the cut native alluvial material repositioned during previous land-leveling activities. The overburden material generally does not contain debris, although glass has been found in surface soil, often in the spoils pile by gopher holes.

<u>Debris layer</u>: The Army-era debris layer is generally first encountered at depths of approximately 0.5 to 2.5 ft bgs below the overburden layer and is occasionally visible at the surface (trench TPF0-1). The observed thicknesses of the debris layer vary significantly from approximately 3 inches to 5 feet. The subsurface debris layer generally contains abundant glass fragments, melted glass, bottles, ceramics, and terra cotta, as well as lesser quantities of brick, charcoal, wire, metal, small animal bones, and burned wood.

Ash was observed in the debris layer in several of the trenches. Cobbles were also frequently observed in the debris layer.

Visible ash, when encountered, is generally mixed within the debris layer. Ash was observed in trenches T1, 202, 203, 206, 207 208, TPA1-2, TPB1-1, TPC1-1, TPC2-1, TPD1-1, TPE1-1, TPE1-2, TPF0-1, TPF2-1, and TPG1-2. Ash was also observed on the ground surface around the cypress tree in grid cell F1.

<u>Bottom layer</u>: The alluvial fill material observed in the trenches beneath the overburden fill and debris layers is comprised of yellow-brown silty sand and likely represents Quaternary hillslope deposits as identified on the USGS map (USGS, 2006). When encountered in the trenches, it is not always clear whether the alluvial fill is in-place hillslope deposits or re-worked material. Therefore, this unit is referenced as the bottom layer, or base layer of the trench, indicating material generally encountered below the debris layer, regardless of whether this bottom layer is fill material or native formation.

<u>Bedrock</u>: A weathered serpentinite rock was observed in some trenches. There is also a visible outcrop of serpentinite southeast of Building 1258, and mapped serpentinite in the Lendrum Court area, specifically, northeast of Building 1280, northwest of Building 1282, and southwest of Buildings 1257 and 1258 (USGS, 2006).

4.2 Observed Lateral and Vertical Extent and Content of Debris Layer

The lateral extent of Army-era debris is shown on Figure 4. Consistent with the findings of previous investigations, the debris layer is typically present at 0.5 to 2.5 ft bgs in the central Lendrum Court area and ranges in thickness from approximately 3 inches to 5 feet. In the area of the historic forest, Army-era debris ranges from a few inches to 5 feet thick and is present from the ground surface to approximately 4 ft bgs in trench TPD1-1.

Based on observations in potholes, test pits, and trenches, Army-era debris is generally bounded to the:

- South by Armistead Road and the embankment of Highway 1 ramp⁴ adjacent to the Lendrum Court roadway leading from Lincoln Boulevard to the Site,
- Southwest by Buildings 1257 and 1258,
- West by the footpath between Building 1257 and Area K;
- Northwest by the parking lot and sidewalk to the east of Building 1282, the sidewalk south of the entrance to Building 1280, and the footpath between Buildings 1280 and 1279; and
- North by the approximate break in slope behind Buildings 1280, 1278, and 1259.

While minor amounts of debris consisting of wood, wire, plastic, and rope were found in trench 212 (a previous trench located in Area L), the debris found in this trench was not

⁴ The investigation of the former Army incinerator encountered in January 2015 will be reported to DTSC under separate cover. Because the road cut for the street from Lendrum Court to Lincoln Boulevard results in steep topography below the debris layer at Lendrum Court, the September 2014 fieldwork did not specifically investigate or identify a direct connection from Lendrum Court to the former incinerator.

consistent with the Army-era debris in the remaining Site and the soil samples from the debris layer did not contain chemicals above applicable screening levels. The debris is more consistent with random buried trash. This trench is therefore not included in the debris fill area.

Trench TPI2-1 (in Area I) contained gravel fill with fines, cemented rock, and cobble-sized asphalt clasts. This trench is immediately south of the downhill/eastbound portion of Lendrum Court road and just north of the area of the former incinerator. The trench contents appear to be the remains of a former road and, given the presence of this debris and the trench location relative to the incinerator, is included in the debris fill area. The extent of this Army-era road is uncertain.

In the historic forest, grid areas A1 through H2, removal of the vegetation made possible the demarcation of the debris and the drainages in the densely vegetated area. The debris extends in some drainages to the north (particularly grid area D2), likely from transport by stormwater runoff. As the estimated debris extent moves south through grid areas G and H, the large trees that could not be removed limited the ability to trench in these areas, so more potholes were hand dug. Degraded bedrock cobbles were encountered in hand dug potholes in grid areas G1 and H1, which at first were considered an indication of debris, but upon review of the observed debris extent, are fractured bedrock. Therefore, these potholes are not shown within the debris area on Figure 4. In Area H, the debris extent moves close to Building 1259 and includes trench 305 to the base of the slope along Lendrum Court road, and then trends westward toward Armistead but north of the serpentinite outcrop visible on the north side of intersection of Armistead Road and Lendrum Court.

No Army-era debris was found in the potholes advanced in grid area J.

4.3 Chemical Analytical Results

Chemical analytical data results for soil samples collected during the 2014 and earlier investigations are summarized in Tables 2 through 5.⁵ Sample results are reported on a dry weight basis. Table 2 presents results of Title 22 metals analysis for select debris samples, and Table 3 presents results for lead analyses for select surface samples. Table 4 presents results for PAHs, as well as results of a calculation of benzo(a)pyrene equivalents for carcinogenic PAHs for each sample. Table 5 presents results for dioxins and furans, as well as dioxin toxic equivalent quotient ("TCDD TEQ") for each sample. The benzo(a)pyrene potency equivalent concentrations are calculated with Toxicity Equivalency Factors for Carcinogenic Polycyclic Aromatic Hydrocarbons from EPA Region IX Regional Screening Levels User's Guide (U.S. EPA, 2013c). For PAHs not included in the EPA guidance, values from the June 2011 Human Health Risk Assessment Note 4, were used as requested by DTSC (DTSC, 2011a). The TCDD TEQ was calculated

⁵ Although no Army-era debris was found in potholes advanced in grid area J, shallow soil samples were collected. The results of these soil analyses are included in the data in Appendix D. Since the data collected from Area J appears to have a separate source than the remaining portions of the Site, the data from Area J are not summarized on Tables 2 through 5. These data will be reported under separate cover.

by the analytical laboratory and the results are shown on the analytical laboratory reports. Analytical laboratory reports for the September 2014 investigation are included in Appendix D; benzo(a)pyrene potency equivalent concentration calculations are included in Appendix E.

For evaluation purposes, soil sample results are compared with soil screening levels ("SSLs") identified in the PEA (EKI, 2014a), which are derived from the Cleanup Level Document (EKI, 2002), as amended. For dioxins and furans which are not included in the Cleanup Level Document, a residential soil screening level of 3.5 picograms per gram ("pg/g") was developed by MACTEC for the Trust (MACTEC, 2007). For screening purposes, soil sample results greater than the most stringent residential SSL above the applicable background level are presented in bold type in the tables; sample results greater than the ecological buffer zone SSL above the applicable background level are presented with underlining in the tables.

Sample results from previous investigations are also shown on Tables 3, 4, and 5 to allow comparison with more recent site data.

4.3.1 Summary of Analytical Results for the Debris Layer

<u>Metals</u>: As shown on Table 2, all seven samples detected the presence of lead above the residential SSL of 80 milligrams per kilogram ("mg/kg"), with a maximum concentration of 2,400 mg/kg in trench TPF0-1. Lead data are posted on Figure 5. Arsenic was detected above the Colma formation soil background level of 6.2 mg/kg in five of seven samples, with a maximum concentration of 7.2 mg/kg. Barium, copper, and zinc were also detected above the ecological SSLs in nearly all of these samples.

<u>PAHs</u>: Table 4 shows benzo(a)pyrene was detected above its residential SSL in four of seven samples analyzed from the debris layer; the benzo(a)pyrene equivalent was also above its residential SSL in these four samples. The maximum benzo(a)pyrene and benzo(a)pyrene equivalent concentration were 0.14 mg/kg and 0.20 mg/kg, respectively, (in the sample from trench TPF0-1 from a depth of 1.5 ft bgs), as compared with the residential SSL of 0.046 mg/kg. However, the detected and calculated values for benzo(a)pyrene equivalents are lower than the Northern California upper tolerance limit background concentration for benzo(a)pyrene potency equivalent of 1.5 mg/kg (ENVIRON, et al, 2002). The background concentrations in this study ranged from 0.0027 mg/kg to 2.8 mg/kg.

Table 4 also shows the detection limits for the sample from TPI2-1 are elevated. As stated in the laboratory report narrative (Appendix D, sample 261249-019), due to the dark and viscous nature of the sample extract, the laboratory had to dilute the sample to perform the analysis. The dilution process resulted in the sample detection limits being greater than the benzo(a)pyrene and dibenz(a,h)anthracene residential SSLs; however, at these elevated detection limits PAHs were not detected in this sample. Because no PAHs were detected, the benzo(a)pyrene equivalent concentration could not be calculated for this sample. Review of the trench log for this sample indicates the presence of asphalt clasts, gravel fill with fines, and cemented clasts (Appendix C, Figure C-20). Based on the analytical data and the field observations, this trench may have encountered a former road or contain debris associated with a former roadway.

<u>Dioxins and Furans</u>: As shown in Table 5, of the seven soil samples analyzed for dioxins and furans from the debris layer, TCDD TEQ concentrations ranged between 1.26 pg/g and 15.7 pg/g. The maximum concentration exceeded the residential SSL of 3.5 pg/g, but the sample results are within the urban background range of 7 pg/g to 20 pg/g (DTSC, 2010).

4.3.2 Summary of Analytical Results for the Overburden

As shown in Table 3, 36 multi-increment soil samples and a duplicate were collected from the surface soils for lead analysis. Of the 37 samples, 16 had lead concentrations that exceed the 80 mg/kg residential SSL. The maximum lead concentration was 490 mg/kg in a sample collected from pothole SBC1-1. The lead data are shown on Figure 5.

4.4 Laboratory QA/QC and Field Quality Control Samples

Laboratory quality assurance and quality control ("QA/QC") procedures were performed in accordance with the Presidio-wide Quality Assurance Project Plan (Tetra Tech, 2001), and as amended by the Trust's 23 June 2011 QAPP Addendum (Trust, 2011).

Three field duplicates for soil were collected as part of this investigation. A field duplicate is a sample collected at the same time and from the same source and depth as the associated primary sample. Due to the heterogeneous nature of soil properties and matrix effects, a true soil duplicate sample is difficult to properly subsample. However, use of the multi-increment sampling technique results in collection and analysis of soil samples that are typically more representative of their presence in the field than analysis of individual, discrete samples.

As shown by the analytical results for the three duplicate pairs presented in Tables 2, 3 and 4, the multi-incremental sampling method resulted in consistent data results. Utilizing lead concentrations as an example, relative percentages differences ("RPDs") for the duplicate pairs were 11%, 30%, and 3%. Based on low RPDs for these samples, the analytical results presented herein are considered representative of actual conditions in the field and the observed soil layers are considered well characterized for the chemicals analyzed.

As noted above, the sample from TPI2-1 for PAHs was diluted because the extract was dark and viscous. All other laboratory QA/QC requirements were met as noted in the laboratories' report narratives (Appendix D).

4.5 Limits of Debris Fill and Site Delineation

The extent of debris shown on Figure 4 is primarily a function of observed debris in the field, and incorporates the surveyed locations of observations during trenching and potholing. The Site limits are shown on Figure 5. The limits encompass debris fill and

adjacent areas considered to be impacted by historic waste disposal and site grading activities and resultant waste migration. The Site limits are greater than the debris limits, as the Site limits are intended define the area that a contractor may need to conduct a remediation program, as well as gently grade slopes to restore smooth drainage patterns.

Review of the debris extent and chemical data indicate that significant chemical impacts are associated with the debris. Lead analysis outside the debris area, in areas K as well as A through H in particular, demonstrated that the chemical impacts tend to decline rapidly with increasing distance from the debris. Therefore, the analysis that follows in Section 5 considers two subareas of the Site: the area <u>within</u> the debris extents (the interior of the dashed line on Figure 4) and the area <u>outside</u> the debris extents (the area beyond the dashed line on Figure 4).

4.6 Grid Area J

Grid Areas J and I were included in the Workplan given the potential for Army-era debris to be present beneath Lendrum Court and Armistead Road. In Area J, although debris was not found in this area, shallow soil samples were collected and analyzed. Area J is adjacent to Highway 101 (see Figure 1). The lead analytical data from Area J indicates the potential for shallow soil impacts from historic use of the highway, specifically, aerial deposited lead ("ADL"). ADL is addressed under different regulatory authority than the Army-era debris fill and the ADL management is subject to agreements between the Presidio Trust and Caltrans for the construction and operation of Doyle Drive. These data and any remedial actions taken will be reported under separate cover to DTSC with copies to the public in conformance with the Trust's current community outreach plan.

5 SCREENING RISK EVALUATION

Potential risks to human and ecological receptors from exposure to PCOCs in soil at the site are evaluated in this section. The data collected in the September 2014 investigation are generally consistent with the results presented in the February 2014 Investigation Summary Report (EKI, 2014a); the data from that report have been included in Tables 2, 4, and 5. The evaluation in this section reviews the data from all previous investigations.

5.1 Potential Chemicals of Concern

Arsenic and lead were detected at concentrations above residential human health SSLs and background concentrations in soil samples at Lendrum Court and are therefore identified as PCOCs. Benzo(a)pyrene was detected above residential human health SSL but the benzo(a)pyrene potency equivalent concentrations, while above the residential SSL, were below the urban background concentration. Similarly, TCDD TEQ concentrations were above residential SSLs but were within the urban background range. These compounds are evaluated as PCOCs in the screening evaluation below.

The ecological PCOCs in soil for Lendrum Court are barium, copper, lead, and zinc due to detections of each of these chemicals above background concentrations and ecological SSLs in the debris layer.

Dibenz(a,h)anthracene, while not detected above its residential human health SSLs in the September 2014 investigation, was identified as a PCOC in the June 2013 investigation, and is therefore evaluated as a PCOC.

5.2 Human Health Screening Risk Evaluation

5.2.1 Potential Human Receptors and Exposure Pathways

Lendrum Court is an area of multi-unit residential housing. Areas surrounding the buildings are covered by landscaping, paved streets and parking spaces, grasses, and bare soils. Under current and expected future use, residents could be exposed to PCOCs in unpaved surface soil via incidental ingestion of soil and dermal contact with soil.⁶ However, to protect the Presidio's cultural, archaeological, and natural features, Trust lease agreements prohibit ground-disturbance activities by tenants such as gardening, mowing, and landscaping, resulting in less potential exposure to soil by residents than the "reasonable maximum exposure" assumed in developing the Presidio residential SSLs.

Construction and maintenance workers could also be exposed to soil at the site via incidental ingestion of soil and dermal contact with soil. Soil PRGs for a commercial/industrial worker considering these exposure pathways were developed in the Cleanup Level Document (EKI, 2002), as amended. For lead, DTSC recommends U.S. EPA's modified adult lead model be used to evaluate industrial exposures to lead. Using U.S. EPA's model with DTSC-default exposure inputs for an industrial worker, the PRG is 320 mg/kg (DTSC, 2011b).

5.2.2 Exposure Point Concentrations

Exposure point concentrations ("EPCs") were estimated to represent human health PCOC concentrations to which human receptors at Lendrum Court could be exposed. EPCs are the lesser of the maximum detected concentration and the 95 percent upper confidence limit of the mean ("95UCL") which is an upper-bound average concentration. 95UCLs were calculated for human health PCOCs in soil for shallow (0 to 2.5 ft bgs) and all depths (0 to 6.5 ft bgs) depth intervals.⁷ The 95UCLs for human health PCOCs were calculated using ProUCL Version 5.0.00 software. The ProUCL output is presented in Appendix F. Table 6A presents the calculated 95UCLs and corresponding EPCs as well as a comparison of EPCs to residential SSLs and to industrial worker SSLs for areas inside the debris extents. Note

⁶ Inhalation of re-suspended particulates in ambient air is not considered to be a significant pathway because inhalation of PCOC-containing soil or dust is estimated to result in less than 3 percent of the potential total exposure to PCOCs when compared to the ingestion and dermal absorption pathways (EKI, 2002).

⁷ Current practice generally evaluates human exposure in the upper 0 to 2 ft bgs and 0 to 10 ft bgs depth intervals. To be conservative, samples collected at 2.5 feet bgs were included in the shallow data set for a more robust and conservative evaluation. The "all data" set includes samples down to 6.5 ft bgs which is the deepest sample collected in native soil.

that units are in mg/kg for all compounds except dioxins and furan (shown as equivalents or TCDD TEQ), which are expressed in pg/g.

Data from the previous investigation report (EKI, 2014a) were supplemented by the data collected in September 2014, and the 95UCL calculations were rerun with the combined datasets. Tables 6A and 6B are an update of the similar table presented in the previous investigation report (EKI 2014a); recent data has been added to the dataset.

5.2.3 Human Health Risks Inside the Debris Area

Within the Army-era debris extents, the human health PCOCs arsenic, lead, benzo(a)pyrene, benzo(a)pyrene equivalents, dibenz(a,h)anthracene, and dioxins and furans have EPCs exceeding the SSLs, shown in Table 6A and described as follows:

- <u>Arsenic</u>: The EPCs for arsenic are 6.3 mg/kg and 6.0 mg/kg for the shallow and all depth intervals, respectively. Arsenic SSLs are driven by the background concentration, rather than residential or industrial worker SSLs. The shallow EPC value exceeds the background level of 6.2 mg/kg, while the all depth EPC value is less than the background level.
- <u>Lead</u>: The EPCs for lead are 1,023 mg/kg and 856 mg/kg for the shallow and all depth intervals, respectively. These concentrations exceed the residential SSL of 80 mg/kg. The EPCs also exceed the industrial worker SSL of 320 mg/kg.
- <u>Benzo(a)pyrene</u>: The EPC for benzo(a)pyrene for the all depth interval is 0.057 mg/kg, exceeding the residential SSL of 0.046 mg/kg. However, the EPC for the shallow depth interval is 0.046 mg/kg, which is equal to the residential SSL. The EPCs are below the industrial worker SSL of 0.38 mg/kg.
- <u>Benzo(a)pyrene equivalents</u>: The EPCs for benzo(a)pyrene equivalents for the shallow depth interval and the all depth interval are 0.074 mg/kg and 0.221 mg/kg, respectively, exceeding the residential SSL of 0.046 mg/kg. The EPCs are below the industrial worker SSL of 0.38 mg/kg.
- <u>Dibenz(a,h)anthracene</u>: The EPC for dibenz(a,h)anthracene for the all depth interval is 0.063 mg/kg, slightly exceeding the residential SSL of 0.046 mg/kg. However, the EPC for the shallow depth interval is 0.012 mg/kg which is below the residential SSL. The EPCs are below the industrial worker SSL of 0.38 mg/kg.
- <u>Dioxins and Furans</u>: The EPC for TCDD TEQ for the all depth interval is 11 pg/g, exceeding the residential SSL of 3.5 pg/g; however, this value is within the background range (DTSC, 2010) as discussed below.

The EPC for arsenic in the shallow depth interval exceeds the residential SSL. Therefore, arsenic is retained as a COC.

The lead EPCs exceed the residential SSL of 80 mg/kg, which was derived by DTSC using the Leadspread 8 model (DTSC, 2011b). Therefore, lead concentrations in soil at Lendrum Court could pose a risk to residents under the "reasonable maximum exposure" parameters assumed in the Leadspread 8 model.

The lead EPCs also exceed the industrial worker SSL of 320 mg/kg, which was derived using U.S. EPA's adult lead model and is recommended by DTSC to evaluate industrial exposures to lead (DTSC, 2011b). This model assumes a high degree of exposure to soils beneath landscaping and pavement and would apply for subgrade construction work such as utility trenching or repairs. Therefore, lead is retained as a COC.

The EPC for benzo(a)pyrene equivalents in the shallow depth interval exceeds the residential SSL. The EPCs for the full depth range of benzo(a)pyrene, dibenz(a,h)anthracene, and benzo(a)pyrene equivalents also exceed the residential SSL. Although the benzo(a)pyrene or benzo(a)pyrene equivalent concentrations do not exceed the Northern California upper tolerance limit background concentration of 1.5 mg/kg, the higher concentrations detected are in samples from the debris layer. These PAHs are therefore retained as COCs.

Based on the TCDD TEQ, dioxins and furans are slightly greater than the residential SSL. Although the TCDD TEQ equivalent concentrations are within the background range of 7 pg/g to 20 pg/g (DTSC, 2010), the higher concentrations are generally found in samples containing ash. Therefore, dioxins and furans are conservatively retained as COCs.

5.2.4 Human Health Risks Outside the Debris Area

Outside the Army-era debris extents, of the human health PCOCs arsenic, lead, benzo(a)pyrene, benzo(a)pyrene equivalents, and dibenz(a,h)anthracene,⁸ only lead has an EPC exceeding the SSLs.

• <u>Lead</u>: The EPCs for lead are 170 and 167 mg/kg for the shallow and all depth intervals, respectively. The EPCs for lead are less than the industrial worker SSL of 320 mg/kg, although they exceed the residential SSL of 80 mg/kg. The majority of the Site outside the debris extents is Historic Forest; because human health risks in these areas are more comparable to recreational land use than residential land use, a recreational human health screening level should be considered for this area.⁹

5.3 Ecological Screening Risk Evaluation

Based on the Trust's Cleanup Level Document (EKI, 2002), the Historic Forest northeast of the Lendrum Court residential area is considered a special status ecological area. Much of the area on Figures 4 and 5 outside the estimated extent of debris is Historic Forest. The central portion of Lendrum Court is a landscaped zone, and as a conservative measure, ecological buffer zone screening levels are considered applicable.

⁸ Sampling for lead outside the debris extents was a focus of the September 2014 investigation; a sample from trench TPI2-1 was also analyzed for metals and PAHs. Samples from previous investigations collected metals and PAH data from trenches TP211, TP212, and TP213; these trenches are all outside the debris area. As no debris was found, no dioxin or furan analyses were conducted on these samples.

⁹ The recreational human health SSL for lead in the Cleanup Level Document is 500 mg/kg. As noted below, the ecological special status SSL for lead is 160 mg/kg; thus the ecological SSL would be more stringent than the recreational SSL in the Historic Forest.

5.3.1 Ecological Screening Inside the Debris Area

To evaluate potential impacts <u>within</u> the extent of debris for ecological species, EPCs for soil from ground surface to 3.5 ft bgs were calculated and are shown in Table 6A.¹⁰

Table 6A presents a comparison of EPCs to buffer zone ecological SSLs. Of the ecological PCOCs, barium, copper, lead, and zinc have EPCs exceeding the buffer zone ecological SSLs, as follows:

- <u>Barium</u>: The EPC for barium is 538 mg/kg, which exceeds the ecological SSL of 500 mg/kg.
- <u>Copper</u>: The EPC for copper is 145 mg/kg, which exceeds the ecological SSL of 120 mg/kg.
- <u>Lead</u>: The EPC for lead is 948 mg/kg, which exceeds the ecological SSL of 300 mg/kg.
- <u>Zinc</u>: The EPC for zinc is 527 mg/kg, which exceeds the ecological SSL of 50 mg/kg and serpentine background level of 160 mg/kg.

This evaluation demonstrates that barium, copper, lead, and zinc could pose a risk to ecological species at Lendrum Court. Therefore, these chemicals are retained as COCs for ecological risk within the debris extents.

5.3.2 Ecological Screening Outside the Debris Area

To evaluate potential impacts <u>outside</u> the extent of debris for ecological species, EPCs for soil from ground surface to 3.5 ft bgs were calculated and are shown in Table 6B. Table 6B also presents a comparison of EPCs to special status ecological SSLs, since the historic forest to the northeast of Lendrum Court is considered a special status ecological zone. Only lead has an EPC that slightly exceeds the special status ecological SSLs; the EPC of 167 mg/kg for lead is slightly greater than the special status value of 160 mg/kg. There are no dioxin or furan data outside the debris extents line.

5.4 Summary of Human Health and Ecologic Risks

The human health COCs within the debris extents at Lendrum Court are arsenic, lead, benzo(a)pyrene, benzo(a)pyrene equivalents, dibenzo(a,h)anthracene and TCDD TEQ. These COCs are co-located in soil within the debris area. Lead is the primary COC because it was detected above its residential and industrial worker SSLs in the overburden material.

Lead is the primary human health COC outside the debris extents at Lendrum Court. Because there are no data for TCDD TEQ outside the debris area, confirmation sampling as part of remedial design and construction is recommended.

The Trust's measures installed in the Spring of 2014 (Figure 2) limit the potential physical risk of injury to residents and workers from glass shards on the ground surface.

¹⁰ EPA generally recommends evaluating wildlife exposure in the upper 3 feet of soil. To be conservative, samples collected at 3.5 ft bgs were included in the data set for a more robust and conservative evaluation.

The ecological COCs within the debris extents at the Lendrum Court Site are barium, copper, lead, and zinc, assuming ecological buffer zone cleanup levels. These chemicals are co-located in soil at the site. Lead is the only ecological COC outside the debris extents based on special status species cleanup levels.

6 COMMUNITY OUTREACH

Lendrum Court is a residential neighborhood. As an element of public outreach, the Trust maintains a website to keep the public informed about Lendrum Court and to post available documents including reports, meeting summaries, and presentations; the website address is <u>http://www.presidio.gov/about/Pages/Lendrum-Court-Remediation.aspx</u>. The site includes electronic copies of project reports and correspondence between the Trust and DTSC. Summaries are posted from several community meetings held by the Trust for tenants and interested community members; these meetings provided remediation project updates and allowed the Trust to hear community concerns.

The Trust held community meetings on 11 December 2013, 29 January 2014, 5 March 2014, and 26 March 2014; DTSC was invited to and attended several of these meetings.

The Trust plans to continue to hold community meetings at major project milestones as well as post electronic copies of reports and correspondence with the regulatory agencies during the development of response actions that meet the goal of protecting human health and the environment.

7 CONCLUSIONS AND RECOMMENDATIONS

Summary of Observations

A layer containing debris, referenced herein as the debris layer, exists beneath much of the Lendrum Court area. The layer, where present, is first encountered at depths of approximately 0.5 to 2.5 feet beneath overburden soil in the central part of Lendrum Court and is exposed at the ground surface in the area of the Historic Forest east of Building 1278. The debris thickness varies from approximately 3 inches to 5 feet. The debris layer extends into the forest area north and east of Lendrum Court, and the lateral and vertical extent varies with topography. The debris layer contains glass and ceramic fragments, with some trenches also containing observable ash. The debris layer and ash are associated with the former incinerator located south of Lendrum Court, as shown on a 1921 Presidio map (Figure 1) and recently exposed during the Doyle Drive construction project. The debris layer was spread by grading activities during the construction of the Lendrum Court residential neighborhood. Glass fragments have been observed on the ground surface at locations indicating burrowing activity of gophers, which can bring debris to the surface.

The forested area at the northern and eastern portions of Lendrum Court includes small ravines that appear to have been modified by previous grading activities. Dense vegetation and trees have grown up within and adjacent to the debris area. After clearing vegetation, the approximate extent of debris entering the vegetated area has been delineated. Visible debris and ash is present on the ground surface in some locations, particularly in grid areas E1 and F1.

The temporary measures installed in April and May 2014, including post-and-cable fences and aggregate base walkways, continue to limit the potential for residents to be exposed to COCs in subsurface and surface soils in these areas. The Trust should maintain these measures until implementation of final remedial measures.

Human Health and Ecological Risks

The screening risk evaluation indicates that arsenic and lead are present in soil within the extent of debris at concentrations that pose a potential risk to residential tenants. Lead also poses a potential risk to industrial workers involved in ground-disturbing activities. Therefore, lead and arsenic are retained as site COCs within the debris extents. PAHs and dioxins and furans are also co-located with the lead, and are retained as site COCs. In addition, glass fragments on the ground surface pose a physical hazard to tenants and workers. There is a potential for continued transport of glass debris and COCs from the debris layer to the surface by rodent activity. These potential risks have been mitigated by temporary measures designed to break the human exposure pathway; however, a final remedial action(s) is anticipated to address these human health risks. Lead and dioxins and furans are also retained as site COCs outside the debris extents.

Barium, copper, lead, and zinc pose a potential risk to ecological receptors within the extent of debris, and are retained as COCs based on risk to ecological receptors in a buffer zone cleanup level area. Lead is the only ecological COCs retained outside the area of debris, where more stringent special status cleanup levels are applicable.

Data Gaps Addressed

The June 2013 and September 2014 investigations addressed the goals of (1) evaluating the extent of debris; (2) conducting debris characterization to identify COCs, and (3) collecting data to evaluate potential remedial alternatives, including topographic surveying. The extent of debris has been delineated by potholing and trenching and is shown on Figure 4. Site COCs have been identified. Finally, the site survey, including topography and extent of debris, provides data for the Trust to develop remedial alternatives.

Recommendations

Based on the available site data and the screening risk evaluation, arsenic, lead, benzo(a)pyrene, benzo(a)pyrene equivalents, dibenzo(a,h)anthracene and TCDD TEQ are present in soil within the debris extents at concentrations that may pose a risk to residents

or workers, assuming soil contact. Additionally, barium, copper, lead and zinc are present in soil within the debris extents at concentrations that may pose a risk to ecologic receptors. Lead is also present outside the debris extents that may pose a risk to residents and special status ecological receptors. Additional data on the presence of TCDD TEQ are recommended outside of the debris area.

EKI recommends the Trust evaluate remedial action alternatives and costs to address the residual chemicals in site soil and associated debris. Existing mitigation measures should be maintained until permanent measures are in place.

8 **REFERENCES**

DTSC, 2010. Memorandum from Kimiko Klein to Virginia Lasky regarding *Screening Risk Evaluation, Merchant Road Land Fill, The Presidio, San Francisco*, dated 25 August 2010.

DTSC, 2011a. Human Health Risk Assessment Note 4, Screening Level Human Health Risk Assessments. Office of Human and Ecological Risk ("HERO"), June 9, 2011.

DTSC, 2011b. User's Guide to Leadspread 8 and Recommendations for Evaluation of Lead Exposures in Adults. HERO, September 2011.

DTSC, 2013a. Letter from George Chow to Ms. Eileen Fanelli of the Presidio Trust dated 19 February 2013, requesting preparation of a Preliminary Endangerment Assessment for Lendrum Court.

DTSC, 2013b. Letter from George Chow to Ms. Eileen Fanelli of the Presidio Trust dated 13 June 2013, approving the *Lendrum Court Preliminary Endangerment Assessment Workplan* with corrections.

DTSC, 2014a. Letter from George Chow to Ms. Eileen Fanelli of the Presidio Trust dated 9 January 2014, requesting a technical memorandum on proposed actions to minimize the exposure of Lendrum Court residents to surface soils while a final remedial action is developed.

DTSC, 2014b. Letter from George Chow to Ms. Eileen Fanelli of the Presidio Trust dated 7 March 2014, approval of the *Final Lendrum Court Investigation Summary Report and Screening Risk Evaluation*, dated 28 February 2014.

DTSC, 2014c. Letter from George Chow to Ms. Eileen Fanelli of the Presidio Trust dated 24 July 2014, concurrence with the *Final North Fort Scott Investigation Summary Report*, dated 8 July 2014.

EKI, 2002. Development of Presidio-wide Cleanup Levels for Soil, Sediment, Groundwater, and Surface Water, Presidio of San Francisco, California. October (with updates through 2013).

EKI, 2013. Lendrum Court, Preliminary Endangerment Assessment Workplan, Presidio of San Francisco, California. May 2013.

EKI, 2014a. Lendrum Court Investigation Summary Report and Screening Risk Evaluation, Presidio of San Francisco, California. 28 February 2014.

EKI, 2014b. Sampling Workplan for the North Fort Scott Neighborhood, Presidio of San Francisco, California. 7 April 2014.

EKI, 2014c. North Fort Scott Investigation Summary Report, Presidio of San Francisco, California. 8 July 2014.

EKI, 2014d. Additional Sampling Workplan for Lendrum Court, Presidio of San Francisco, California. 30 August 2014.

ENVIRON Corporation, ENTRIX, IRIS Environmental, and ENV America, 2002. *Background Levels of Polycyclic Aromatic Hydrocarbons in Northern California Surface Soil.* 7 June 2002.

Interstate Technology & Regulatory Council ("ITRC"), 2012. *Technical and Regulatory Guidance: Incremental Sampling Methodology*. February 2012.

MACTEC. 2007. Technical Memorandum, Human Health Soil Preliminary Remediation Goals and Toxic Equivalency Values for Dioxins and Furans, Presidio of San Francisco, California, 28 March 2007.

MACTEC. 2010. Screening Risk Evaluation, Merchant Road Fill Site, Presidio of San Francisco, California, 8 October 2010.

Tetra Tech EMI Inc. 2001. Presidio-Wide Quality Assurance Project Plan, Sampling and Analysis Plan, April 2001.

Trust, 2011. Addendum to the Presidio-Wide Quality Assurance Project Plan and Sampling and Analysis Plan, Revision 1, Presidio of San Francisco, California, 23 June 2011.

Trust, 2012. Letter to Ms. Denise Tsuji of the DTSC dated 13 December 2012 on the subject of *Notice Potential Waste Release Site – Lendrum Court, Presidio of San Francisco, California.*

Trust, 2014. Letter to Mr. George Chow of the DTSC dated 24 March 2014 on the subject of *Transmittal of the Technical Memorandum Identifying Potential Temporary Remedial Actions to Minimize Exposure at Lendrum Court, Presidio of San Francisco, California.*

USGS, 2006. *Geologic Map of the San Francisco Bay Region*, Scientific Investigations Map 2918, R.W. Graymer, B.C. Moring, G.J. Saucedo, C.M. Wentworth, E.E. Brabb, and K.L. Knudsen, 2006.

U.S. EPA, 2011. User Guide, Uniform Federal Policy Quality Assurance Project Plan Template for Soils Assessment of Dioxin Sites, September 2011.

U.S. EPA, 2013a. *The Roles of Project Managers and Laboratories in Maintaining the Representativeness of Incremental and Composite Soil Samples*, OSWER 9200.1-117FS June 2013.

U.S. EPA, 2013b. *ProUCL Statistical Support Software for Site Investigation and Evaluation, Version 5.0.00*, U.S. EPA Office of Research and Development, September, 2013.

U.S. EPA, 2013c. User's Guide for EPA Region IX Regional Screening Levels, (November 2013), accessed December 2013 at http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/usersguide.htm.

TABLE 1 SOIL SAMPLING ANALYTICAL MATRIX TABLE Lendrum Court Area

Presidio of San Francisco, California

						Laboratory	Analyses (c	:)
					Title 22	-		Dioxins &
Trench or		Sample			Metals	Lead	PAHs	Furans
Grid Area	Trench or	Depth	Stratigraphic		(EPA	(EPA	(EPA	(EPA
Location (a)	Pothole	(ft bgs)	Layer (b)	Sample ID	6020)	6020)	8270C)	1613)
301	Trench	0.5	Surface	1279TP301-S[0.5]		•		
302	Trench	0.5	Surface	1279TP302-S[0.5]		•		
303	Trench	0.5	Surface	1279TP303-S[0.5]		•		
304	Trench	3.5	Debris	1279TP304-D[3.5]	•		•	•
305	Trench	3.5	Debris	1279TP305-D[3.5]	•		•	•
	Tronch	0.5	Surface	1279TPA1-1[0.5]S		٠		
A1	THEILCH	2.0	Debris	1279TPA1-2[2.0]D	•		•	•
	Pothole	0.5	Surface	1279SBA1-1[0.5]S		•		
		0.5	Surface	1279SBA2-1[0.5]S		•		
4.2	Potholo	0.5	Surface	1279SBA2-3[0.5]S		•		
A2	FOUIDIE	0.5	Surface	1279SBA2-4[0.5]S		•		
		0.5	Surface	1279SBA2-5[0.5]S		•		
B1	Pothole	0.5	Surface	1279SBB1-1[0.5]S		•		
C1	Pothole	0.5	Surface	1279SBC1-1[0.5]S		•		
D1	Pothole	0.5	Surface	1279SBD1-1[0.5]S		•		
D2	Pothole	0.5	Surface	1279SBD2-1[0.5]S		•		
F1	Pothole	0.5	Surface	1279SBE1-1[0.5]S		•		
		0.5	Surface	1279SBE1-2[0.5]S		•		
F0	Trench	1.5	Debris	1279TPF0-1[1.5]D	•		•	•
F2	Trench	0.0 - 1.0	Debris	1279TPF2-1[0.0-1.0]D	•		•	•
				1279TPF2-1[DUP]	٠		•	•
G1	Trench	0.5 - 1.5	Debris	1279TPG1-2[0.5-1.5]D	•		•	•
G2	Pothole	0.5	Surface	1279SBG2-1[0.5]S		•		
H0	Pothole	0.5	Surface	1279SBH0-2[0.5]S		•		
		0.5	Surface	1279SBH1-1[0.5]S		•		
H1	Pothole	0.5	Surface	1279SBH1-2[0.5]S		•		
		0.5	Surface	1279SBH1-3[0.5]S		•		
		0.5	Surface	1279SBH1-4[0.5]S		•		
H2	Pothole	0.5	Surface	1279SBH2-1[0.5]S		•		
11	Trench	0.5	Surface	1279TPI1-1[0.5]S		•		
		0.5	Surface	1279TPI2-1[0.5]S		•		
12	Trench	1.5	Debris	1279TPI2-1[1.5]D	•		•	
		0.5	Surface	1279TPI2-2[0.5]S		•		
.11	Pothole	0.5	Surface	1279SBJ1-1[0.5]S		•		
		0.5	Surface	1279SBJ1-2[0.5]S		•		
.12	Pothole	0.5	Surface	1279SBJ2-1[0.5]S		•		
		0.5	Surface	1279SBJ2-2[0.5]S		•		
		0.5	Surface	1279SBJ3-1[0.5]S		•		
J3	Pothole	0.5	Surface	1279SBJ3-2[0.5]S		•		
		0.5	Surface	1279SBJ3-2[DUP]		•		
14	Potholo	0.5	Surface	1279SBJ4-1[0.5]S		•		
J4	Foundle	0.5	Surface	1279SBJ4-2[0.5]S		•		

TABLE 1 SOIL SAMPLING ANALYTICAL MATRIX TABLE Lendrum Court Area

Presidio of San Francisco, California

						Laboratory J	Analyses (c))
					Title 22			Dioxins &
Trench or		Sample			Metals	Lead	PAHs	Furans
Grid Area	Trench or	Depth	Stratigraphic		(EPA	(EPA	(EPA	(EPA
Location (a)	Pothole	(ft bgs)	Layer (b)	Sample ID	6020)	6020)	8270C)	1613)
	Trench	0.5	Surface	1279TPK-1[0.5]S		•		
		0.5	Surface	1279SBK-1[0.5]S		•		
К	Pothole	0.5	Surface	1279SBK-2[0.5]S		•		
	1 Othole	0.5	Surface	1279SBK-3[0.5]S		•		
		0.5	Surface	1279SBK-4[0.5]S		•		
		0.5	Surface	1279SBL-1[0.5]S		•		
1	Pothole	0.5	Surface	1279SBL-2[0.5]S		•		
L	1 Othole	0.5	Surface	1279SBL-3[0.5]S		•		
		0.5	Sunace	1279SBL-3[DUP]		•		
		0.5	Surface	1279SBM-1[0.5]S		•		
М	Pothole	0.5	Surface	1279SBM-2[0.5]S		•		
		0.5	Surface	1279SBM-3[0.5]S		•		

Abbreviations:

DUP - duplicate sample

EPA - United States Environmental Protection Agency

ft bgs - feet below ground surface

PAHs - polycyclic aromatic hydrocarbons

- Analyzed
- D Sample taken within observed debris
- S Sample taken within surface soil

Notes:

(a) See Figure 3 for Trench Locations and Grid Areas.

- (b) Samples were collected from the surface or the layer with observed debris.
- (c) Soil samples were analyzed for lead or metals and PAHs by Curtis & Tompkins of Berkeley, California. Soil samples were analyzed for dioxins and furans by Vista Analytical Laboratory of El Dorado Hills, California.
- (d) All soil samples were analyzed for percent moisture by ASTM D2216.

TABLE 2 SUMMARY OF SOIL RESULTS FOR METALS

Lendrum Court Area Presidio of San Francisco, California

						Analytical Results in mg/kg (a)(b)															
Trench Location	Sample ID	Sample Date	Sample Depth (ft bgs)	Note	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Samples collecte	d from the Debris Layer																				
304	1279TP304-D[3.5]	9/22/2014	3.5	DEBRIS	0.40	3.8	280	0.51	0.66	110	17	83	<u>490</u>	0.27	0.66	120	0.31	0.21	0.10	55	<u>470</u>
305	1279TP305-D[3.5]	9/22/2014	3.5	DEBRIS	1.8	7.2	<u>560</u>	0.57	1.4	190	25	130	<u>950</u>	0.53	1.1	320	0.26	0.67	0.16	63	<u>1,100</u>
A1	1279TPA1-2[2.0]D	9/23/2014	2.0	ASH	2.7	6.6	<u>630</u>	0.79	1.5	55	10	140	<u>1,800</u>	1.5	1.1	58	0.32	0.92	0.14	71	<u>890</u>
F0	1279TPF0-1[1.5]D	9/24/2014	1.5	ASH	2.2	6.4	<u>920</u>	0.98	1.7	55	11	<u>350</u>	<u>2,400</u>	<u>1.8</u>	1.1	58	0.26	1.7	0.19	79	<u>980</u>
E0	1279TPF2-1[0.0-1.0]D	9/24/2014	1.0	ASH	1.8	6.0	<u>830</u>	1.0	1.5	100	18	<u>160</u>	<u>1,500</u>	<u>2.1</u>	1.1	130	0.28	1.5	0.18	84	<u>740</u>
12	1279TPF2-1[DUP]	9/24/2014	1.0	DUP	3.8	6.5	<u>810</u>	1.1	1.4	96	14	<u>170</u>	<u>1,700</u>	<u>1.9</u>	1.2	110	0.33	1.4	0.19	86	<u>790</u>
G1	1279TPG1-2[0.5-1.5]D	9/24/2014	1.5	ASH	1.9	6.6	<u>520</u>	0.60	0.94	260	29	<u>230</u>	<u>1,300</u>	0.57	0.86	450	<0.25	0.83	0.13	65	<u>610</u>
Sample collected	from the Asphalt Debri	s Layer			-																
12	1279TPI2-1[1.5]D	9/26/2014	1.5	Asphalt	<0.14	3.9	120	0.24	<0.16	290	40	30	<u>340</u>	0.065	<0.39	460	<0.20	0.30	0.14	47	56
SAMPLES COLLECTED FROM PREVIOUS INVESTIGATIONS																					
Samples collecte	d from the Overburden				-	I			1											1	1
201	1279TP201-O[0.5]	6/17/2013	0.5		1.5	5.7	120	0.48	<0.26	67	13	18	<u>320</u>	0.094	0.53	50	<0.22	<0.13	0.25	55	63
202	1279TP202-O[0.75]	6/19/2013	0.75		0.31	4.1	130	0.43	<0.27	260	24	36	130	0.17	0.56	350	<0.23	<0.14	<0.069	56	110
203	1279TP203-O[1]	6/17/2013	1		1.6	5.3	170	0.54	<0.26	140	19	37	260	0.13	0.66	180	0.42	0.13	0.17	61	95
204	1279TP204-O[0.5]	6/20/2013	0.5		0.7	5.6	260	0.44	0.38	260	27	88	<u>510</u>	0.59	0.61	410	<0.22	0.33	0.27	58	<u>290</u>
205	1279TP205-O[0.5]	6/17/2013	0.5		4.6	8	130	0.44	<0.25	110	16	26	<u>1,000</u>	0.11	0.54	150	<0.21	<0.12	0.52	52	75
206	1279TP206-O[0.5]	6/20/2013	0.5		0.68	4.3	170	0.48	0.46	220	23	52	230	0.31	0.53	330	<0.21	0.22	0.11	52	<u>200</u>
207	1279TP207-O[0.5]	6/20/2013	0.5		1.1	6.5	290	0.41	0.63	190	30	89	<u>550</u>	0.63	0.43	390	<0.22	0.45	0.23	44	<u>350</u>
208	1279TP208-O[0.5]	6/19/2013	0.5		0.98	5.9	200	0.52	0.32	200	22	68	250	0.5	0.62	290	0.31	0.28	0.16	61	<u>190</u>
209	1279TP209-O[0.5]	6/19/2013	0.5		0.31	4.5	160	0.41	0.31	140	23	45	210	0.24	0.42	280	<0.22	0.18	<0.067	43	160
210	1279TP210-O[0.5]	6/19/2013	0.5		0.27	5	120	0.35	0.26	140	19	28	180	0.39	0.33	230	0.28	<0.13	<0.065	38	110
211	1279TP211-O[0.75]	6/18/2013	0.75		0.25	2.8	89	0.3	<0.25	120	18	15	38	0.088	0.29	210	<0.21	<0.13	<0.063	35	61
211	1279TP211-O[DUP]	6/18/2013	0.75	DUP	0.35	3.5	98	0.29	<0.26	120	18	15	32	0.071	0.3	180	<0.22	<0.13	<0.065	42	51
212	1279TP212-O[0.5]	6/18/2013	0.5		<0.23	3.3	89	0.32	<0.26	72	13	15	34	0.075	<0.26	88	<0.22	<0.13	<0.065	35	97
213	1279TP213-O[0.5]	6/18/2013	0.5		0.26	3.5	96	0.38	<0.26	150	21	20	53	0.11	0.4	260	<0.22	<0.13	<0.066	41	63
213	1279TP213-O[DUP]	6/18/2013	0.5	DUP	0.33	3.7	90	0.37	<0.26	170	21	19	60	0.12	0.44	270	<0.22	<0.13	<0.066	41	81
214	1279TP214-O[0.5]	6/18/2013	0.5		1.5	5	130	0.45	<0.25	86	14	20	160	0.09	0.42	76	<0.21	<0.13	<0.063	60	54
215	1279TP215-O[0.5]	6/17/2013	0.5		0.6	4.9	120	0.47	<0.26	130	19	22	120	0.16	0.69	170	<0.22	<0.13	<0.066	58	59
Residential Soil So	creening Level (c)				29	0.36	5,000	140	1.7	1,200	4,000		80	20	360	1,400	360	360	5.7	650	22,000
Ecological Buffer Zone Soil Screening Level (c)					5	64	500	10	0.23	23	48	120	300	1.6	300	71	1.1	2	1	5	50
Colma Formation/Serpentinite Presidio Background Metals Concentrations (d)					3/3	6.2/5.4	180/230	0.99/1.1	0.8/1.9	140/1,700	21/170	49/85	7.5/66	0.2/0.2	2/2	110/4,500	0.5/0.5	1/1.7	1/1	90/74	79/160

TABLE 2 SUMMARY OF SOIL RESULTS FOR METALS

Lendrum Court Area Presidio of San Francisco, California

											A	nalytical F	Results in	mg/kg (a)(b)						
Trench Location	Sample ID	Sample Date	Sample Depth (ft bgs)	Note	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Samples collecte	d from the Debris Laye	r	-				-														
T1	1258EX100	10/20/2010	comp(c)	ASH	2	4.7	400	0.55	0.4	59	12	110	<u>340</u>	0.46	1.1	93	1	0.49	<0.55	51	<u>200</u>
202	1279TP202-D[5.5]	6/19/2013	5.5	ASH	0.85	5.9	<u>710</u>	0.95	0.82	300	35	<u>150</u>	<u>740</u>	0.75	1.6	530	0.43	0.66	0.42	85	<u>450</u>
203	1279TP203-D[3.5]	6/17/2013	3.5	ASH	0.93	4.9	480	0.87	<u>2.7</u>	52	15	<u>150</u>	<u>380</u>	0.6	1.4	110	0.61	0.72	0.18	67	<u>1,000</u>
204	1279TP204-D[2.5]	6/20/2013	2.5	DEBRIS	0.74	6.1	300	0.28	0.54	520	50	440	<u>490</u>	0.28	0.66	960	<0.22	0.56	0.27	64	<u>320</u>
205	1279TP205-D[1]	6/17/2013	1	DEBRIS	2.4	6	210	0.57	0.31	74	14	120	<u>480</u>	0.2	0.67	72	0.24	0.21	0.2	58	<u>190</u>
206	1279TP206-D[2.5]	6/20/2013	2.5	ASH	2.5	7.4	<u>770</u>	0.8	1.1	97	14	<u>160</u>	<u>1,100</u>	0.87	0.97	120	0.35	1	0.62	73	<u>700</u>
207	1279TP207-D[1]	6/20/2013	1	ASH	3.4	8.9	<u>580</u>	0.6	1.4	81	16	<u>190</u>	<u>2,100</u>	0.88	1	120	0.27	1.1	1	58	<u>910</u>
207	1279TP207-D[1]DUP	6/20/2013	1	ASH/DUP	3.4	10	<u>600</u>	0.59	1.6	98	22	<u>190</u>	<u>1,700</u>	0.69	1.2	160	<0.24	1.2	0.85	63	<u>940</u>
208	1279TP208-D[2]	6/19/2013	2	ASH	1.3	5.7	<u>700</u>	1.2	1.1	68	13	<u>290</u>	<u>960</u>	1.1	1.3	64	0.57	<u>4.1</u>	0.61	<u>110</u>	<u>560</u>
209	1279TP209-D[4]	6/19/2013	4	DEBRIS	0.26	3.4	110	0.31	<0.27	180	23	20	59	0.19	0.29	300	<0.22	<0.13	<0.067	39	90
210	1279TP210-D[1]	6/19/2013	1	DEBRIS	0.26	3.4	140	0.3	<0.26	84	16	23	97	0.11	0.36	130	0.26	<0.13	0.14	40	80
210	1279TP210-D[1]DUP	6/19/2013	1	DUP	<0.24	3.4	140	0.27	<0.26	94	17	26	61	0.11	0.29	140	0.22	<0.13	<0.066	42	99
212	1279TP212-D[2]	6/18/2013	2		<0.24	2.5	93	0.26	<0.27	59	11	12	24	0.074	0.56	92	<0.23	<0.14	<0.068	33	51
214	1279TP214-D[2]	6/18/2013	2	DEBRIS	2.4	6.6	390	0.52	0.31	68	11	61	<u>660</u>	1.1	0.53	58	<0.22	0.22	0.43	58	160
215	1279TP215-D[1.25]	6/17/2013	1.25	DEBRIS	0.35	4.7	140	0.55	<0.25	82	14	20	120	0.094	0.44	65	0.24	<0.13	<0.063	59	59
Residential Soil So	Residential Soil Screening Level (c)					6.2	5,000	140	1.7	1,200	4,000		80	20	360	1,400	360	360	5.7	650	22,000
Ecological Buffer 2	cological Buffer Zone Soil Screening Level (c)				5	64	500	10	0.23	23	48	120	300	1.6	300	71	1.1	2	1	5	50
Colma Formation/S	olma Formation/Serpentinite Presidio Background Metals Concentrations (d)					6.2/5.4	180/230	0.99/1.1	0.8/1.9	140/1700	21/170	49/85	7.5/66	0.2/0.2	2/2	110/4,500	0.5/0.5	1/1.7	1/1	90/74	79/160

TABLE 2 SUMMARY OF SOIL RESULTS FOR METALS

Lendrum Court Area Presidio of San Francisco, California

						Analytical Results in mg/kg (a)(b)															
Trench Location	Sample ID	Sample Date	Sample Depth (ft bgs)	Note	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Samples collecte	d from the Base																				
201	1279TP201-B[2]	6/17/2013	2		<0.24	4.9	120	0.52	<0.27	75	17	19	8.4	0.042	0.55	52	<0.22	<0.13	<0.066	63	42
202	1279TP202-B[6.5]	6/19/2013	6.5		<0.25	4	150	0.49	<0.28	890	91	35	50	0.08	0.66	1,800	<0.23	<0.14	<0.069	70	75
203	1279TP203-B[6]	6/17/2013	6		0.25	5.5	170	0.56	<0.26	130	23	27	23	0.063	0.77	110	<0.22	<0.13	0.11	66	65
206	1279TP206-B[3.5]	6/20/2013	3.5		0.25	3.6	79	0.32	<0.25	100	14	14	43	0.034	0.42	83	<0.21	<0.13	< 0.063	43	51
210	1279TP210-B[2.5]	6/19/2013	2.5		<0.24	4.4	97	0.45	<0.26	56	18	13	9	0.11	0.51	40	<0.22	<0.13	<0.066	53	42
212	1279TP212-B[3.5]	6/18/2013	3.5		<0.25	3.2	110	0.41	<0.28	58	9.3	12	6.2	0.031	0.42	41	0.3	<0.14	<0.069	50	40
Residential Soil So	Residential Soil Screening Level (c)					6.2	5,000	140	1.7	1,200	4,000		80	20	360	1,400	360	360	5.7	650	22,000
Ecological Buffer Zone Soil Screening Level (c)					5	64	500	10	0.23	23	48	120	300	1.6	300	71	1.1	2	1	5	50
Colma Formation/S	Colma Formation/Serpentinite Presidio Background Metals Concentrations (d)					6.2/5.4	180/230	0.99/1.1	0.8/1.9	140/1700	21/170	49/85	7.5/66	0.2/0.2	2/2	110/4,500	0.5/0.5	1/1.7	1/1	90/74	79/160

Abbreviations:

-- - Not applicable
<0.50 - Compound not detected at or above indicated laboratory reporting limit
ASH - Ash observed in debris layer
Base - Below "Debris layer"
DEBRIS - Army era debris observed in soil
Debris - Debris layer
DUP - duplicate sample
ft bgs - feet below ground surface
mg/kg - milligrams per kilogram
Overburden - Overburden layer

Notes:

(a) Samples were analyzed by Curtis & Tompkins, Ltd, of Berkeley, California using EPA Method 6020/7471A. Results are reported to two significant figures.

(b) **Bold** value indicates detected concentration exceeds the Residential Soil Screening Level and background metals concentration. <u>Underscored</u> value indicates detected concentration exceeds the Ecological Buffer Zone Screening Level and background metals concentration.

(c) Residential Soil Screening Levels are Residential Human Health Preliminary Remediation Goals ("PRGs") from Table 7-2 of the Cleanup Level Document (EKI, 2002; with updates through 2013). For lead, the California Human Health Screening Level of 80 mg/kg is applied (DTSC, 2013). Ecological Buffer Zone Soil Screening Levels are PRGs from Table 7-2 of the Cleanup Level Document (EKI, 2002; with updates through 2013).

(d) Site lithology is a mixture of Colma Formation and serpentine. For screening purposes, site concentrations are compared with the higher of the two background values.

(e) This sample is a composite of two discrete samples collected from the ash and debris layer at Trench T1 from depths of 4 and 7 feet below ground surface.

Erler & Kalinowski, Inc.

TABLE 3 SUMMARY OF SOIL RESULTS FOR LEAD

Lendrum Court Area Presidio of San Francisco, California

Sample Location	Trench or Pothole	Sample ID	Sample Date	Sample Depth	Lead (mg/kg) (b) (c)
(a) 301	Trench	1279TP301-SI0 51	9/22/2014	0.5	
302	Trench	1279TP302-S[0.5]	9/22/2014	0.5	110
302	Trench	1279TP303-S[0.5]	9/22/2014	0.5	38
505	Trench	1279TPA1-1[0 5]S	9/23/2014	0.5	62
A1	Pothole	12795BA1-1[0.5]5	9/25/2014	0.5	23
		1270SBA2-1[0.5]S	0/23/2014	0.5	13
		12795DA2-1[0.5]5	9/23/2014	0.5	43
A2	Pothole	12793DA2-3[0.3]3	9/25/2014	0.5	10
	·	12795BAZ-4[0.5]5	9/25/2014	0.5	20
		12795BA2-5[0.5]5	9/25/2014	0.5	26
B1	Pothole	1279SBB1-1[0.5]S	9/23/2014	0.5	290
C1	Pothole	1279SBC1-1[0.5]S	9/23/2014	0.5	<u>490</u>
D1	Pothole	1279SBD1-1[0.5]S	9/23/2014	0.5	270
D2	Pothole	1279SBD2-1[0.5]S	9/24/2014	0.5	71
F1	Pothole	1279SBE1-1[0.5]S	9/23/2014	0.5	220
L 1		1279SBE1-2[0.5]S	9/23/2014	0.5	50
G2	Pothole	1279SBG2-1[0.5]S	9/24/2014	0.5	110
H0	Pothole	1279SBH0-2[0.5]S	9/24/2014	0.5	160
		1279SBH1-1[0.5]S	9/24/2014	0.5	110
114	Dethala	1279SBH1-2[0.5]S	9/24/2014	0.5	66
	Potriole	1279SBH1-3[0.5]S	9/24/2014	0.5	94
		1279SBH1-4[0.5]S	9/24/2014	0.5	170
H2	Pothole	1279SBH2-1[0.5]S	9/24/2014	0.5	7
l1	Trench	1279TPI1-1[0.5]S	9/26/2014	0.5	150
10	Tarak	1279TPI2-1[0.5]S	9/26/2014	0.5	54
12	Irench	1279TPI2-2[0.5]S	9/26/2014	0.5	54
	Trench	1279TPK-1[0.5]S	9/25/2014	0.5	230
		1279SBK-1[0.5]S	9/25/2014	0.5	81
К		1279SBK-2[0.5]S	9/25/2014	0.5	83
	Pothole	1279SBK-3[0.5]S	9/25/2014	0.5	94
		1279SBK-4[0.5]S	9/25/2014	0.5	<u>340</u>

TABLE 3 SUMMARY OF SOIL RESULTS FOR LEAD

Lendrum Court Area Presidio of San Francisco, California

Sample Location (a)	Trench or Pothole	Sample ID	Sample Date	Sample Depth (ft bgs)	Lead (mg/kg) (b) (c)
L		1279SBL-1[0.5]S	9/25/2014	0.5	37
	Potholo	1279SBL-2[0.5]S	9/25/2014	0.5	69
	FULIDIE	1279SBL-3[0.5]S	9/26/2014	0.5	54
		1279SBL-3[DUP]	9/26/2014	0.5	52
		1279SBM-1[0.5]S	9/25/2014	0.5	67
М	Pothole	1279SBM-2[0.5]S	9/25/2014	0.5	52
		1279SBM-3[0.5]S	9/25/2014	0.5	67
Residential Soil So		80			
Ecological Buffer 2	300				

Abbreviations:

DUP - duplicate sample ft bgs - feet below ground surface mg/kg - milligrams per kilogram

Notes:

- (a) See Figure 3 for Trench Locations and Grid Areas.
- (b) Samples were analyzed by Curtis & Tompkins, Ltd, of Berkeley, California using EPA Method 6020. Results are reported to two significant figures.
- (c) Bold value indicates detected concentration exceeds the Residential Soil Screening Level and background metals concentration. <u>Underscored</u> value indicates detected concentration exceeds the Ecological Buffer Zone Screening Level and background metals concentration.
- (d) Residential Soil Screening Level is the California Human Health Screening Level of 80 mg/kg (DTSC, 2013). Ecological Buffer Zone Soil Screening Level is the PRG from Table 7-2 of the Cleanup Level Document (EKI, 2002; with updates through 2013).

TABLE 4 SUMMARY OF SOIL RESULTS FOR POLYCYCLIC AROMATIC HYDROCARBONS

Lendrum Court Area Presidio of San Francisco, California

					Analytical Results (mg/kg) (a)(b)																
											Pol	ycyclic Ar	omatic Hy	drocarbon	S						
Trench	Comple ID	Sample	Sample Depth		cenaphthene	cenaphthylene	nthracene	enzo(a)anthracene	enzo(a)pyrene	enzo(b)fluoranthene	enzo(g,h,i)perylene	enzo(k)fluoranthene	hrysene	libenz(a,h)anthracene	luoranthene	luorene	ndeno(1,2,3-cd)pyrene	laphthalene	henanthrene	yrene	(a)P Equivalents (c)
Samples collected from the Debris Laver						4	4	ш	ш	ш	ш	ш	0		Щ	LLL LL	<u> </u>	2	<u>п</u>	<u>п</u>	<u> </u>
304	1279TP304-D[3.5]	9/22/2014	3.5	DEBRIS	<0.021	<0.021	<0.021	<0.021	<0.021	0.03	<0.021	<0.021	0.024	<0.021	0.035	<0.021	<0.021	<0.021	<0.021	0.031	0.026
305	1279TP305-D[3.5]	9/22/2014	3.5	DEBRIS	<0.021	<0.021	<0.021	0.045	0.049	0.076	0.028	<0.021	0.06	<0.021	0.076	<0.021	0.023	<0.021	0.032	0.072	0.074
A1	1279TPA1-2[2.0]D	9/23/2014	2.0	ASH	<0.021	<0.021	<0.021	0.066	0.068	0.10	0.036	0.030	0.085	<0.021	0.15	<0.021	0.031	<0.021	0.11	0.13	0.099
F0	1279TPF0-1[1.5]D	9/24/2014	1.5	ASH	0.020	0.017	0.059	0.15	0.14	0.18	0.043	0.068	0.17	0.017	0.30	0.031	0.043	0.022	0.25	0.29	0.20
E2	1279TPF2-1[0.0-1.0]D	9/24/2014	1.0	ASH	<0.011	<0.011	<0.011	0.024	0.031	0.048	0.018	0.015	0.036	<0.011	0.047	<0.011	0.014	<0.011	0.033	0.05	0.045
F2	1279TPF2-1[DUP]	9/24/2014	1.0	DUP	<0.010	0.013	<0.010	0.076	0.071	0.12	0.025	0.040	0.099	<0.010	0.11	<0.010	0.023	0.011	0.075	0.12	0.098
G1	1279TPG1-2[0.5-1.5]D	9/24/2014	1.5	ASH	<0.010	<0.010	<0.010	0.015	0.016	0.027	<0.010	<0.010	0.020	<0.010	0.023	<0.010	<0.010	<0.010	0.013	0.024	0.026
Sample collected from the Asphalt Debris Layer																					
12	1279TPI2-1[1.5]D	9/26/2014	1.5	Asphalt	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	ND
Residential Soil Screening Level (d)					2,700		5,900	0.46	0.046	0.46	620	4.6	res a	0.046	820	770	0.46	910	600	620	0.046
Ecological Buffer Zone Soil Screening Level (d)					40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Northern California PAH Background (e)								1.5												1.5	

TABLE 4 SUMMARY OF SOIL RESULTS FOR POLYCYCLIC AROMATIC HYDROCARBONS

Lendrum Court Area Presidio of San Francisco, California

					Analytical Results (mg/kg) (a)(b)																
					Polycyclic Aromatic Hydrocarbons																
Trench Location	Sample ID	Sample Date	Sample Depth (ft bgs)	Note	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	ndeno(1,2,3-cd)pyrene	Vaphthalene	Phenanthrene	Pyrene	B(a)P Equivalents (c)
SAMPLES COLLECTED FROM PREVIOUS INVESTIGATIONS																					
Samples colle	cted from the Overburd	len			1	I			1	1			1		1	1	T	1			
201	1279TP201-O[0.5]	6/17/2013	0.5		<0.0052	<0.0052	<0.0052	0.0091	0.012	0.017	0.0099	<0.0052	0.011	<0.0052	0.018	<0.0052	0.01	<0.0052	0.0076	0.015	0.018
202	1279TP202-O[0.75]	6/19/2013	0.75		<0.0055	<0.0055	<0.0055	<0.0055	0.0061	0.011	0.0055	<0.0055	0.0091	<0.0055	0.0094	<0.0055	<0.0055	<0.0055	0.006	0.0075	0.011
203	1279TP203-O[1]	6/17/2013	1		<0.0053	<0.0053	<0.0053	0.02	0.023	0.037	0.013	0.0089	0.022	0.0053	0.03	<0.0053	0.014	< 0.0053	0.013	0.026	0.036
204	1279TP204-O[0.5]	6/20/2013	0.5		<0.0052	<0.0052	<0.0052	0.019	0.021	0.042	0.014	0.011	0.024	0.0056	0.032	<0.0052	0.016	0.0065	0.014	0.028	0.034
205	1279TP205-O[0.5]	6/17/2013	0.5		<0.0052	<0.0052	0.011	0.059	0.064	0.095	0.037	0.023	0.062	0.018	0.1	<0.0052	0.043	0.015	0.047	0.076	0.10
206	1279TP206-O[0.5]	6/20/2013	0.5		<0.0052	<0.0052	<0.0052	0.015	0.024	0.037	0.02	0.01	0.018	0.0075	0.031	<0.0052	0.021	<0.0052	0.02	0.026	0.039
207	1279TP207-O[0.5]	6/20/2013	0.5		<0.0053	0.0082	<0.0053	0.017	0.02	0.026	0.014	0.036	0.022	<0.0053	0.034	0.01	0.016	0.008	0.022	0.028	0.029
208	1279TP208-O[0.5]	6/19/2013	0.5		<0.0052	<0.0052	<0.0052	0.011	0.012	0.018	0.0085	<0.0052	0.014	<0.0052	0.018	<0.0052	0.0076	<0.0052	0.011	0.013	0.018
209	1279TP209-O[0.5]	6/19/2013	0.5		<0.0054	<0.0054	<0.0054	0.0073	0.0083	0.013	<0.0054	<0.0054	0.0092	<0.0054	0.0095	<0.0054	<0.0054	<0.0054	0.006	0.013	0.013
210	1279TP210-O[0.5]	6/19/2013	0.5		<0.0053	<0.0053	<0.0053	0.0095	0.01	0.017	0.0053	<0.0053	0.011	<0.0053	0.019	<0.0053	<0.0053	<0.0053	0.012	0.014	0.016
211	1279TP211-O[0.75]	6/18/2013	0.75		<0.0053	<0.0053	<0.0053	0.0077	0.0097	0.021	<0.0053	0.0062	0.0095	<0.0053	0.014	<0.0053	<0.0053	<0.0053	0.0061	0.011	0.016
211	1279TP211-O[DUP]	6/18/2013	0.75	DUP	<0.0053	<0.0053	<0.0053	0.0054	0.0054	0.0087	<0.0053	<0.0053	< 0.0053	<0.0053	0.0072	<0.0053	<0.0053	<0.0053	<0.0053	0.0065	0.01
212	1279TP212-O[0.5]	6/18/2013	0.5		<0.0052	<0.0052	<0.0052	0.0071	0.008	0.012	<0.0052	<0.0052	0.0086	<0.0052	0.013	<0.0052	<0.0052	<0.0052	0.0062	0.012	0.013
213	1279TP213-O[0.5]	6/18/2013	0.5		<0.0052	0.006	<0.0052	0.0057	0.006	0.025	<0.0052	0.013	0.0089	<0.0052	0.0099	0.01	<0.0052	<0.0052	<0.0052	0.0089	0.012
213	1279TP213-O[DUP]	6/18/2013	0.5	DUP	<0.011	<0.011	<0.011	0.016	0.014	0.046	<0.011	0.025	0.018	<0.011	0.032	<0.011	<0.011	<0.011	0.013	0.027	0.027
214	1279TP214-O[0.5]	6/18/2013	0.5		<0.0053	<0.0053	<0.0053	0.0065	0.0079	0.012	0.0063	<0.0053	0.0079	<0.0053	0.011	0.051	0.0062	<0.0053	0.0061	0.01	0.013
215	1279TP215-O[0.5]	6/17/2013	0.5		<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	0.0084	< 0.0051	<0.0051	< 0.0051	<0.0051	0.0061	<0.0051	< 0.0051	<0.0051	<0.0051	0.0056	0.006
Residential Soil Screening Level (d)					2,700		5,900	0.46	0.046	0.46	620	4.6	46.0	0.046	820	770	0.46	910	600	620	0.046
Ecological Buffer Zone Soil Screening Level (d)					40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Northern California PAH Background (e)									1.5												1.5
TABLE 4 SUMMARY OF SOIL RESULTS FOR POLYCYCLIC AROMATIC HYDROCARBONS

Lendrum Court Area Presidio of San Francisco, California

					Analytical Results (mg/kg) (a)(b)																
											Pol	ycyclic Arc	omatic Hy	drocarbor	IS						
Trench Location	Sample ID	Sample Date	Sample Depth (ft bgs)	Note	Acenaphthene	Acenaphthylene	Anthracene	3enzo(a)anthracene	3enzo(a)pyrene	3enzo(b)fluoranthene	3enzo(g,h,i)perylene	3enzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	-Iuoranthene	Iuorene	ndeno(1,2,3-cd)pyrene	Vaphthalene	Phenanthrene	Jrene	3(a)P Equivalents (c)
Samples colle	cted from the Debris La	iyer																	•		
T1	1258EX100	10/20/2010	comp (f)	ASH	<0.18	<0.37	<0.018	0.22	0.31	0.29	0.67	0.15	0.25	0.69	0.38	<0.037	0.59	<0.18	0.18	0.34	1.1
202	1279TP202-D[5.5]	6/19/2013	5.5	ASH	<0.0054	< 0.0054	<0.0054	0.023	0.026	0.049	0.0075	0.012	0.027	<0.0054	0.035	<0.0054	0.0086	0.0095	0.02	0.039	0.037
203	1279TP203-D[3.5]	6/17/2013	3.5	ASH	<0.0056	0.0079	0.014	0.086	0.12	0.23	0.098	0.046	0.079	0.036	0.09	<0.0056	0.16	<0.0056	0.037	0.077	0.20
204	1279TP204-D[2.5]	6/20/2013	2.5		<0.0053	<0.0053	<0.0053	0.011	0.01	0.021	0.0092	0.0058	0.014	<0.0053	0.021	<0.0053	0.0095	<0.0053	0.0093	0.017	0.017
205	1279TP205-D[1]	6/17/2013	1		<0.0051	<0.0051	<0.0051	0.016	0.017	0.033	0.012	0.0079	0.023	0.0052	0.029	<0.0051	0.014	0.0085	0.013	0.024	0.029
206	1279TP206-D[2.5]	6/20/2013	2.5	ASH	<0.0051	0.0068	0.0068	0.035	0.049	0.069	0.026	0.019	0.039	0.011	0.069	<0.0051	0.03	0.016	0.044	0.055	0.074
207	1279TP207-D[1]	6/20/2013	1	ASH	<0.0052	<0.0052	0.0057	0.045	0.057	0.094	0.032	0.024	0.047	0.013	0.049	<0.0052	0.038	0.011	0.022	0.047	0.088
207	1279TP207-D[1]DUP	6/20/2013	1	ASH/DUP	<0.0057	<0.0057	0.0058	0.063	0.097	0.092	0.067	0.017	0.064	0.056	0.041	<0.0057	0.05	0.018	0.025	0.039	0.17
208	1279TP208-D[2]	6/19/2013	2	ASH	<0.0053	0.0059	0.0065	0.035	0.038	0.057	0.008	0.014	0.04	<0.0053	0.065	<0.0053	0.0099	0.0071	0.031	0.065	0.051
209	1279TP209-D[4]	6/19/2013	4		<0.0054	0.0085	<0.0054	0.012	0.012	0.063	<0.0054	0.02	0.013	<0.0054	0.023	0.015	0.0083	<0.0054	0.012	0.016	0.023
210	1279TP210-D[1]	6/19/2013	1		<0.0053	< 0.0053	<0.0053	< 0.0053	<0.0053	0.0088	<0.0053	<0.0053	0.0058	<0.0053	0.0067	<0.0053	< 0.0053	<0.0053	<0.0053	<0.0053	0.007
210	1279TP210-D[1]DUP	6/19/2013	1	DUP	<0.0053	< 0.0053	<0.0053	< 0.0053	<0.0053	0.0075	0.0055	<0.0053	0.0055	<0.0053	0.0071	<0.0053	< 0.0053	<0.0053	<0.0053	0.0056	0.007
212	1279TP212-D[2]	6/18/2013	2		<0.011	<0.011	<0.011	<0.011	<0.011	0.015	<0.011	<0.011	<0.011	<0.011	0.012	<0.011	<0.011	<0.011	<0.011	<0.011	0.014
214	1279TP214-D[2]	6/18/2013	2		<0.0053	0.012	0.01	0.064	0.079	0.15	0.066	0.034	0.074	0.025	0.1	<0.0053	0.091	0.0096	0.045	0.09	0.13
215 1279TP215-D[1.25] 6/17/2013 1.25						<0.01	<0.01	<0.01	0.014	0.018	0.011	<0.01	<0.01	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	0.012	0.022
Residential Soil Screening Level (d)							5,900	0.46	0.046	0.46	620	4.6	46.0	0.046	820	770	0.46	910	600	620	0.046
Ecological Buffer Zone Soil Screening Level (d)						40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Northern Califo	rnia PAH Background (e)						1.5												1.5		

TABLE 4 SUMMARY OF SOIL RESULTS FOR POLYCYCLIC AROMATIC HYDROCARBONS

Lendrum Court Area Presidio of San Francisco, California

											Ar	alytical R	esults (mg	/kg) (a)(b)						
					Polycyclic Aromatic Hydrocarbons																
Trench Location	Sample ID	Sample Date	Sample Depth (ft bgs)	Note	Acenaphthene	Acenaphthylene	Anthracene	3enzo(a)anthracene	3enzo(a)pyrene	3enzo(b)fluoranthene	3enzo(g,h,i)perylene	3enzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	-Iuoranthene	-luorene	ndeno(1,2,3-cd)pyrene	Vaphthalene	Phenanthrene	Jyrene	3(a)P Equivalents (c)
Samples collected from the Base													Ť	_		. —	. —	. —			
201	1279TP201-B[2]	6/17/2013	2		<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	< 0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	ND
202	1279TP202-B[6.5]	6/19/2013	6.5		<0.0055	<0.0055	<0.0055	0.012	0.017	0.019	0.0072	<0.0055	0.014	< 0.0055	0.017	<0.0055	0.007	<0.0055	0.013	0.023	0.024
203	1279TP203-B[6]	6/17/2013	6		<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	0.0054	<0.0053	<0.0053	<0.0053	< 0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	0.006
206	1279TP206-B[3.5]	6/20/2013	3.5		<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	< 0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	ND
210	1279TP210-B[2.5]	6/19/2013	2.5		<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	< 0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	ND
212	1279TP212-B[3.5]	6/18/2013	3.5		<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	< 0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	ND
Residential Soil Screening Level (d)							5,900	0.46	0.046	0.46	620	4.6	46.0	0.046	820	770	0.46	910	600	620	0.046
Ecological Buffer Zone Soil Screening Level (d)						40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Northern California PAH Background (e)									1.5												1.5

Abbreviations:

-- - Not applicable

<0.50 or ND - Compound not detected at or above indicated laboratory reporting limit

ASH - Ash observed in debris layer

B(a)P - Benzo(a)pyrene

Base - Below "Debris layer"

Debris - Debris layer DUP - duplicate sample ft bgs - feet below ground surface mg/kg - milligrams per kilogram Overburden - Overburden layer

Notes:

(a) Samples were analyzed by Curtis & Tompkins, Ltd, of Berkeley, California using EPA Method 8270C-SIM for PAHs. Results are reported to two significant figures.

(b) Bold value indicates detected concentration exceeds its respective Residential Soil Screening Level.

(c) Benzo(a)pyrene equivalents calculated with Toxicity Equivalency Factors for Carcinogenic Polycyclic Aromatic Hydrocarbons from EPA Region 9 Regional Screening Levels User's Guide, November 2013. For PAHs not included in the November 2013 User's Guide, values from the June 2011 HHRA Note Number 4 were used, as requested by DTSC. Values of one half the detection limit are used for results below the detection limit.
 (d) Residential Soil Screening Levels are Residential Human Health Preliminary Remediation Goals ("PRGs") from Table 7-2 of the Cleanup Level Document (EKI, 2002; with updates through 2013).

(d) Residential Soil Screening Levels are Residential Human Health Preliminary Remediation Goals ("PRGs") from Table 7-2 of the Cleanup Level Document (EKI, 2002; with updates through 2013). Ecological Buffer Zone Soil Screening Levels are PRGs from Tables 7-2 and 7-5 of the Cleanup Level Document (EKI, 2002; with updates through 2013).

(e) Northern California upper tolerance limit background concentration for benzo(a)pyrene potency equivalent is from ENVIRON, et al., 2002. The background concentrations in this study ranged from 0.0027 mg/kg to 2.8 mg/kg.

(f) This sample is a composite of two discrete samples collected from the ash and debris layer at Trench T1 from depths of 4 and 7 feet below ground surface.

TABLE 5SUMMARY OF SOIL RESULTS FOR DIOXINS AND FURANS

Lendrum Court Area Presidio of San Francisco, California

					Analytical Results (pg/g) (a)																	
Trench Location	Sample ID	Sample Date	Sample Depth (ft bgs)	Note	2,3,7,8-Tetrachlorodibenzo-p-dioxin	1,2,3,4,7,8,9-Heptachlorodibenzofuran	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	1,2,3,7,8,9-Hexachlorodibenzofuran	I,2,3,7,8-Pentachlorodibenzo-p-dioxin	1,2,3,7,8-Pentachlorodibenzofuran	1,2,3,6,7,8-Hexachlorodibenzofuran	1,2,3,4,7,8-Hexachlorodibenzofuran	2,3,7,8-Tetrachlorodibenzofuran	2,3,4,6,7,8-Hexachlorodibenzofuran	2,3,4,7,8-Pentachlorodibenzofuran	Octachlorodibenzofuran	,,2,3,4,6,7,8-Heptachlorodibenzo-p- Jioxin	Octachlorodibenzo-p-dioxin	1,2,3,4,6,7,8-Heptachlorodibenzofuran	rcdd teg (b)
Samples collect	ed from the Debris Laye	er				,	,	,	,	,	,	,	,	,				0	. 0	<u> </u>	,	
304	1279TP304-D[3.5]	9/22/2014	3.5	DEBRIS	<1.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	1.63	<5.00	<5.00	<10.0	<5.00	23.2	<5.00	1.26
305	1279TP305-D[3.5]	9/22/2014	3.5	DEBRIS	<1.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	4.97	6.01	5.49	<10.0	<5.00	29.2	16.2	4.90
A1	1279TPA1-2[2.0]D	9/23/2014	2.0	ASH	<1.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	7.91	6.66	6.71	12.5	7.99	11.9	14.5	9.39	32.4	29.8	9.53
F0	1279TPF0-1[1.5]D	9/24/2014	1.5	ASH	1.05	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	9.50	9.54	10.2	15.5	12.3	17.8	17.3	14.2	34.8	50.1	15.7
F2	1279TPF2-1[0.0-1.0]D	9/24/2014	1.0	ASH	<1.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	7.55	7.07	7.12	12.3	9.17	13.5	24.6	18.0	99.9	34.1	12.0
12	1279TPF2-1[DUP]	9/24/2014	1.0	DUP	1.14	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	8.12	7.61	7.58	14.6	9.53	14.0	15.0	19.6	85.8	32.4	13.2
G1	1279TPG1-2[0.5-1.5]D	9/24/2014	1.5	ASH	<1.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	6.73	7.28	6.18	8.95	8.38	20.6	22.7	95.1	37.8	8.04
					SAN	IPLES C	OLLECT	ED FRO	M PREV		ESTIGA	TIONS										
Sample collecte	d from the Overburden																					
203	1279TP203-O[1]	6/17/2013	1	Overburden	1.79	<5	<5	<5	<5	<5	<5	6.12	7.58	7.72	9.24	9.39	10.5	11	12.8	28.4	37.9	14
Samples collect	ed from the Debris Laye	er	•	•			1														1	
T1	1258EX100	10/20/2010	comp (c)		4.26 J	3.42 J	4.94 J	7.90 J	7.16 J	0.66 J	4.40 J	6.29 J	7.78 J	11.8 J	21.7	6.15 J	9.09 J	22.9 J	36	39	42	17.8
202	1279TP202-D[5.5]	6/19/2013	5.5	Debris	<1	<5	<5	<5	<5	<5	<5	<5	<5	<5	1.26	<5	<5	<10	<5	20.9	<5	0.738
203	1279TP203-D[3.5]	6/17/2013	3.5	Debris	<1	<5	<5	<5	<5	<5	<5	<5	<5	<5	2.14	<5	<5	<10	<5	<10	<5	1.11
204	204 1279TP204-D[2.5] 6/20/2013 2.5 Debris <1 <5 <5 <5 <5 <5 <5 <5 <1 <5 <10 <5 <10 <5 0.0033																					
Sample collecte	d from the Base	r	T	1	1											1		1			1	
203	1279TP203-B[6]	6/17/2013	6	Base	<1	<5	<5	<5	<5	<5	<5	<5	<5	<5	3.13	<5	<5	50.5	44.8	331	22.3	4.04
Residential Soil S	Screening Level (d)	- / ->																				3.5
TCDD TEQ Back	ground Range (DTSC, 2	010)																				7 to 20

TABLE 5 SUMMARY OF SOIL RESULTS FOR DIOXINS AND FURANS

Lendrum Court Area Presidio of San Francisco, California

Abbreviations:

<0.50 - Compound not detected at or above indicated laboratory reporting limit ASH - Ash observed in debris layer DUP - duplicate sample ft bgs - feet below ground surface J - Estimated concentration pg/g - picograms per gram TCDD - 2,3,7,8-tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent quotient

Notes:

- (a) Samples collected in 2013 and 2014 were analyzed by Vista Analytical Laboratory of El Dorado Hills, California using EPA Method 1613B for dioxins and furans.
- (b) TCDD TEQ value calculated by the analytical laboratory using 2005 World Health Organization Toxicity Equivalent Factors. See laboratory sheets for details.
- (c) This sample is a composite of two discrete samples collected from the ash and debris layer at Trench T1 from depths of 4 and 7 feet below ground surface. Composite sample was analyzed by Maxxam Analytics of Ontario, Canada using EPA Method 8290.
- (d) Residential Preliminary Remediation Goal from Technical Memorandum, Human Health Soil Preliminary Goals and Toxic Equivalency Values for Dioxins and Furans, Presidio of San Francisco, California (MACTEC, 2007) [update to the Presidio Cleanup Level Document (EKI, 2002)].

Reference:

DTSC, 2010. Memorandum from Kimiko Klein to Virginia Lasky regarding Screening Risk Evaluation, Merchant Road Land Fill, The Presidio, San Francisco, dated 25 August 2010.

TABLE 6A SCREENING RISK EVALUATION FOR CHEMICALS INSIDE THE DEBRIS FILL EXTENTS Lendrum Court Area

Presidio of San Francisco, California

			Summary of Soil Analytical Data						Appl	icable Presidi	o-Wide Soil S	creening Level					
Potential Chemicals of Concern	Sample Depth Range	Number of Samples Detected	Number of / Samples Analyzed	Minimum Detected Concentration	Maximum Detected Concentration	95% Conf Limit / I P Conce (UC	Confidence .imit / Exposure Point Concentration (UCL) (b)		Colma Background Levels (e)	Serpentinite Background Levels (e)	Residential Screening Level	Industrial Worker Screening Level	Ecological Screening Level	Does EPC Exceed Residential Screening Level and Background Level?	Does EPC Exceed Industrial Worker Screening Level and Background	Does EPC Exceed Ecological Screening Level and Background Level?	Does PAH EPC Exceed Northern California Background Level?
	(ft bgs)			mg/kg (a)	mg/kg (a)	mg/kg (a)	Statistic (c)	mg/kg (a)	mg/kg (a)	mg/kg (a)	mg/kg (a)	mg/kg (a)	mg/kg (a)		Level?		
Human Health PCOCs	i																
Arconio	0 to 2.5	29	/ 29	3.4	10	6.3	1	6.3	6.2	5.4	0.36	3.3		Yes	Yes		
Arsenic	0 to 6.5	38	/ 38	3.4	10	6.0	1	6.0	6.2	5.4	0.36	3.3		No	No		
l ead	0 to 2.5	30	/ 30	8.4	2,400	1,023	2	1,023	7.5	66	80	320		Yes	Yes		
Lead	0 to 6.5	39	/ 39	8.4	2,400	856	2	856	7.5	66	80	320		Yes	Yes		
Benzo(a)pyrene	0 to 2.5	24	/ 29	0.0061	0.14	0.046	4	0.046			0.046	0.38		No	No		No
Benzo(a)pyrene	0 to 6.5	30	/ 38	0.0061	0.31	0.057	3	0.057			0.046	0.38		Yes	No		No
B(a)P Equivalents	0 to 2.5	27	/ 29	0.0065	0.20	0.074	2	0.074			0.046	0.38		Yes	No		No
	0 to 6.5	35	/ 38	0.0064	1.1	0.221	5 (g)	0.221			0.046	0.38		Yes	No		No
Dibenz(a h)anthracene	0 to 2.5	10	/ 29	0.0052	0.056	0.012	6	0.012			0.046	0.38		No	No		No
	0 to 6.5	12	/ 38	0.0052	0.69	0.063	3	0.063			0.046	0.38		Yes	No		No
TCDD TEQ (a)	0 to 6.5	13	/ 13	0.00332 (pg/g)	17.8 (pg/g)	11 (pg/g)	1	11 (pg/g)	3.5 (f) 7 to 20 (pg/g)	3.5 (f) 7 to 20 (pg/g)	3.5 (f) 7 to 20 (pg/g)			No			
Ecological PCOCs (As	suming B	Buffer Zone	Cleanup Lev	els)													
Barium	0 to 3.5	33	/ 33	79	920	538	5	538	180	230			500			Yes	
Copper	0 to 3.5	33	/ 33	13	440	145	2	145	49	85			120			Yes	
Lead	0 to 3.5	34	/ 34	8.4	2,400	948	2	948	7.5	66			300			Yes	
Zinc	0 to 3.5	33	/ 33	42	1,100	527	2	527	79	160			50			Yes	

TABLE 6B SCREENING RISK EVALUATION FOR CHEMICALS OUTSIDE THE DEBRIS FILL EXTENTS Lendrum Court Area

Presidio of San Francisco, California

			Summary of	Soil Analytical [Data	05% Цинана			Appl	icable Presidio	o-Wide Soil S	creening Level					
Potential Chemicals of Concern	Sample Depth Range	Number of Samples Detected	Number of / Samples Analyzed	Minimum Detected Concentration	Maximum Detected n Concentration Concentration (UCL) (b)		EPA EPC in Soil	Colma Background Levels (e)	Serpentinite Background Levels (e)	Residential Screening Level	Industrial Worker Screening Level	Ecological Screening Level	Does EPC Exceed Residential Screening Level and Background Level?	Does EPC Exceed Industrial Worker Screening Level and Background	Does EPC Exceed Ecological Screening Level and Background Level?	Does PAH EPC Exceed Northern California Background Level?	
	(ft bgs)			mg/kg (a)	mg/kg (a)	mg/kg (a)	Statistic (c)	mg/kg (a)	mg/kg (a)	mg/kg (a)	mg/kg (a)	mg/kg (a)	mg/kg (a)		Level?		
Human Health PCOCs																	
Arsonic	0 to 2.5	7	/ 7	2.5	3.9	3.7	1	3.7	6.2	5.4	0.36	3.3		No	No		
Alsenic	0 to 6.5	8	/ 8	2.5	3.9	3.6	1	3.6	6.2	5.4	0.36	3.3		No	No		
Lead	0 to 2.5	43	/ 43	7	490	170	5 (g)	170	7.5	66	80	320		Yes	No		
	0 to 6.5	44	/ 44	6.2	490	167	5 (g)	167	7.5	66	80	320		Yes	No		
Benzo(a)pyrene	0 to 2.5	5	/ 7	0.0054	0.014	0.011	6	0.011			0.046	0.38		No	No		No
Bonzo(u)pyrono	0 to 6.5	5	/ 8	0.0054	0.014	0.01	6	0.01			0.046	0.38		No	No		No
B(a)P Equivalents	0 to 2.5	6	/ 7	0.0098	0.027	0.020	1	0.020			0.046	0.38		No	No		No
	0 to 6.5	6	/ 8	0.0098	0.027	0.020	1	0.020			0.046	0.38		No	No		No
Dibenz(a.h)anthracene	0 to 2.5	0 /	/ 7								0.046	0.38		No	No		No
(a,)a	0 to 6.5	0	/ 8								0.046	0.38		No	No		No
TCDD TEQ (a)	0 to 6.5	0	/ 0						3.5 (f) 7 to 20 (pg/g)	3.5 (f) 7 to 20 (pg/g)	3.5 (f) 7 to 20 (pg/g)			No Data			
Ecological PCOCs (As	suming S	pecial Statu	is Cleanup Le	evels)													
Barium	0 to 3.5	8	/ 8	89	120	106	1	106	180	230			320			No	
Copper	0 to 3.5	8	/ 8	12	30	21	1	21	49	85			30			No	
Lead	0 to 3.5	44	/ 44	6.2	490	167	5 (g)	167	7.5	66			160			Yes	
Zinc	0 to 3.5	8	/ 8	40	97	75	1	75	79	160			4			No	

TABLE 6A AND 6B NOTES

SCREENING RISK EVALUATION FOR CHEMICALS INSIDE AND OUTSIDE THE DEBRIS FILL EXTENTS

Lendrum Court Area Presidio of San Francisco, California

Abbreviations:

-- - Not applicable B(a)P - Benzo(a)pyrene EPA - United States Environmental Protection Agency EPC - exposure point concentration ft bas - feet below ground surface mg/kg - milligrams per kilogram PCOC - Potential Chemicals of Concern pg/g - picograms per gram TCDD - 2,3,7,8-tetrachlorodibenzo-p-dioxin TEQ - toxic equivalent quotient UCL - upper confidence limit

Notes:

- (a) Units are in mg/kg, with the exception of TCDD TEQ. For TCDD TEQ, units are in pg/g.
- (b) The 95% UCL was calculated using EPA's ProUCL software, version 5.0.00 (EPA, 2013b). EPCs are the lesser of the maximum detected concentration and the 95% UCL.
- (c) UCLs and EPCs are based on the following statistics:
 - 4 95% Adjusted Gamma KM UCL 1 - Student's-t UCL
 - 2 95% Adjusted Gamma UCL 5 - 95% Chebyshev (Mean, Sd) UCL
 - 3 95% KM (BCA) UCL 6 - 95% KM(t) UCL
- (d) Residential Soil Screening Levels are Residential Human Health Preliminary Remediation Goals ("PRGs") from Table 7-2 of the Cleanup Level Document (EKI, 2002; with updates through 2013). For lead, the DTSC's residential and industrial risk screening levels of 80 and 320 mg/kg, respectively, are applied (DTSC, 2011). Residential PRGs for dioxin TCDD TEQ are from Technical Memorandum, Human Health Soil Preliminary Goals and Toxic Equivalency Values for Dioxins and Furans, Presidio of San Francisco, California (MACTEC, 2007) (see Table 5). Ecological Buffer Zone Soil Screening Levels are PRGs from Table 7-2 of the Cleanup Level Document (EKI, 2002; with updates through 2013).
- (e) Site lithology is a mixture of Colma Formation and serpentine. Chemical concentrations are compared to the higher of the two background values.
- (f) Residential screening level of 3.5 pg/g from Technical Memorandum, Human Health Soil Preliminary Goals and Toxic Equivalency Values for Dioxins and Furans, Presidio of San Francisco, California (MACTEC, 2007). The TCDD TEQ Background Range of 7 to 20 pg/g from DTSC 2010 is discussed in the report text.
- (g) ProUCL suggested use of a 95% H-UCL; however, the text immediately below the suggested value states in bold that "It is ... recommended to avoid the use of the H-statistic based on 95% UCLs." Therefore, for these cases the 95% Chebyshev (Mean, Sd) UCL was used. The UCLs used are highlighted in the output files provided in Appendix F.

Note:

1. All locations are approximate.

Site Location Map

Lendrum Court Area The Presidio Trust San Francisco, CA May 2015 EKI B00025.07 Figure 1

Figure 2

Abbreviations:

mg/kg	= milligrams per kilogram
NS	= not sampled

Notes:

- 1. All locations are approximate.
- Lendrum Court Area: by PLS Surveys, Inc., dated October 2014, California State Plane Coordinate NAD27.
- 3. This figures shows trenches excavated in October 2010, June 2013, and September 2014. Potholes were excavated in September 2014.
- 4. Lead concentrations in surface soil, overburden, and debris greater than the Residential Screening Level of 80 mg/kg are **bolded**.

Erler & Kalinowski, Inc.

Lead Concentrations in Surface Soil and Debris Layers at Lendrum Court Lendrum Court Area

The Presidio Trust San Francisco, CA May 2015 EKI B00025.07

Figure 5

Appendices

Appendices provided on attached CD-ROM

Appendix A

Additional Sampling Workplan for Lendrum Court, August 2014

103 Montgomery Street P.O. Box 29052 San Francisco, CA 94129-0052 T (415) 561-5300 www.presidio.gov

September 2, 2014

Mr. George Chow Department of Toxic Substances Control 700 Heinz Avenue Berkeley, CA 94710

Subject: Transmittal of the Additional Sampling Workplan for Lendrum Court, Presidio of San Francisco, California

Dear Mr. Chow:

Enclosed is the final *Additional Sampling Workplan for Lendrum Court, Presidio of San Francisco, California.* The workplan was revised as discussed with you and Dr. Kimi Klein on our August 22 call.

The objective of the investigation activities is to determine the extent of Army-era debris fill at the Lendrum Court Site, conduct additional characterization of the debris fill, and collect engineering data to facilitate evaluation of potential remedial alternatives. The investigation is in response to your March 7, 2014 letter indicating further investigation was required at the Lendrum Court site.

Please feel free to contact me (415) 561-4259 or John DeWitt (650) 292-9100, ext. 355, if you need any additional information.

Sincerely,

Eleen Fanelli

Eileen Fanelli Environmental Remediation Program Manager

Enclosures

cc: Denise Tsuji, DTSC Bruce Handel, Army 30 August 2014

Consulting Engineers and Scientists 1870 Ogden Drive Burlingame, CA 94010 (650) 292-9100 Fax (650) 552-9012

Ms. Eileen Fanelli Presidio Trust 67 Martinez Street Post Office Box 29052 San Francisco, California 94129-0052

Subject: Additional Sampling Workplan for Lendrum Court Presidio Trust, San Francisco, California (EKI B00025.07 T 4C)

Dear Ms. Fanelli:

Erler & Kalinowski, Inc. ("EKI") is pleased to present this Additional Sampling Workplan for Lendrum Court. EKI is prepared this workplan for the Presidio Trust to determine the extent of Army-era debris and evaluate risks posed by potential chemicals of concern. EKI is prepared to implement this workplan upon your authorization.

If you have any questions please do not hesitate to call.

Very truly yours,

ERLER & KALINOWSKI, INC.

J. Jeut

John DeWitt, P.E. Project Manager

ADDITIONAL SAMPLING WORKPLAN FOR LENDRUM COURT

PRESIDIO OF SAN FRANCISCO, CALIFORNIA

Prepared for: The Presidio Trust San Francisco, CA

Prepared by: Erler & Kalinowski, Inc. Burlingame, California EKI B00025.07 T 4C

August 2014

ADDITIONAL SAMPLING WORKPLAN FOR LENDRUM COURT

Presidio of San Francisco, California

1		INTRODUCTION1
2		BACKGROUND1
	2.1 2.2 2.3	Site Description1Lendrum Court Site Investigation History1Site Use History2
3		INVESTIGATION PURPOSE AND OBJECTIVES 4
	3.1 3.2	Field Investigation Purpose4Field Investigation Objectives4
4		FIELD INVESTIGATIVE APPROACH
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Site Vegetation Clearing5Combined Potholing and Trenching Strategy Rationale in Grid Areas5Rationale for Trench Locations 301, 302, 303, 304, and 3056Sample Strategy74.4.1 Waste Characterization74.4.2 Confirmation Sampling7Pothole, Trench, and Sample Identification8Trench Excavation and Logging8Sampling Method8Site Survey9
5		ADDITIONAL FIELD PROCEDURES
	5.1 5.2 5.3 5.4 5.5	Preparation for Field Work
6		SCHEDULE FOR IMPLEMENTATION OF THE SAMPLING PLAN 11
7		REFERENCES

ADDITIONAL SAMPLING WORKPLAN FOR LENDRUM COURT

Presidio of San Francisco, California

TABLES

Table 1Historic Maps and Aerial Photos Reviewed to Develop Lendrum
Court, Armistead Road, Hoffman Street, and Ramsel Court Site-
Use History

FIGURES

Figure 1	Site Location Map
Figure 2	Overlay of Existing Buildings on 1938 Aerial Photograph
Figure 3	Proposed Sampling Locations

APPENDICES

Appendix A	Copies of Reviewed Maps and Photos of Lendrum Court,
	Armistead Road, Hoffman Street, and Ramsel Court
Appendix B	Notice to Tenants Regarding Upcoming Work

1 INTRODUCTION

On behalf of the Presidio Trust ("Trust"), Erler & Kalinowski, Inc. ("EKI") has prepared this Additional Sampling Workplan for field investigation of Lendrum Court ("Site") in the North Fort Scott Area, located in the northwest corner of the Presidio of San Francisco (Figure 1). This Workplan has been prepared for the Trust to address data gaps identified in the February 2014 *Lendrum Court Investigation Summary Report and Screening Risk Evaluation* ("Investigation Summary Report and Screening Risk Evaluation"; EKI, 2014a) and, as directed by the Department of Toxic Substances Control ("DTSC") (DTSC, 2014a), to determine the extent of debris and to evaluate the risks posed by potential chemicals of concern ("COCs").

2 BACKGROUND

2.1 Site Description

Lendrum Court is located in the northwest corner of the Presidio, north of Doyle Drive, in the North Fort Scott Area of the Presidio (Figure 1). The Lendrum Court Site is comprised of residential Buildings 1259, 1278, 1279, 1280, and 1282. Building 1257 and 1258 are located along Armistead Road, but for purposes of this investigation are considered part of the Site as the backyards open onto Lendrum Court.

This area is comprised of residential units, paved streets and parking areas, and vegetated landscape areas.

2.2 Lendrum Court Site Investigation History

In December 2012, the Trust notified the DTSC of the likely presence of debris fill beneath Lendrum Court on the basis of visible broken glass and ash observed in limited trenching activities (Trust, 2012). In February 2013, the DTSC requested the Trust prepare a Preliminary Endangerment Assessment ("PEA") Workplan (DTSC, 2013a). The Trust prepared the PEA Workplan (EKI, 2013) and upon DTSC approval (DTSC, 2013b), the Trust implemented the work in June 2013. Findings from the PEA Workplan investigation are summarized in the Investigation Summary Report and Screening Risk Evaluation (EKI, 2014a). DTSC approved the PEA in a letter dated 7 March 2014 (DTSC, 2014a). In that letter the DTSC stated that further investigation at Lendrum Court was required to determine the extent of debris and to evaluate the risks posed by potential COCs.

In April 2014, the Trust submitted a workplan to determine if Army-era debris was present in the broader North Fort Scott and Pilots Row neighborhoods. DTSC approved that work plan on April 30, 2014. The work was completed in May 2014 and a report of findings submitted to the DTSC on July 8, 2014 (EKI, 2014b). The investigation report documents that debris fill is limited to the Lendrum Court neighborhood. In a July 24, 2014 letter, DTSC concurred with the report findings at North Fort Scott and Pilots Row (DTSC, 2014b).

This Additional Sampling Workplan was prepared as a second phase of investigation, to determine the extent of debris fill and estimate the health and environmental risk associated with the debris fill in the Lendrum Court Area.

2.3 Site Use History

A summary of the site chronology from available maps and aerial photos is provided in Table 1. Appendix A contains copies of the maps and photos.

2.3.1 Lendrum Court

Features Identified Before 1936

- <u>Reservoir</u>: An 80,000-gallon water reservoir is shown on maps from 1896 through 1921 in the vicinity Building 1282. Based on aerial photos of the area in 1936, the reservoir appears overgrown and is assumed to be no longer in use as of 1936.
- <u>Coal House</u>: Historical maps and aerial photographs from the 1920s to approximately 1932 show a coal house located southeast of Lendrum Court; around 1933, the coal house was replaced by the Storey Avenue houses.
- <u>Incinerator</u>: A Presidio map dated 1921 indicates the presence of an incinerator approximately 150 feet south of present day Lendrum Court; the incinerator is not shown on any later maps. The approximate historical location of the incinerator is shown on Figure 2. A structure that may potentially be the incinerator is visible in an aerial photo from 1929; in a subsequent photo of the same area from 1932, the structure is no longer visible.
- <u>Fill:</u> An aerial photo from 1929 shows the addition of fill or grading in the present day location of Buildings 1278 and 1279; this feature is visible in almost all subsequent aerial photos of the area.

Features Identified from 1936 to 1946

- <u>Soil Movement:</u> Aerial photos from 1936 show significant soil handling activities conducted in the vicinity of the current Buildings 1253 through 1258 for the construction of Highway 101 in preparation for the connection to the Golden Gate Bridge.
- <u>Pipe Excavation</u>: An excavation apparently for the former Fuel Distribution System ("FDS") passes underneath Highway 101 towards Building 951, beneath the present day locations of Buildings 1255 and 1282. The portion of this pipeline passing underneath Building 1282 was removed prior to 1996 and the portion of the pipeline passing underneath Building 1255 was abandoned in place (IT Corporation, 1999; Montgomery Watson, 1999). The remainder of the FDS

pipeline passing through the Lendrum Court area was removed during 1996 and 1997.

• <u>Road Construction</u>: Between 1939 and 1946, entrance and exit ramps for Highway 101 were constructed south of Lendrum Court in the vicinity of the former incinerator.

Features Identified After 1946

• <u>Residential Construction</u>: Aerial photographs and Army historical maps indicate that the current Lendrum Court residential buildings and parking areas were constructed in 1970.

2.3.2 <u>Armistead Road, Hoffman Street, and Ramsel Court</u>

While this sampling workplan focuses on activities in Lendrum Court, the air photos in Appendix A include the surrounding Fort Scott area. Residential construction in these areas occurred at the same time as at Lendrum Court.

2.3.3 Locations of Existing Buildings

Figure 2 shows the locations of the present day Lendrum Court, Armistead Road, and Ramsel Court Buildings superimposed on an aerial photo from 1938 using Google Earth.

- Buildings 1259, 1278, and 1279 are approximately located near the edge of the fill and grading that was observed in the 1922 aerial photo;
- Buildings 1253 through 1256 appear to be located near the edge of the area disturbed by the construction of Highway 101 in 1936;
- Buildings 1257 and 1258 are located slightly down slope (northeast) of area disturbed by the construction of Highway 101;
- The FDS pathway visible in the 1936 aerial photo appears to pass underneath Building 1255 and beneath Building 1282; Building 1282 also appears to be located at approximately the same location as the former 80,000 gallon reservoir that is observed on maps from 1896 through 1921 and is visible in aerial photos up to 1934;
- The present day Armistead Playground appears to be located at the same location as the tennis court that was installed around 1936; and,
- Buildings 1236 and 1238 appear to be located just west of the former tennis court.

3 INVESTIGATION PURPOSE AND OBJECTIVES

This section identifies the purposes and objectives of the field investigation.

3.1 Field Investigation Purpose

The goals for this Additional Sampling Workplan are to:

- (1) Determine the extent of debris at the Lendrum Court Site;
- (2) Conduct additional characterization of the debris fill to identify COCs for the Site and to better evaluate the potential risk to human health or the environment; and
- (3) Collect engineering data to facilitate evaluation of potential remedial alternatives, such as topography in the area of debris fill.

3.2 Field Investigation Objectives

To achieve the goals identified above, the following objectives have been established:

- Clear dense vegetation in the northeastern and eastern portion of the site to allow access for inspection, sampling, and surveying.
- Find the limits of the debris fill using a combination of potholes and trenches. The potholing and trenching strategy is described in more detail in Section 4.
- Examine the debris encountered for visual evidence of ash. If ash is encountered, the ash will be documented and sampled as described in Section 4.
- Collect additional samples to complete characterization of the debris fill.
- Collect soil samples to confirm debris limits. Collect confirmation samples to confirm limits of soil impacts associated with debris fill. Samples will be analyzed for lead as an indicator of potential impacts outside of debris fill limits.
- Survey the area containing debris fill. As described above, this field event is intended to gather details for remedial design such as thickness of debris, potential for consolidating or covering the edges of the debris (such as thickness at edges, topography at debris edges, and ability to anchor cover materials), and the extent of trees that are present within the debris.

Groundwater is not expected to be encountered and therefore no groundwater samples will be collected as part of this investigation.

4 FIELD INVESTIGATIVE APPROACH

This Section describes the approach to completing the field investigation.

4.1 Site Vegetation Clearing

Dense vegetation is present along the suspected perimeter of debris fill, to the east and northeast behind Buildings 1279, 1278 and 1259; to the south of Building 1259 and to the west of Building 1257. Vegetation in this area will be removed to allow access for site investigation activities. Although no trees will be removed, shrubs and ground cover less than 6-inches in diameter will be cut close to the ground surface and removed from site.

The extent of vegetation removal varies but is greatest in the area east and northeast of Buildings 1279, 1278, and 1259, where debris fill is anticipated to extend approximately 50 to 70 feet behind the buildings based on the historic photos of grading activity and visual observation of debris on the ground surface. Vegetation removal to the west and south will be less extensive and completed as needed to allow potholes and trenches to be advanced and to complete a topographic survey of the area.

The topographic survey is needed to complete the next phases of remediation, including the feasibility study and remedial design. Removing vegetation as part of this investigation will facilitate the remedial process by completing soil disturbing work in dry weather and by avoiding bird nesting season. The site will be winterized to prevent erosion following the investigation.

4.2 Combined Potholing and Trenching Strategy Rationale in Grid Areas

This investigation is designed to confirm the extent of debris fill to facilitate completion of a feasibility study and remedial action planning. The estimated extent of debris fill is shown on Figure 3. The debris fill boundary is anticipated to roughly coincide with the break in slope to the northeast and east of Buildings 1259, 1278, and 1279; Lendrum Court Road to the south of Building 1259; Armistead Road to the south of Buildings 1257 and 1258; the walking path to the west of Building 1257 leading to Building 1282; and the walking path between Building 1280 and 1279.

Sampling grids will be established at the presumed boundaries of the debris fill around the perimeter of Lendrum Court (see Figure 3). The grid system will provide a frame of reference in the field so potholes, trenches, and sample locations can be measured from known grid corners, using physical landmarks such as the edge of houses as visual reference points.

Potholes and trenches will be used together to confirm this boundary. Potholes allow quick assessment of presence or absence of debris in the upper few feet of soil. Because they are hand dug, the potential damage to tree roots is limited. Potholes will be used to identify the probable boundaries of debris fill. Trenches, excavated perpendicular to the assumed debris fill edge based on potholing, will be used to confirm the boundary of the debris fill. Trenches will be excavated approximately eight feet in length and two feet wide. In addition, shorter trenches, up to five feet in length, will be excavated in known debris fill areas in order to collect samples for chemical characterization as described below. In grids A though H, potholes will be hand dug with a shovel or mattock. Potholes will be dug to about 24 inches in depth. Once debris is encountered, digging will stop, the location will be identified as containing debris, and a step-out pothole will be excavated. This process will continue until debris fill is not encountered. At that point a trench will be excavated perpendicular to the anticipated edge of debris to confirm the absence of debris at depth and to establish the extent of debris fill.

A similar approach will be used in grids I, J, K, and M. Based on historical photo review and topography, debris is not anticipated to be encountered in these grid cells. Initial potholes will be dug in each grid to confirm presence or absence of debris. Trenches will be excavated only if debris is present in the potholes.

In the vicinity of grid L (near Building 1282 on Figure 3), the June 2013 investigation found debris in trench 1279TP212, but the sample results from soil in the debris layer did not contain chemicals of concern above applicable screening levels. Potholing in this grid is intended to focus on the presence of debris and, if encountered, whether or not the debris is chemically impacted or inert.

The number of potholes or trenches within a specific grid area will vary based on field conditions, including topography, access, and results of other potholes or trenches. The number of potholes and trenches per grid area will be determined in consultation with DTSC once vegetation is removed and site surface conditions can be observed.

4.3 Rationale for Trench Locations 301, 302, 303, 304, and 305

Trenches 1279TP301 through 1279TP305 are located within the Lendrum Court landscaped area.

1279TP301, 1279TP302, and 1279TP305 are intended to confirm the southern and southwestern boundary of debris fill. These trenches will be excavated to depths sufficient to identify native material below any debris fill encountered. The maximum proposed depth of these trenches is approximately 8 feet below ground surface ("bgs"), the reach of the backhoe, or bedrock, whichever is shallower. Additional pot holes or trenches to the south of Armistead Road will be excavated in grid area J4 to confirm the southern boundary of the debris fill. Potholes will also be excavated in grid areas J1 through J3 and I1 through I2 unless the edge of debris fill is confirmed in Trenches 1279TP301, 1279TP302, and 1279TP305.

1279TP303 and 1279TP304 are intended to delineate the extent of the debris fill material in the vicinity of Buildings 1280 and 1282. The length of these trenches will vary depending on utilities and other subsurface structures. They may be extended or supplemented in the field to define the limits or edge of any observed debris.

As with the North Fort Scott investigation, all trenches will be photographed and logged. Debris will be inspected for the presence of ash. Samples will be collected as described below.

4.4 Sample Strategy

4.4.1 Waste Characterization

In the February 2014 Investigation Summary Report and Screening Risk Evaluation (EKI, 2014a), lead was identified as a chemical of concern ("COC") and polycyclic aromatic hydrocarbons ("PAHs"), dioxins, and furans were identified as potential chemicals of concern ("PCOCs") pending additional site investigation and analysis. This investigation is intended to provide additional data to statistically evaluate whether PAHs, dioxins, and furans are Site COCs.

Based on previous surface sample results at Lendrum Court (EKI, 2014a), soil samples collected from the debris layer overburden were found to contain lead above residential screening levels; therefore, in this investigation the overburden soil above the debris layer is assumed to be chemically impacted and will not be sampled. With the exception of confirmation samples described below, sample collection will focus on debris fill.

To create a statistically significant data set, a minimum of seven soil samples will be collected and submitted to the laboratory for analysis for metals, PAHs, and dioxins and furans for analysis as potential COCs. These data will be evaluated with previous sample results to complete the human and ecologic risk assessment.

Because dioxins and furans are associated with incinerator wastes, samples of debris fill containing ash will be preferentially collected and analyzed for dioxin and furans by EPA Method 1613B. To maintain comparability to sampling from the June 2013 investigation, samples from the debris fill layer will be collected using multi-increment sampling (see Section 4.7).

Waste characterization samples will be collected from trenches only. The trenches will be excavated in areas of known debris fill. In grid areas A1 though H2, trenches for sample collection will be located based on potholes and perimeter trench observations. If debris containing ash cannot be identified in seven distinct locations in the grid area and trenches 1279TP301 through 1279TP305, then additional trenches will be excavated. The additional trenches are shown on Figure 3 in areas anticipated to contain debris with ash based on previous trenching. Trenches will be excavated as needed to obtain sufficient samples for statistical analysis of PAHs, dioxins, and furans. Additional trenches will be numbered sequentially beginning with 1279TP306.

4.4.2 <u>Confirmation Sampling</u>

Soil samples will be collected from the area outside the observed perimeter of debris fill to confirm waste boundaries. Samples will be collected at a frequency of approximately one sample every 100 feet along the waste boundary perimeter. Surficial soil samples (0 to 0.5 feet bgs) will be collected from potholes or trenches as appropriate to the location. For example, if trenches 1279TP301 through 1279TP305 do not contain debris, a surface soil confirmation sample will be collected from these trenches rather than a debris sample.

Based on previous surface sample results at Lendrum Court (EKI, 2014a), lead was the primary COC detected in shallow soil, even when other COCs were present. Therefore confirmation samples will be analyzed only for lead as the indicator of waste impact.

4.5 Pothole, Trench, and Sample Identification

In accordance with the *Presidio-Wide Quality Assurance Project Plan and Sampling and Analysis Plan* ("QAPP"; Tetra Tech, 2001) and its Addendum (Trust, 2011), sample location identification codes for trench samples are based on "1279" for Building 1279, a central building within Lendrum Court; "TP" for test pit (trench); and sequential numbering starting at 301 to indicate that this is the Trust's third round of sampling for the Lendrum Court Area. The media sampled (soil) will be marked on the chain of custody form and input into the media field in the Trust database when the data are uploaded. Identifiers highlighting the material sampled and the sample depth will be appended to the sample name to identify the material the sample represents and the depth from which it was collected; "S" will be used to identify shallow or overburden soil samples, "D" will be used to identify debris or debris and ash layers. In keeping with the QAPP, an overburden soil sample collected at 2 feet bgs from trench 1279TP301-S[2]; similarly, a debris and ash sample collected at 3.5 feet bgs from trench 1279TP309 will be designated as 1279TP309-D[3.5].

Potholes will be labeled with "SB" to indicated soil boring, their grid location, such as A2-1 for the first pothole in grid cell A2. If a sample is collected from 1 foot deep from a pothole from grid A2, the sample labeling will follow the QAPP and be designated as 1279SBA2-1[1].

4.6 Trench Excavation and Logging

Trenches will be excavated with a subcontractor-operated backhoe. Proposed trench locations are shown on Figure 3. The locations of the trenches will be finalized in the field with representatives of the Trust and DTSC, and will depend upon the presence of surface, subsurface, and overhead obstructions, as well as site topography.

A qualified person will log soil lithology during trenching, and document trench sidewalls with photographs. Potholes will also be photographed. Logging will include observation of trench sidewalls as well as excavation spoils. Field personnel will log percentage of debris present, if any debris is encountered. Field personnel will coordinate with the Trust Archeology Department if debris is encountered.

Trenches will be backfilled and compacted by wheel rolling by the backhoe on the same day they are excavated.

4.7 Sampling Method

Soil samples from trenches will be collected using a backhoe bucket or manually, if the excavation is less than four feet deep and can be safely entered. Soil samples will

generally be collected in the center of the horizon being sampled. A multi-increment sampling method (ITRC, 2012) will be employed in the field and at the analytical laboratory as a recent U.S. EPA publication indicates that multi-incremental sampling can provide more reproducible results (U.S. EPA, 2013) and because the use of multiincremental sampling is specifically recommended by U.S. EPA for dioxin site assessment (U.S. EPA, 2011; U.S. EPA, 2013). The field multi-increment sampling method involves the collection of approximately 20 to 30 subsamples from the specific layer being sampled along all sidewalls of the trench or pothole. For multi-increment sampling of the debris layer, only the debris layer will be sampled. If the trench crosses the edge of the debris layer and debris is only present on one end and part of the two sides, only the visibly apparent debris layer will be sampled to avoid potential sample dilution by including non-debris layer material. As described in the ITRC guidance, a simple random sampling pattern will be used to collect samples, as constructing a sample gridding on the interior trench sidewalls would be difficult. Incremental samples will be collected in new one-gallon Ziploc bags, labeled, and placed on ice for delivery to the analytical laboratory under chain-of-custody procedures.

Multi-increment sampling will be collected from trenches and potholes. Sampling will be conducted in accordance with the Presidio QAPP and its Addendum, including approximately 10% duplicates.

4.8 Site Survey

The topography of the site, inclusive of the area of debris fill will be made following site investigation activities. The site survey will be used in engineering evaluations completed as part of the feasibility analysis and remedial action plans.

5 ADDITIONAL FIELD PROCEDURES

Standard field methods and procedures are described in the Trust's Standard Operating Procedures ("SOPs") included in the QAPP. The SOPs include the methods and procedures for collecting soil samples, surveying sample locations, sample preservation and transportation, and general equipment decontamination. Laboratory QA/QC procedures are also described in the QAPP and its Addendum.

5.1 **Preparation for Field Work**

EKI, in consultation with the Trust, and a representative of the DTSC, if present, will select locations in the field for trenches.

The Trust has notified Lendrum Court residents; a copy of the notification letter distributed on 22 August 2014 is included as Appendix B.

Prior to initiation of field activities, EKI will perform the following tasks:

• update its site-specific health and safety plan;

- request and review the results of Trust utility plans and Trust underground utility surveys;
- notify Underground Services Alert ("USA") of planned subsurface work at least 48 hours prior to the initiation of all subsurface work; and
- obtain necessary dig permits from the Trust.

The trenching contractor will rely upon available plans and utility maps provided by the Trust.

5.2 Surveying of Investigation Locations

The grid coordinates, potholes, and trench locations will be surveyed by a California licensed land surveyor. The ground surface elevation and the horizontal coordinates of each location will be surveyed. The horizontal coordinates will be reported in NAD 83. The vertical coordinates will be reported in both the North American Vertical Datum 88 ("NAVD 88") as well as 1907 Presidio Lower Low Water ("PLLW") vertical datum. Local benchmarks will be provided by the Trust. Survey data will be used to update maps, and to document sample locations, if collected. Survey data will also be used to prepare design figures, including extent of debris, building corners, sidewalks and utilities, surface topography, trees, and other features that will need to be considered during remedial design.

5.3 Management of Investigation-Derived Wastes

Layers of soil will be returned to the trench in the order that they were removed and wheel-rolled to compact. Potholes will be refilled with spoils and vegetation replaced, where practicable. No investigation-derived wastes are expected to be generated as a result of this investigation.

5.4 Analytical Methods

The analytical methods planned are generally the same as those conducted at the June 2013 Lendrum Court investigation and include the following:

- PAHs by EPA Method 8270C with selective ion monitoring ("SIM");
- Title 22 metals by EPA Method 6020; and,
- If ash is encountered in debris, up to 7 samples will be analyzed for dioxins and furans by EPA Method 1613B. Any debris and ash containing samples that are not analyzed for dioxins and furans will be stored at 4 degrees Celsius in the event that additional analysis is necessary.

Because lead was a key indicator of chemical impacts in the 2013 Lendrum Court investigation, samples defining the edge of debris will only be analyzed for lead as the edge confirmation samples.

5.5 Analytical Laboratory

Soil samples will be submitted to Curtis & Tompkins, Ltd. of Berkeley, California, ("Curtis & Tompkins") for sample preparation using the Incremental Sampling Methodology ("ISM") preparation protocol. In the ISM protocol, each sample is dried, mixed, and systematically split into subsamples; small samples from each increment are then collected and mixed to create the multi-increment sample used for analysis. Samples for TPH, metals, and PAHs will be analyzed by Curtis & Tompkins. After ISM preparation, any samples for dioxins will be sent to Vista Analytical Laboratory of El Dorado Hills, California. Both of these laboratories are certified by the State of California.

Sample handling and analysis will be in accordance with the Presidio QAPP, as amended, with a Level II data report. All samples will be analyzed on a standard turnaround time.

6 SCHEDULE FOR IMPLEMENTATION OF THE SAMPLING PLAN

Field work will commence upon DTSC approval of this Additional Sampling Workplan. EKI estimates that approximately two weeks will be required to obtain permits, prepare work authorizations for contractors, mark the sampling locations, and conduct the underground utility surveys. Implementation of this Additional Sampling Workplan is anticipated to require approximately three weeks, which includes some time for vegetation removal and inspecting the site after the vegetation is removed. The results of the investigation will be presented to DTSC in an Additional Sampling Summary Report.

7 REFERENCES

DTSC, 2013a. Letter from George Chow to Ms. Eileen Fanelli of the Presidio Trust dated 19 February 2013, requesting preparation of a Preliminary Endangerment Assessment for Lendrum Court.

DTSC, 2013b. Letter from George Chow to Ms. Eileen Fanelli of the Presidio Trust dated 13 June 2013, approval of the *Preliminary Endangerment Assessment Workplan, Presidio of San Francisco, California* dated May 2013.

DTSC, 2014a. Letter from George Chow to Ms. Eileen Fanelli of the Presidio Trust dated 7 March 2014, approval of the *Final Lendrum Court Investigation Summary Report and Screening Risk Evaluation*, dated 28 February 2014.

DTSC, 2014b. Letter from George Chow to Ms. Eileen Fanelli of the Presidio Trust dated 24 July 2014, concurrence with the *Final North Fort Scott Investigation Summary Report*, dated 8 July 2014.

EKI, 2002. Development of Presidio-wide Cleanup Levels for Soil, Sediment, Groundwater, and Surface Water, Presidio of San Francisco, California. October 2002.

EKI, 2013. Lendrum Court Preliminary Endangerment Assessment Workplan, Presidio of San Francisco, California. May 2013.

EKI, 2014a. Lendrum Court Investigation Summary Report and Screening Risk Evaluation, Presidio of San Francisco, California. 28 February 2014.

EKI, 2014b. North Fort Scott Investigation Summary Report, Presidio of San Francisco, California. 8 July 2014.

Interstate Technology & Regulatory Council ("ITRC"), 2012. *Technical and Regulatory Guidance: Incremental Sampling Methodology*. February 2012.

IT Corporation, 1999. Fuel Distribution System Removal Report, Presidio of San Francisco, California. May 1999.

Montgomery Watson, 1999. Additional Investigation of Fuel Distribution Systems, Presidio of San Francisco, California. August 1999.

Trust, 2011. Addendum to the Presidio-Wide Quality Assurance Project Plan and Sampling and Analysis Plan, Revision 1. 23 June 2011.

Trust, 2012. Letter to Ms. Denise Tsuji of the DTSC dated 13 December 2012 on the subject of *Notice Potential Waste Release Site – Lendrum Court, Presidio of San Francisco, California.*

U.S. Army, Office of the Constructing Quartermaster. *Map of the Presidio of San Francisco, Cal.* [map]. 1''= 200'. December 1921.

U.S. EPA, 2011. User Guide, Uniform Federal Policy Quality Assurance Project Plan Template for Soils Assessment of Dioxin Sites, September 2011.

U.S. EPA, 2013. *The Roles of Project Managers and Laboratories in Maintaining the Representativeness of Incremental and Composite Soil Samples*, OSWER 9200.1-117FS June 2013.

TABLE 1 Historic Maps and Aerial Photos Reviewed to Develop Lendrum Court, Armistead Road, Hoffman Street, and Ramsel Court Site-Use History

Lendrum Court

Presidio Trust, San Francisco, California

Date	Document Type	Description
1871	Man	1871 man shows a large cloud labeled "drifting sands" to the south of the present-day Lendrum Court. Armistead Road, and
10/1	Map	Ramsel Court area.
December 1921	Мар	1921 map shows an incinerator located near the present-day Lendrum Court, Armistead Road, and Ramsel Court area. Coal shed and 80,000 gal reservoir also shown, with YMCA directly west of Lendrum Court, north of current Building 1208.
November 30, 1922	Photo	1922 aerial photo shows a coal shed near the future Lendrum Court area, with possible incinerator in the background. Current Building 1208 is present in foreground.
April 12, 1929	Photo	1929 aerial photo shows a coal shed near the future Lendrum Court area, with possible incinerator in the background. Building 968 is located along Hoffman Street on the left-hand side of the picture. Fill material appears to have been placed southwest (to the right) of Building 951. Reservoir visible. YMCA visible near track.
January 10, 1932	Photo	1932 aerial photo shows a coal shed near the future Lendrum Court area. No evidence of incinerator. The area of fill identified in the 1929 aerial photo is covered in vegetation. Reservoir and Aboveground Storage Tank 970 visible. An unidentified structure is located east (above and to the right) of Building 968. YMCA visible near track.
January 1934	Photo	1934 aerial photo shows that coal shed near the future Lendrum Court area has been removed, and replaced by Storey Avenue houses. Reservoir visible. YMCA previously near track removed.
1936	Photo	1936 aerial photo shows the future Lendrum Court Area and Armistead Road and Ramsel Court Area from directly above. Highway 101 is under construction and significant ground disturbance is seen alongside the future Highway 101. Outline of reservoir appears overgrown. A portion of the former Fuel Oil Distribution Pipeline passes underneath Highway 101 and cuts through the future Lendrum Court area heading northeast towards Building 951. A tennis court is visible to the south of Building 969.
March 28, 1936	Photo	1936 aerial photo shows the future Lendrum Court Area and Armistead Road and Ramsel Court Area from above. Hwy 101 access to Golden Gate Bridge has been constructed. Outline of reservoir appears overgrown. Trees appear to have been planted in the Armistead Road and Ramsel Court Area.
January 8, 1938	Photo	1938 aerial photo shows the future Lendrum Court Area and Armistead Road and Ramsel Court Area from directly above. Highway 101 is in use. A tennis court is visible south of Building 969. Outline of reservoir appears overgrown.
January 24, 1939	Photo	1939 aerial photo shows the future Lendrum Court Area and Armistead Road and Ramsel Court Area. Highway 101 has been constructed. Trees are visible in the Armistead Road and Ramsel Court Area.

TABLE 1 Historic Maps and Aerial Photos Reviewed to Develop Lendrum Court, Armistead Road, Hoffman Street, and Ramsel Court Site-Use History

Lendrum Court

Presidio Trust, San Francisco, California

Date	Document Type	Description
	~	
January 24, 1939	Photo	1939 aerial photo shows the future Lendrum Court Area and Armistead Road and Ramsel Court Area from directly above.
		Highway 101 is in use. A tennis court is visible south of Building 969. Trees are visible in the Armistead Road and Ramsel
		Court Area.
January 24, 1939	Photo	Oblique 1939 aerial photo shows the future Lendrum Court Area and Armistead Road and Ramsel Court Area. Highway 101
		is in use. A tennis court is visible south of Building 969. Trees are visible in the Armistead Road and Ramsel Court Area.
July 28, 1946	Photo	Aerial photo showing the future Lendrum Court Area and Ramsel Court Area. Entrance and exit ramps to Highway 101 have
		been constructed. The approximate location of the former incinerator is shown on the figure. A tennis court is visible south
		of Building 969. Trees are present in the Armistead Road and Ramsel Court Area.
1940 to 1965	Maps	Four maps, dated May 29, 1940, October 10, 1958, December 8, 1961, and November 10, 1965 were reviewed. No changes
		were noted. Maps not reproduced in Appendix.
May 20, 1969	Map	1969 map shows planned Lendrum Court Area as "under construction" for 1970.
March 24, 1975	Мар	1975 map shows Lendrum Court Area construction finished.
Aerial Photo Used in t	o Overlay Locations	of Existing Buildings
July 31, 1938	Photo	1938 aerial photo shows the future Lendrum Court Area and Armistead Road and Ramsel Court Area from directly above.
July 31, 1938	Photo	1938 aerial photo shows the future Lendrum Court Area and Armistead Road and Ramsel Court Area from directly above.
		Google Earth was used to overlay 3-dimensional images of the present day buildings (and building numbers) on the July
		1938 aerial photo (for several buildings, only the outline is visible). Buildings 1278 and 1279 appear to be located on the
		edge of the fill material noted in the 1929 aerial photo. Building 1259 intersects a former dirt road. Building 1282 appears
		to be in the location of the former 80,000 gallon reservoir. Buildings 1257 and 1258 appear to be located slightly northeast
		of the materials disturbed during construction of Highway 101 and Buildings 1253 through 1256 appear to be located at the
		edge of these disturbed materials. A portion of the former Fuel Oil Distribution System pipeline passes underneath Highway
		101, Buildings 1255 and 1282, and between Building 951 and Building 952.

Building with Building Number

Notes:

- 1. All locations are approximate.
- 2. Aerial photo source: Google Earth Pro, 1938 Aerial Photograph.
- 3. Overlay of existing buildings from Google Earth Pro and Presidio Trust 2011 Basemap (See Note 3 on Figure 3).

Erler & Kalinowski, Inc.

Overlay of Existing Buildings on 1938 Aerial Photograph

North Fort Scott Area The Presidio Trust San Francisco, CA August 2014 EKI B00025.07

Figure 2

Existing Exploratory Trenches at Lendrum Court

📖 (ND)	No Debris or Ash Observed
(D)	Debris Observed
🗱 (DA)	Debris and Ash Observed

Notes:

- 1. All locations are approximate.
- Lendrum Court Area: by PLS Surveys, Inc., dated
 9 July 2013; California State Plane Coordinate NAD27.
- 3. Basemap Source: by Presidio Trust, dated 30 April 2011, California State Plane Coordinate NAD83.

Erler & Kalinowski, Inc.

Proposed Sampling Locations

Lendrum Court Area The Presidio Trust San Francisco, CA August 2014 EKI B00025.07 Figure 3
Appendix A

Copies of Reviewed Maps and Photos of Lendrum Court,

Armistead Road, and Ramsel Court

T. P. A.			Location of former YMCA	
2-1000 Jan 1934	CRISSY FIELD	SAN FRANC	CISCO, CALIF	

Future Armistead Road and Ramsel Court Areas

> Future Lendrum Court Area

Dec 100

7/31/1938 (with overlay of current Buildings)

Appendix B

Notice to Tenants Regarding Upcoming Work

dewitt, john

To:	
Subject	

dewitt, john FW: Lendrum Court - Second Phase of Soil Invesigation

From: Presidio Trust Resident Advisory [mailto:noreply=presidiotrust.gov@mail38.atl111.rsgsv.net] On Behalf Of
Presidio Trust Resident Advisory
Sent: Friday, August 22, 2014 11:15 AM
To: Ostrander, Ann
Subject: Lendrum Court - Second Phase of Soil Invesigation

Is this email not displaying correctly? View it in your browser.

Dear North Fort Scott Residents,

Beginning September 2, 2014, under the Department of Toxic Substances Control's (DTSC) oversight, the Trust will be conducting a second phase of soil investigation within the Lendrum Court area of your neighborhood. The purpose of this investigation is to:

- find how widely the sub-surface debris is dispersed in the Lendrum Court area
- characterize potential contaminants of concern (COCs) associated with the debris
- collect data to evaluate possible clean-up alternatives.

During this time, multiple trenches will be excavated in front, behind, or between most of the buildings in Lendrum Court and on the hillside towards Lincoln Boulevard. Trenches will be backfilled on the same day they are excavated. A copy of the draft work plan is posted on the Trust's webpage: http://www.presidio.gov/about/Documents/2014_08_06_AdditionalSamplingPlanLendrumCourt.pdf

Work will include removal of selective shrubs and vegetation growing beneath the trees on the hill behind Buildings 1279, 1278, and 1259. The vegetation removal is necessary to provide access for site investigation work, including trenching and site survey. Larger trees will not be removed.

Work hours will be from 8:00 AM to 5:00 PM, Monday through Friday. It is expected that the work will be completed in 5 to 6 weeks. I will provide you a copy of the investigation findings when they are available. For your safety, the areas will be fenced off and I request that you stay out of these areas during non-work hours.

Please give me a call if you have any questions. You may also contact George Chow, DTSC Project Manager, by telephone at 510-540-3879 or by email at <u>George.Chow@dtsc.ca.gov</u>.

Thank you for your continued understanding and support during the investigative and clean-up process.

Sincerely,

Eileen Fanelli Environmental Remediation Program Manager Presidio Trust <u>efanelli@presidiotrust.gov</u> (415) 561-4259

c: Pilots' Row residents

You are receiving this email because you are a resident of the Presidio. If you unsubscribe you will no longer receive important updates about projects of interest to your household, including Doyle Drive and other activities. To unsubscribe <u>click here</u>.

The Presidio Trust • 103 Montgomery Street, PO Box 29052 • San Francisco, CA 94129 Copyright © 2014 Presidio Trust, All rights reserved.

Appendix B

Lendrum Court Area Site Survey PLS Surveyors, Inc., October 2014

COORDINATES ARE NAD 27. ESTABLISHED WITH RTG GPS, HOLDING PRESDID TRUST CONTROL POINT "SCOTT N", N 480801-486 E 142945.335. ELEVATIONS ARE NAVD 88 ESTABLISHED WITH RTK GPS, HOLDING PRESDID TRUST CONTROL POINT "SCOTT N", EL=226.01 US SURVEY FEET.

0	20	40	60

	Control Point Table							
Point #	Northing	Easting	Elevation	Raw Description				
2	481195.9545	1430875.8771	156.455	CUT-X				
3	481244.2146	1430780.0197	160.281	NAIL-W				
4	481066.5011	1430894.1335	154.296	CUT-X				
5	481038.6208	1430786.9117	169.428	NAIL-W				
6	481032.4889	1430909.6808	152.407	NAIL				
7	481066.1336	1430923.4340	150.476	NAIL				
8	481113.2017	1430935.9713	151.489	NAIL				
9	481149.4797	1430941.0455	152.341	NAIL				
12	481195.9781	1430875.8775	156.420	CUT-X				
13	481113.0163	1430996.4953	143.403	NAIL				
14	481220.8715	1430992.1258	140.856	NAIL				
15	481224.6432	1430933.3235	151.355	NAIL				
16	481137.4377	1430716.4612	178.647	NAIL				
17	481302.6049	1430722.7439	161.048	NAIL				
18	481435.1320	1430713.8901	151.368	NAIL				
19	481360.1853	1430865.5320	143.625	NAIL				
20	481293.5593	1430917.0691	144.862	NAIL				
21	481382.0868	1430742.1558	154.057	NAIL				
22	481235.0608	1430694.2428	171.995	NAIL				
24	481326.7540	1430835.3701	152.134	NAIL				

Control Point Table							
Point #	Northing	Easting	Elevation	Raw Description			
25	481283.4890	1430839.3977	152.530	NAIL			
26	481078.5007	1430812.7399	170.432	NAIL			
27	481060.6625	1430758.1190	174.509	NAIL			
31	481046.8698	1430858.4740	154.075	NAIL-W			
32	481099.8607	1430928.5950	150.375	NAIL			
33	481108.4676	1431002.8390	142.680	NAIL			
34	481201.2180	1431004.5630	139.904	NAIL			
35	481142.1258	1431037.9360	137.287	NAIL			
36	481022.1342	1430987.3240	133.870	NAIL			
37	480976.6145	1430971.7800	130.831	NAIL-W			
38	481267.6072	1430972.3350	138.679	NAIL			
39	481255.9848	1431033.3820	131.958	NAIL			
40	481353.3080	1430982.5730	127.682	NAIL			
41	481346.3834	1430868.9500	144.804	NAIL			
42	481366.4357	1430917.0580	135.226	NAIL			
43	481403.5753	1430885.6730	126.754	CUT-X			
44	481188.5107	1430642.4810	180.414	NAIL-W			
45	481117.7343	1430635.6480	182.306	NAIL-W			
46	481071.0170	1430710.6770	180.687	NAIL-W			
47	481040.5086	1430771.6820	172.203	NAIL-W			

Control Point Table							
Point #	Northing	Easting	Elevation	Raw Description			
2276	481234.0653	1430676.3837	175.262	TAG-5637			
2956	481027.9191	1430982.4000	136.805	TAG-5637			
2985	481082.9852	1431006.5130	141.162	TAG-5603			
5038	481024.8118	1430917.3670	150.888	TAG-5600			

POINT	NORTHING	EASTING	NORTHING	EASTING	ELEVATION	ELEVATION	DESCRIPTION
NUMBER	NAD27	NAD27	NAD83	NAD83	PLLW	NAVD88	
	Alexandre o standarda entre entre en suestantem						
2792	481137.497	1431001.779	2121546.931	5992368.430	143.11	143.48	1279TPF0-1
2793	481132.365	1431001.927	2121541.799	5992368.578	143.11	143.48	1279TPF0-1
2842	481102.659	1431019.620	2121512.093	5992386.271	139.05	139.42	1279TPG1-2
2843	481102.373	1431024.239	2121511.807	5992390.890	138.05	138.42	1279TPG1-2
2845	481107.093	1431030.966	2121516.527	5992397.617	135.31	135.68	1279TPC1-1
2846	481105.234	1431035.726	2121514.668	5992402.377	134.21	134.58	1279TPC1-1
2884	481077.351	1431047.364	2121486.785	5992414.015	128.23	128.60	1279SBG2-1-PINK
2926	481053.302	1431030.401	2121462.736	5992397.052	127.78	128.15	1279SBH2-1
2960	481047.489	1430978.160	2121456.923	5992344.811	141.68	142.05	1279SBH0-1
3004	481049.075	1430991.486	2121458.509	5992358.137	137.01	137.38	1279SBH0-2
3080	481024.796	1431019.939	2121434.230	5992386.590	125.95	126.32	1279SBH1-4 PINK
3084	481023.674	1431007.031	2121433.108	5992373.682	129.24	129.61	1279SBH1-2 PINK
3092	481015.752	1431013.518	2121425.186	5992380.169	126.72	127.09	1279SBH1-3
3102	481025.416	1430993.591	2121434.849	5992360.242	132.44	132.81	1279SBH1-1
3122	480973.336	1430971.012	2121382.770	5992337.663	130.18	130.55	1279TPI1-1
3123	480966.057	1430971.051	2121375.491	5992337.702	129.28	129.65	1279TPI1-1
3169	480966.706	1431079.008	2121376.140	5992445.659	108.73	109.10	1279TPI2-2
3170	480973.842	1431077.548	2121383.276	5992444.199	109.63	110.00	1279TPI2-2
3176	480969.497	1431051.506	2121378.931	5992418.157	114.69	115.06	1279TPI2-1
3177	480964.432	1431051.883	2121373.866	5992418.534	114.44	114.81	1279TPI2-1
3237	481158.540	1431048.948	2121567.974	5992415.599	133.17	133.54	1279TPF2-1
3238	481160.561	1431057.056	2121569.995	5992423.707	131.14	131.51	1279TPF2-1
3247	481177.371	1431046.751	2121586.805	5992413.402	132.04	132.41	1279TPE1-2
3248	481181.879	1431055.912	2121591.313	5992422.563	129.82	130.19	1279TPE1-2
3274	481186.540	1431067.204	2121595.974	5992433.855	127.20	127.57	1279SBE1-2
3357	481235.123	1431011.511	2121644.557	5992378.162	134.64	135.01	1279TPD1-1
3358	481228.564	1431007.023	2121637.998	5992373.674	136.88	137.25	1279TPD1-1
3366	481244.480	1431015.226	2121653.914	5992381.877	130.22	130.59	1279SB01-1 PINK
3400	481200.621	1431028.989	2121610.055	5992395.640	133.26	133.63	1279TPE1-1
3405	481208.027	1431035.490	2121617.461	5992402.141	130.07	130.44	1279TPE1-1
3425	481218.310	1431045.400	2121627.744	5992412.051	126.19	126.56	1279SBE1-1 PINK
3495	481254.787	1431073.298	2121664.221	5992439.949	117.41	117.78	1279SB02-2
3506	481267.017	1431079.954	2121676.451	5992446.605	115.39	115.76	1279SB02-1
3582	481295.850	1430990.642	2121705.284	5992357.293	132.07	132.44	1279TPC1-1
3583	481301.383	1430994.973	2121710.817	5992361.624	129.40	129.77	1279TPC1-1
3585	481306.484	1430998.674	2121715.918	5992365.325	127.24	127.61	1279SBC1-1 PINK
3683	481273.657	1430971.292	2121683.091	5992337.943	138.45	138.82	1279TPC1-2
3684	481276.815	1430975.305	2121686.249	5992341.956	137.87	138.24	1279TPC1-2
3725	481326.540	1430918.831	2121735.974	5992285.482	138.58	138.95	1279TPA1-2
3726	481331.599	1430919.422	2121741.033	5992286.073	137.37	137.74	1279TPA1-2
3803	481316.731	1430952.043	2121726.165	5992318.694	133.44	133.81	1279TPB1-1
3804	481313.502	1430949.731	2121722.936	5992316.382	135.16	135.53	1279TPB1-1
3851	481327.626	1430955.026	2121737.060	5992321.677	132.74	133.11	1279SBB1-1 PINK
3862	481370.144	1430918.079	2121779.577	5992284.730	134.62	134.99	1279SBA2-1 PINK

PLS Surveys Inc.

2000	101207 564	1420021 500	2121000 000	5000000000	100.00		
2010	481397.504	1430931.580	2121806.998	5992298.231	126.89	127.26	1279SBA2-4 PINK
3910	481338.920	1430922.330	2121/48.353	5992288.981	134.46	134.83	1279TPA1-1
2042	481341.555	1430923.527	2121/50.989	5992290.178	134.12	134.49	1279TPA1-1
3943	481361.935	1430882.014	2121771.369	5992248.665	140.11	140.48	1279SBA1-1 PINK
3962	481369.857	1430901.184	2121779.291	5992267.835	136.00	136.37	1279TPA1-2
3963	481378.585	1430910.342	2121788.019	5992276.993	133.22	133.59	1279TPA1-2
3964	481382.974	1430914.891	2121792.408	5992281.542	131.66	132.03	1279SBA2-2 ORANG
3965	481388.402	1430921.383	2121797.836	5992288.034	130.22	130.59	1279SBA2-3 ORANG
3981	481379.595	1430893.593	2121789.029	5992260.244	135.15	135.52	1279SBA2-5 PINK
4773	481377.615	1430843.913	2121787.049	5992210.564	143.84	144.21	1279SBM-2 PINK
4774	481370.839	1430860.097	2121780.273	5992226.748	143.20	143.57	1279SBM-1 PINK
4780	481382.289	1430854.222	2121791.723	5992220.873	142.33	142.70	1279SBM-3
4809	481321.461	1430831.227	2121730.894	5992197.878	152.59	152.96	1279TP304
4810	481329.582	1430831.901	2121739.016	5992198.552	152.16	152.53	1279TP304
4811	481369.731	1430756.837	2121779.165	5992123.488	154.02	154.39	1279TP303
4812	481377.173	1430755.195	2121786.607	5992121.846	153.14	153.51	1279TP303
4820	481400.155	1430754.408	2121809.589	5992121.059	150.94	151.31	1279SBL-2 ORANGE
4821	481404.435	1430757.316	2121813.869	5992123.967	150.06	150.43	1279SBM-1 PINK
28	481374.666	1430729.247	2121784.100	5992095.898	155.89	156.26	1279SBL-1 PINK
4846	481214.340	1430638.881	2121623.774	5992005.532	178.85	179.22	1279SBK-4
4849	481234.565	1430626.611	2121643.999	5991993.262	178.97	179.34	1279SBK-3 PINK
4858	481257.931	1430648.844	2121667.365	5992015.495	175.89	176.26	1279SBK-1 PINK
4861	481246.820	1430653.611	2121656.254	5992020.262	176.33	176.70	1279TPK-1
4862	481240.619	1430662.049	2121650.053	5992028.700	175.41	175.78	1279TPK-1
4876	481280.530	1430670.760	2121689.964	5992037.411	172.15	172.52	1279SBK-2
4883	481174.666	1430652.296	2121584.099	5992018.947	180.77	181.14	1279TP301
4884	481177.227	1430658.344	2121586.661	5992024.995	178.12	178.49	1279TP301
4914	481080.752	1430604.837	2121490.186	5991971.488	184.48	184.85	S1279BJ1-1 PINK
4918	481067.249	1430650.427	2121476.683	5992017.078	183.49	183.86	1279SBJ1-2 PINK
4922	481061.084	1430669.807	2121470.518	5992036.458	182.66	183.03	1279SBJ2-1 PINK
4952	481054.741	1430705.140	2121464.175	5992071.791	180.87	181.24	1279SBJ2-2
4957	481042.373	1430752.750	2121451.807	5992119.401	176.26	176.63	1279SBJ3-1 PINK
4974	481035.052	1430780.926	2121444.485	5992147.577	172.57	172.94	1279SBJ3-2 PINK
4976	481033.208	1430801.229	2121442.641	5992167.880	168.36	168.73	1279SBJ4-1
4991	481030.540	1430938.208	2121439.974	5992304.859	147.94	148.31	1279TP305
4992	481022.942	1430937.966	2121432.375	5992304.617	147.15	147.52	1279TP305
5004	481027.070	1430852.150	2121436.504	5992218.801	154.80	155.17	1279SBJ4-2 PINK

PLS Surveys Inc.

POINT	NORTHING	EASTING	NORTHING	NORTHING	ELEVATION	ELEVATION	DESCRIPTION
NUMBER	NAD27	NAD27	NAD83	NAD83	PLLW	NAVD88	
2796	481118.038	1431026.676	2121527.472	5992393.327	138.15	138.52	D-ORANGE
2799	481125.724	1431048.951	2121535.158	5992415.602	132.16	132.53	D-ORANGE
2800	481130.700	1431043.314	2121540.134	5992409.965	134.71	135.08	D-ORANGE
2847	481101.555	1431032.515	2121510.989	5992399.166	134.92	135.29	D-ORANGE
2940	481084.656	1431015.435	2121494.090	5992382.086	137.85	138.22	D-ORANGE
2991	481064.761	1430990.267	2121474.195	5992356.918	140.29	140.66	D-ORANGE
3231	481143.582	1431051.940	2121553.016	5992418.591	132.38	132.75	D-ORANGE
3279	481195.558	1431044.630	2121604.992	5992411.281	131.16	131.53	D-ORANGE
3354	481226.661	1431013.893	2121636.095	5992380.544	137.16	137.53	D-ORANGE
3361	481234.444	1431005.320	2121643.878	5992371.971	136.18	136.55	D-ORANGE
3369	481243.702	1431024.039	2121653.136	5992390.690	133.81	134.18	D-ORANGE
3424	481218.674	1431053.201	2121628.107	5992419.852	125.14	125.51	D-ORANGE
3479	481257.176	1431063.036	2121666.610	5992429.687	119.53	119.90	D-ORANGE
3481	481247.956	1431068.977	2121657.390	5992435.628	118.39	118.76	D-ORANGE
3489	481233.408	1431057.762	2121642.841	5992424.413	122.64	123.01	D-ORANGE
3564	481267.770	1431002.036	2121677.204	5992368.687	138.06	138.43	D-ORANGE
3571	481284.398	1431006.239	2121693.832	5992372.890	134.61	134.98	D-ORANGE
3578	481299.171	1431002.595	2121708.605	5992369.246	130.22	130.59	D-ORANGE
3732	481333.575	1430905.319	2121743.009	5992271.970	139.28	139.65	D-ORANGE
3860	481328.732	1430941.158	2121738.166	5992307.809	135.17	135.54	D-ORANGE
3939	481349.680	1430893.007	2121759.114	5992259.658	139.46	139.83	D-ORANGE
2797	481111.796	1431044.962	2121521.230	5992411.613	132.52	132.89	N-PINK
2801	481126.055	1431065.864	2121535.489	5992432.515	127.36	127.73	N-PINK
2802	481116.839	1431069.607	2121526.273	5992436.258	125.78	126.15	N-PINK
2851	481097.680	1431048.788	2121507.114	5992415.439	130.69	131.06	N-PINK
2873	481084.131	1431059.812	2121493.565	5992426.463	126.00	126.37	N-PINK
2919	481056.760	1431048.684	2121466.194	5992415.335	124.40	124.77	N-PINK
2929	481070.720	1431023.680	2121480.154	5992390.331	132.21	132.58	N-PINK
3032	481061.436	1431013.480	2121470.870	5992380.131	133.89	134.26	N-PINK
3052	481032.437	1431031.680	2121441.871	5992398.331	124.24	124.61	N-PINK
3076	481013.828	1431028.164	2121423.262	5992394.815	122.25	122.62	N-PINK
3251	481161.506	1431061.562	2121570.940	5992428.213	129.22	129.59	N-PINK
3254	481148.859	1431067.397	2121558.293	5992434.048	127.35	127.72	N-PINK
3283	481197.057	1431063.156	2121606.491	5992429.807	127.98	128.35	N-PINK
3375	481253.292	1431024.996	2121662.726	5992391.647	131.36	131.73	N-PINK
3383	481269.900	1431013.750	2121679.334	5992380.401	134.05	134.42	N-PINK
3387	481269.481	1431023.947	2121678.915	5992390.598	128.43	128.80	N-PINK
3453	481248.923	1431037.350	2121658.357	5992404.001	130.40	130.77	N-PINK
3457	481261.611	1431039.709	2121671.045	5992406.360	129.60	129.97	N-PINK
3518	481223.651	1431067.668	2121633.084	5992434.319	125.89	126.26	N-PINK
3539	481288.538	1431021.065	2121697.972	5992387.716	131.94	132.31	N-PINK
3574	481288.827	1431008.796	2121698.261	5992375.447	133.47	133.84	N-PINK
3606	481319.618	1431009.990	2121729.051	5992376.641	127.55	127.92	N-PINK

11-05-14

3798	481328.407	1430964.042	2121737.841	5992330.693	131.43	131.80	N-PINK
3799	481322.842	1430960.198	2121732.276	5992326.849	131.86	132.23	N-PINK
3817	481328.073	1430973.093	2121737.507	5992339.744	127.87	128.24	N-PINK
3852	481330.970	1430956.452	2121740.404	5992323.103	132.51	132.88	N-PINK
3854	481337.843	1430948.887	2121747.277	5992315.538	133.42	133.79	N-PINK
3863	481361.693	1430921.853	2121771.127	5992288.504	133.49	133.86	N-PINK
3866	481349.387	1430928.266	2121758.821	5992294.917	132.44	132.81	N-PINK
3928	481339.617	1430906.021	2121749.051	5992272.672	137.37	137.74	N-PINK

Appendix C

Trench Logs and Select Photographs

View of trench.

View of trench looking south.

LEGEND:

A: Topsoil with vegetation and roots.

B: Sand, native soil, light yellowish brown, hard and well compacted. Mostly fine to medium sand grains with some fines. Excavator notes difficulty of digging and hardness of soil. No observed debris or ash, dry. Collected sample 1279TP301-S[0.5].

El. = Elevation

Not to Scale

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Erler & Kalinowski, Inc.

Trench Log 1279TP301

View of trench.

Excavating trench on slope.

LEGEND:

A: Topsoil with vegetation and roots.

B: Sand, native soil, yellowish brown, hard and well compacted. Fine to medium sand grains, well consolidated. Excavator notes difficulty of digging and hardness of soil. No observed debris or ash, dry. Collected sample 1279TP302-S[0.5].

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Not to Scale

Erler & Kalinowski, Inc.

1279TPI1-1 1279TPI2-1 1279TPI2-2

Trench Log 1279TP302

Spoils pile. Note yellow flag marking gas line that limited trench length.

View of trench in grass area.

A: Topsoil with vegetation and roots.

B: Sand with fines, native soil, light yellowish brown, moderately consolidated. Fine to medium sand with some clay, no odor. Excavator notes easier digging due to soil moisture. No observed debris or ash. Collected sample 1279TP303-S[0.5].

El. = Elevation

Not to Scale

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Erler & Kalinowski, Inc.

1279TPI1-1 1279TPI2-1 1279TPI2-2

Trench Log 1279TP303

View of trench and spoil pile.

A: Topsoil with vegetation and roots.

B: Sand with fines, medium brown, weakly consolidated, dry. Mostly fine to medium sand with some clay, no odor. Some cobbles of serpentinite rock. No observed debris or ash.

C: Debris layer; observed debris includes glass, melted glass, ceramic and porcelain fragments, one large piece of concrete (~1 foot long); approximately 10 to 15% debris. Clayey sand fill, weakly consolidated, slightly powdery, dry. Collected sample 1279TP304-D[3.5].

D: Sand, native soil, light yellowish brown, moderate oxidation in root openings. Dry to moist. No odor or debris observed.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Not to Scale

Erler & Kalinowski, Inc.

Trench Log 1279TP304

View of trench and spoils pile.

Spoils pile. Note glass and porcelain fragments in near corner on plywood.

LEGEND:

A: Topsoil with vegetation and roots.

B: Sand with fines, yellowish brown, poorly consolidated, moderately sorted, with some fine gravels. No odor, dry. No observed debris or ash.

C: Sand with clay, light yellowish brown, fairly well consolidated. Some fine to medium gravel.

D: Debris layer; observed debris includes fragments of melted glass, sporadic porcelain fragments, with cobbles and serpentine rock; approximately 25% debris. Soil color is brown to medium brown, mostly fine grained sand with clay, dry, no odor. Collected sample 1279TP305-D[3.5]. Total depth was 4 feet; ground was too hard to continue trenching.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Not to Scale

Erler & Kalinowski, Inc.

1279TPI1-1 1279TPI2-1 1279TPI2-2

Trench Log 1279TP305

Initial digging of trench.

Spoils pile being generated during trenching.

LEGEND:

A: Topsoil with vegetation, duff, and roots.

B: Sand, native soil, light yellowish brown, moderately consolidated. No observed debris or ash. Collected sample 1279TPA1-1[0.5]S.

C: Degraded bedrock, undisturbed weathered serpentinite rock, hard.

El. = Elevation

No photo is available of trench sidewalls.

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Not to Scale

Erler & Kalinowski, Inc.

1279TPI1-1 1279TPI2-1 1279TPI2-2

Trench Log 1279TPA1-1

View of trench. Note ash in debris layer at surface.

Spoils pile. Note ash from top layer and native material from bottom of trench.

A: Debris layer exposed to surface; observed debris includes glass and other debris, ashy in color, poorly consolidated. Collected sample 1279TPA1-2[2.0]D

B: Native, undisturbed soil, hard and compact, well consolidated. No observed debris or ash.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Erler & Kalinowski, Inc.

Trench Log 1279TPA1-2

View of trench. Note that trench name is mislabeled in photo.

A: Topsoil with vegetation and duff.

B: Clayey sand, likely native soil, medium brown with yellowish hue. Excavator notes ease of digging, possibly due to disturbed native, possibly fill. Only 1 piece of observed debris.

C: Native, undisturbed Colma soil, light yellow brown, hard and compact, well consolidated. No observed debris or ash.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Figure C-8

View of trench and spoils pile.

Area view of trench.

LEGEND:

A: Topsoil with vegetation and duff.

B: Debris layer; ash present, observed debris includes fragments of glass and porcelain.

C: Native, undisturbed soil, light yellowish brown, hard and compact, well consolidated. No observed debris or ash.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Not to Scale

Erler & Kalinowski, Inc.

Trench Log 1279TPB1-1

View of trench and spoils pile. Note metal and brick debris in spoils.

Area view of trench.

A: Topsoil with vegetation and duff.

B: Debris layer; ash present, observed debris includes fragments of glass, metal, and brick.

C: Native, undisturbed soil, light yellowish brown, hard and compact, very well consolidated. No observed debris or ash.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Erler & Kalinowski, Inc.

Trench Log 1279TPC1-1

View of trench. Note presence of ash.

A: Topsoil with vegetation, duff, and roots.

B: Debris layer; ash present, approximately 20%-30% ash and debris content, observed debris includes fragments of glass, melted glass, porcelain, scrap metal, brick, and possibly a discarded light bulb. Soil is grayish brown in color. Debris appears to be thinning to the east.

C: Native, apparently undisturbed Colma soil, light greenish in color indicating proximity to degraded serpentenite bedrock. No observed debris or ash.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Erler & Kalinowski, Inc.

Trench Log 1279TPC1-2

View of trench and portion of spoils pile. Note ash in trench sidewall.

- A: Topsoil with vegetation and duff.
- B: Debris layer; ash present, observed debris includes fragments of glass.
- C: Native, undisturbed soil, light yellowish brown, hard and compact, well consolidated. No observed debris or ash.
- El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Erler & Kalinowski, Inc.

Trench Log 1279TPD1-1

View of trench.

Area view along trench and portion of spoils pile. Note ash at far end of trench and in spoils pile (uphill) decreases to the northeast (downhill). Note large cypress tree in background.

LEGEND:

A: Topsoil with vegetation and duff.

B: Debris layer; noticeable ash content, approximately 15 to 25% ash and debris content, observed debris includes fragments of glass and porcelain. Poorly consolidated.

C: Native, degraded bedrock, undisturbed. No observed debris or ash.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Not to Scale

Erler & Kalinowski, Inc.

1279TPI1-1 1279TPI2-1 1279TPI2-2

Trench Log 1279TPE1-1

View of trench. Note debris layer pinching out.

Area view along trench and portion of spoils pile.

- A: Topsoil with vegetation and duff.
- B: Debris layer; small amount of ash, estimated ~1 to 5% debris content.
- C: Native, degraded bedrock, undisturbed. Serpentine rock, hard and fissle, greenish color.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Erler & Kalinowski, Inc.

Trench Log 1279TPE1-2

View of trench. Note ash at surface and brick below debris layer.

Area view of spoils pile.

A: Topsoil with vegetation and duff; intermittently present.

B: Debris layer; observed debris and ash, estimated ~15 to 25% debris and ash content, observed debris includes fragments of glass and porcelain. Collected sample 1279TPF0-1[1.5]D.

C: Disturbed native, light yellowish brown, estimated ~1% debris, observed debris includes bricks.

D: Native, degraded bedrock, undisturbed. Serpentine rock, highly fractured, greenish color.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Not to Scale

Erler & Kalinowski, Inc.

1279TPI1-1 1279TPI2-1 1279TPI2-2

Trench Log 1279TPF0-1

View of trench and portion of spoils pile. Note ash on surface.

A: Topsoil with vegetation and duff.

B: Debris layer; observed debris and ash, estimated ~10 to 15% debris and ash content, observed debris includes porcelain fragments and brick. Collected samples 1279TPF2-1[0.0-1.0]D and 1279TPF2-1[DUP].

C: Native, undisturbed soil, Colma formation, relatively hard and compact, well consolidated. No observed debris or ash.

D: Native, degraded bedrock, undisturbed. Serpentine rock, highly fractured, greenish color. Relatively easy to break with excavator.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Trench Log 1279TPF2-1

View of trench and spoils pile.

View into trench. Note degraded bedrock at bottom of trench.

A: Topsoil with vegetation and duff.

B: Native sand, possibly disturbed, observed debris at upper boundary of unit, estimated ~1 to 5% debris content, observed debris includes glass and porcelain fragments. Excavator noted ease of excavation.

C: Native, degraded bedrock, undisturbed. Serpentine rock, relatively hard to break with excavator.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Not to Scale

Erler & Kalinowski, Inc.

1279TPI1-1 1279TPI2-1 1279TPI2-2

Trench Log 1279TPG1-1

View of trench and spoils pile.

A: Topsoil with vegetation and duff.

B: Debris layer; observed debris and fine ash, estimated ~15 to 20% debris and ash content, observed debris includes glass and porcelain fragments, and a piece of metal. Collected sample 1279TPG1-2[0.5-1.5]D.

C: Native, undisturbed soil, Colma formation, light yellowish brown, hard and compact. No observed debris or ash.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Area view of trench and spoils pile.

Not to Scale

Erler & Kalinowski, Inc.

1279TPI1-1 1279TPI2-1 1279TPI2-2

Trench Log 1279TPG1-2

View of trench.

A: Topsoil with vegetation and duff. One piece of porcelain.

B: Native, undisturbed soil, Colma formation, hard and compact, well consolidated. Not fill, no observed debris or ash. Collected sample 1279TPI1-1[0.5]S.

C: Native, degraded bedrock, undisturbed. Serpentine rock, weak, highly fractured rock.

El. = Elevation

Map Inset Not to Scale

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

1279TPI1-1 1279TPI2-1 1279TPI2-2

Erler & Kalinowski, Inc.

Trench Log 1279TPI1-1

View of trench.

Spoils pile. Note cobbles and asphalt in spoils.

LEGEND:

A: Topsoil with vegetation and duff.

B: Sand, loose, dry, medium grayish-brown, medium grain, well sorted. Collected sample 1279TPI2-1[0.5]S.

C: Gravel fill with fines, angular to subrounded gravel clasts, fine to medium size, hard (possibly cemented), light gray-brown color. Some small cobble-sized clasts of asphalt also present. Collected sample 1279TPI2-1[1.5]D.

D: Native soil, hard and compact, well consolidated, medium brown color. Some small cobbles of highly fractured serpentine rock present.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Not to Scale

Erler & Kalinowski, Inc.

Trench Log 1279TPI2-1

View of trench and spoils pile.

Area view of trench and spoils pile.

A: Sand, loose, dry, light grayish-brown, poorly consolidated, mostly fine to medium grain, well sorted. No ash or debris observed. Collected sample 1279TPI2-2[0.5]S.

B: Degraded bedrock, undisturbed. Greenish-gray serpentine rock, highly fractured, relatively hard to break with excavator. No debris or ash observed.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Erler & Kalinowski, Inc.

Trench Log 1279TPI2-2

View of trench and spoils pile.

A: Topsoil with vegetation, duff, and roots. Surficial glass observed <1%.

B: Native, undisturbed soil, Colma formation, light yellowish brown, hard and compact, very well consolidated. Excavator notes difficulty digging; occasional cobbles. No observed debris or ash. Collected sample 1279TPK-1[0.5]S.

El. = Elevation

NOTE:

Lendrum Court trenches and features surveyed by PLS Surveys, Inc., in October 2014. California State Plane Coordinate System for vertical locations NAVD88 (North American Vertical Datum of 1988).

Area view of trench and spoils pile.

Erler & Kalinowski, Inc.

Trench Log 1279TPK-1

Appendix D

Analytical Laboratory Reports (on CD-ROM)

and setting to the

H

Laboratory Job Number 261194 ANALYTICAL REPORT

Erler & Kalinowski, Inc.	Project	:	B00025.07 T4D
1870 Ogden Drive	Location	:	Presidio - Lendrum Court
Burlingame, CA 94010-5306	Level	:	II

<u>Sample ID</u>	<u>Lab ID</u>	Sample ID	<u>Lab ID</u>
1279TP305-D[3.5]	261194-001	1279SBE1-2[0.5]S	261194-015
1279TP302-S[0.5]	261194-002	1279SBD2-1[0.5]S	261194-016
1279TP301-S[0.5]	261194-003	1279TPF2-1[0.0-1.0]D	261194-017
1279TP303-S[0.5]	261194-004	1279TPF2-1[DUP]	261194-018
1279TP304-D[3.5]	261194-005	1279TPG1-2[0.5-1.5]D	261194-019
1279SBA2-1[0.5]S	261194-006	1279TPF0-1[1.5]D	261194-020
1279TPA1-1[0.5]S	261194-007	1279SBH1-1[0.5]S	261194-021
1279TPA1-2[2.0]D	261194-008	1279SBH1-2[0.5]S	261194-022
1279SBB1-1[0.5]S	261194-009	1279SBH1-3[0.5]S	261194-023
1279SBC1-1[0.5]S	261194-010	1279SBG2-1[0.5]S	261194-024
1279TPC1-1[1.5]D	261194-011	1279SBH2-1[0.5]S	261194-025
1279TPD1-1[3.0]D	261194-012	1279SBH1-4[0.5]S	261194-026
1279SBD1-1[0.5]S	261194-013	1279SBH0-2[0.5]S	261194-027
1279SBE1-1[0.5]S	261194-014		

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Trog

Tracy Babjar Project Manager tracy.babjar@ctberk.com (510) 204-2226

Date: <u>10/01/2014</u>

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 261194 Erler & Kalinowski, Inc. B00025.07 T4D Presidio - Lendrum Court 09/24/14 09/24/14

This data package contains sample and QC results for twenty four soil samples, requested for the above referenced project on 09/24/14. The samples were received cold and intact. All samples underwent the (ISM) Incremental Sampling Method for all analysis.

Semivolatile Organics by GC/MS SIM (EPA 8270C-SIM):

Many samples were diluted due to the dark and viscous nature of the sample extracts. No other analytical problems were encountered.

Metals (EPA 6020 and EPA 7471A):

Low recoveries were observed for antimony in the MS/MSD of 1279TP305-D[3.5] (lab # 261194-001); the BS/BSD were within limits, and the associated RPD was within limits. No other analytical problems were encountered.

Moisture (ASTM D2216/CLP):

No analytical problems were encountered.

31.1

Erler & Kalinowski, Inc.

CHAIN OF CUSTODY RECORD

26/194

	CONSULTING ENGINEERS AND SCIEN	TISTS			1870 Ogo	len Drive, Burlingame, CA	94010				Phone Fax: (e: (650) 29	2-9100			
	Project Name: Presidio - Lendrum Court		Project I	No.: 07 T4D						ANA	LYSE	S REQUE	STED		EKI	COC No. Jai4(14)
	Project Location: Presidio of San Francisco, CA		Laborate	boratory: Curtis & Tompkins 2323 5th Street Berkeley, CA 94710 (510) 486-0900			10d 8270C w/	EPA Method	y EPA	20				GNUC	101 FL-1	
	Report Results to: John DeWitt, Labs EKI, Daniel Correia		Sampled By: Daniel Correia				PA Metř	tals by E	urans by 13B	ont				URNARC		
	Field Sample Identification	Lab Sample No.	Date	Time	Type of Sample	No. of Containers	_	PAHs by E SIM	Title 22 Me 6020	Dioxins & F Method 161	Lead		-		EXPECTED 1	, Remarks
	1279 - JEWSATPELL				soil	1 gallon size zip-lock bag	,								std.	
1	127979305-0[3.5]		9/22/14	1152	8011	1 gatton zyp bele ling)	X	X	0					str.	Return JAM to Eft
3	1779 [P302 - S[0.5]			13/0					{	13	X					
4	1279 FP303-5[0.5]			1445							\mathbf{x}					
5	1279 TP 304 - D[3.5]			1513	-			Х	Х	0					-	Retren Jon to Ekit
	ļ															
	Email laboratory confirmation, EDFs, and pd	fs of lab shee	ets to jdewi	itt@ekicor	sult.com ar	nd cc LABS@ekiconşuit.cc	om, and	l dcorr	{Jn r reia@ek	<i>No (ST</i> iconsul	h re d t.com d	n all corre	554 spondenc	e. <u>,</u>		
	Relinquished by (Signature)	mela)	EK1	<u>f#~~1</u>	Date:	Time:	supl	<u>recei</u> Recei	ver By.	for p	100mi	Analy sig	by a	othis.		Time: /KOY
	Relinguished by: (Signature)				Date:	Time: 730		Recei	Th	λ	/	h	N			Time: 1730
					Daye:			Recei	By:			/		_ ر		Time:
C									inta	to	n 1	a co	id R	2		
4	2								/							

Erler & Kalinowski, Inc.

CHAIN OF CUSTODY RECORD

26/194

	CONSULTING ENGINEERS AND SCIEN	TISTS			1870 Ogd	en Drive, Burlingame, CA 940	10			Phone	: (650) 292	-9100		<u> </u>	
	Project Name:		Project	No <i>.:</i>		······			ΔΝΔ		DEOLIES				
	Presidio - Lendrum Court		B00025.	07 T4D	0					T QT					COC No. 2019(3925-)
1	Presidio of San Francisco, CA		Laborati	Jiy.	2323 5th S Berkeley, C (510) 486-(ompkins treet XA 94710 X900	od 8270C v	PA Methoo	/ EPA	5A62				GNDO	
ľ	Report Results to:		Sampled	i By:			Meth	s by E	ans by	1				NARC	
	John DeWitt, Labs EKI, Daniel Correia	T			Daniel T	Correia	EPA	Metals	& Fura 1613E	3 V				D TUF	
	Identification	Lab Sample No.	Date	Time	Type of Sample	No. of Containers	AHs by	litle 22 3020	Dioxins a	Lea				XPECTE	Domeska
6	12795BA2-1[05]5		9/23/14	ଷଃଏଡ	soil	1 nallon size zin-lock hag		NACO"		X				<u>ш</u>	Remarks
7	1279 TPAI-110.575			0900			_	A A A	r r	X				std.	8.
ÿ	1279 JPAI-2[2.0]D			0920			$-\mathbf{x}$	X	X					+	Pate + 4 545
9	12795BB1-110.575			1000				- total	JC JC	×				+	Kerven Javo corr
6	12795BC1-1[0.5]5	· ·		1045		· ·		1 xxxx	R	X			+	+	
N	1279TPC1-1(1.5]0			1100			X	Y	5		UNK	3 810		++	
カ	1279 TP 01-1 (3.070			1150				Ŷ	X	9.1	1041		<u>n -</u>	+	10m JANO EXT
13	17795301-110.575			1200				A	Û	X	0000		++-	+	Return Jack EKi
ĵu	12795BE1-110.575			1415				1 inc					+	+	
15	12795BF1-210575			1510				100	al c	\Rightarrow				+	
				10.00				4.40	OIL	~				╧┥	
															· · · · · · · · · · · · · · · · · · ·
	Special Instructions:		I			· · · · · · · · · · · · · · · · · · ·				. 0.					
	Email laboratory confirmation EDEs and po	ifs of lab shoc	ate to identi	i#@akiaan			Run	moit	re	Alke	1514.				
	USE Presidio QAPP • Prese IS	M for al	<u>S'Amp</u>	ekicon	suit.com an	ia cc LABS@ekiconsult.com, a	and door	reia@eki	consul S/An	t.com oi ples	n all corresp to EKE	ondence.	yes be	c d	there.
	Wanted by bighature	ment E	KI	V	Date: 9/24/14	Time: 1603	Rece	ived By:		2	-	1	<u> </u>	\neg	Time: 1603
	Relinquigned by: (Signature)			a	Date:	Time:	Rece	ived By			4	110	/		Time:
	Relinquishea by: (Signature)				Date:	Time:	Rege	ived By:		-7	12	ing			Time:
44	./	·								L		0			
ġ							×	.t		i De i	old Re				
41							W.	100 0	ท	/~~ `					

stat on is all the

Erler & Kalinowski, Inc.

4

CHAIN OF CUSTODY RECORD

201194

CONSULTING ENGINEERS AND SCIENTISTS 1870 Ogden Drive, Burlingame, CA 94010 Phone: (650) 292-9100 Fax: (650) 552-9012 Project Name: Proiect No.: EKI COC No. 20140924-1 ANALYSES REQUESTED Presidio - Lendrum Court B00025.07 T4D Project Location: ≶ Laboratory: **Curtis & Tompkins** Hite 22 Motals by EPA Method 6020 355 PAHs by EPA Method 8270C • SIM Netral 2323 5th Street Presidio of San Francisco, CA Dioxins & Furans by EPA Method 1613B Berkeley, CA 94710 EXPECTED TURNAROUND (510) 486-0900 Э Report Results to: Sampled By: 2 602 John DeWitt, Labs EKI, Daniel Correia Daniel Correia 5 T.H. Field Sample Lab Type of No of 19A Date Time Identification Sample No. Sample Containers Remarks 9/21/14 0900 12795802-110.525 × 16 soil 1 gallon size zip-lock bag std. 17 F2-110.0-1.07 Return JAN to EXT 0945 18 X TPF2-1504P1 01945 19 TPC1-2[0.5-1.5] D χ 1045 \bigcirc 20 FØ -111.570 1325 X OLetven Into Ext Ч 12795BH1-1[0.5]5 1355 \times 22 12795BH1-250.575 1420 Х 23 127-95BH1-3[0.5]5 1940 24 12725RG2-1[0.5]5 1525 25 12795842-16.515 1540 24 Hold ism a lso 12795BH1-4[0.5]5 X 545 ≻ JTR 127958120-210.575 27 ∞ 1600 Run moisture After ISin Special Instructions: Relinquished by: (Signature) Fime Date (frme Date: Time: Received By 9/24/141 (Amer Coner) IKI 1600 1602 1602 Religiouished by . (Signature) Time: (730 Received Time: Relinquisted by: (Signature) 31 Date: Time: Received Time: СЛ intait on 112 walks đ

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login # 201194 Date Received 972414 Nur Client Project B000 2	mber of coolers Z 5.67 TYD
Date Opened 924 By (print) 1 (sign) 0 (79
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
 2A. Were custody seals present? □ YES (circle) on cooler How many Name I 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of 6. Indicate the packing in cooler: (if other, describe) 	on samples □-NQ Date YES NO N/A, YES NO YES NO form)YES NO
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ Cloth material ☐ Cardboard ☐ Styrofoam 7. Temperature documentation: * Notify PM if temperature exceeded	☐ None ☐ Paper towels eds 6°C
Type of ice used: 🖉 Wet 🗌 Blue/Gel 🗌 None Te	emp(°C)
Samples Received on ice & cold without a temperature blan	k; temp. taken with IR gun-
\Box Samples received on ice directly from the field. Cooling pro	cess had begun
 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 	YES NO
9. Did all bottles arrive unbroken/unopened?	-YES NO
10. Are there any missing / extra samples?	YES - NO
11. Are samples in the appropriate containers for indicated tests?	
12. Are sample labels present, in good condition and complete?	¥ ES NO
13. Do the sample labels agree with custody papers?	
14. was sufficient amount of sample sent for tests requested?	<u> </u>
16. Did you check preservatives for all bottles for each comple?	$\underline{\qquad IES NO N/A}$
17. Did you document your preservative check?	$\frac{125 \text{ NO } \mathbf{NA}}{\mathbf{VES } \mathbf{NO } \mathbf{NA}}$
18. Did you change the hold time in LIMS for unpreserved VOAs?	$\frac{125}{\text{VFS}} = \frac{125}{\text{NO}} \frac{1}{\text{MA}}$
19. Did you change the hold time in LIMS for preserved terracores?	$\frac{1}{2} \text{YES NO } \frac{1}{2}$
20. Are bubbles > 6mm absent in VOA samples?	$\underline{\qquad} YES NO N/A$
21. Was the client contacted concerning this sample delivery?	YES NO-
If YES, Who was called?By	Date:
COMMENTS 13) - 018 listed on COL as 1274 T Sample laber lists 092414	PFZ-IEDUPJ,

Rev 10, 9/12

Detections Summary for 261194

Results for any subcontracted analyses are not included in this summary.

```
Client : Erler & Kalinowski, Inc.
Project : B00025.07 T4D
Location : Presidio - Lendrum Court
```

Client Sample ID : 1279TP305-D[3.5] Laboratory Sample ID : 261194-001

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Phenanthrene	32		21	4.3	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Fluoranthene	76		21	4.3	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Pyrene	72		21	4.3	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)anthracene	45		21	4.3	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Chrysene	60		21	4.3	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(b)fluoranthene	76		21	4.3	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)pyrene	49		21	4.3	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Indeno(1,2,3-cd)pyrene	23		21	4.3	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(g,h,i)perylene	28		21	4.3	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Antimony	1.8		0.16	0.052	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Arsenic	7.2		0.26	0.088	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Barium	560		21	7.2	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Beryllium	0.57		0.13	0.038	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cadmium	1.4		0.18	0.058	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Chromium	190		0.24	0.079	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cobalt	25		0.21	0.063	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Copper	130		0.30	0.099	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Lead	950		13	3.9	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Mercury	0.53		0.018	0.00098	mg/Kg	Dry	1.000	EPA 7471A	METHOD
Molybdenum	1.1		0.43	0.14	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Nickel	320		42	14	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Selenium	0.26		0.26	0.086	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Silver	0.67		0.13	0.027	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Thallium	0.16		0.067	0.021	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Vanadium	63		0.47	0.16	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Zinc	1,100		67	15	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	7		1		%	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279TP302-S[0.5] Laboratory Sample ID : 261194-002

Analyte	Result Fl	lags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	110		0.13	0.038	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	6		1		olo	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279TP301-S[0.5] Laboratory Sample ID : 261194-003

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Ν	Method	Prep Method	ł
Lead	44		0.13	0.036	mg/Kg	Dry	25.00	EPA 6	5020	EPA 3050B	
Moisture, Percent	5		1		010	As Recd	1.000	ASTM	D2216/CLP	METHOD	
Page 1 of 8										34	. 0

Page 1 of 8

Client Sample ID : 1279TP303-S[0.5] Laboratory Sample ID : 261194-004

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	38		0.12	0.035	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	4		1		00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279TP304-D[3.5] Laboratory Sample ID : 261194-005

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Fluoranthene	35		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Pyrene	31		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Chrysene	24		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(b)fluoranthene	30		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Antimony	0.40		0.15	0.051	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Arsenic	3.8		0.26	0.086	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Barium	280		21	7.0	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Beryllium	0.51		0.13	0.037	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cadmium	0.66		0.17	0.057	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Chromium	110		0.23	0.077	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cobalt	17		0.21	0.062	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Copper	83		0.29	0.096	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Lead	490		13	3.8	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Mercury	0.27		0.019	0.0011	mg/Kg	Dry	1.000	EPA 7471A	METHOD
Molybdenum	0.66		0.42	0.14	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Nickel	120		0.41	0.14	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Selenium	0.31		0.25	0.084	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Silver	0.21		0.13	0.026	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Thallium	0.10		0.065	0.021	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Vanadium	55		0.46	0.15	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Zinc	470		65	15	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	6		1		%	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBA2-1[0.5]S

Laboratory Sample ID :

261194-006

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	43		0.13	0.038	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	7		1		010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279TPA1-1[0.5]S Laboratory Sample ID :

261194-007

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	62		0.13	0.038	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	7		1		00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279TPA1-2[2.0]D Laboratory Sample ID : 261194-008

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Phenanthrene	110		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Fluoranthene	150		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Pyrene	130		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)anthracene	66		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Chrysene	85		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(b)fluoranthene	100		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(k)fluoranthene	30		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)pyrene	68		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Indeno(1,2,3-cd)pyrene	31		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(g,h,i)perylene	36		21	4.2	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Antimony	2.7		0.15	0.050	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Arsenic	6.6		0.25	0.084	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Barium	630		21	6.9	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Beryllium	0.79		0.13	0.036	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cadmium	1.5		0.17	0.056	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Chromium	55		0.23	0.075	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cobalt	10		0.21	0.061	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Copper	140		0.28	0.095	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Lead	1,800		13	3.7	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Mercury	1.5		0.091	0.0051	mg/Kg	Dry	5.000	EPA 7471A	METHOD
Molybdenum	1.1		0.42	0.14	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Nickel	58		0.40	0.13	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Selenium	0.32		0.25	0.083	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Silver	0.92		0.13	0.026	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Thallium	0.14		0.064	0.020	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Vanadium	71		0.45	0.15	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Zinc	890		64	14	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	5		1		\$0	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBB1-1[0.5]S Laboratory Sample ID : 261194-009

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	290		13	3.7	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	4		1		00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBC1-1[0.5]S Laboratory Sample ID : 261194-010

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	490		12	3.5	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	7		1		010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBD1-1[0.5]S Laboratory Sample ID : 261194-013

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF		Method	Prep Method
Lead	270		0.14	0.039	mg/Kg	Dry	25.00	EPA	6020	EPA 3050B
Moisture, Percent	9		1		00	As Recd	1.000	ASTM	1 D2216/CLP	METHOD
Page 3 of 8										34.0

Client Sample ID : 1279SBE1-1[0.5]S Laboratory Sample ID : 261194-014

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	220		0.14	0.039	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	13		1		00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBE1-2[0.5]S Laboratory Sample ID :

261194-015

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF		Method	Prep Method
Lead	50		0.13	0.037	mg/Kg	Dry	25.00	EPA	6020	EPA 3050B
Moisture, Percent	5		1		00	As Recd	1.000	ASTM	D2216/CLP	METHOD

Client Sample ID : 1279SBD2-1[0.5]S Laboratory Sample ID :

261194-016

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	71		0.13	0.038	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	7		1		olo	As Recd	1.000	ASTM D2216/CI	LP METHOD

Client Sample ID : 1279TPF2-1[0.0-1.0]D Laboratory Sample ID : 261194-017

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Phenanthrene	33		11	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Fluoranthene	47		11	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Pyrene	50		11	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)anthracene	24		11	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Chrysene	36		11	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(b)fluoranthene	48		11	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(k)fluoranthene	15		11	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)pyrene	31		11	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Indeno(1,2,3-cd)pyrene	14		11	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(g,h,i)perylene	18		11	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Antimony	1.8		0.16	0.052	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Arsenic	6.0		0.26	0.088	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Barium	830		21	7.1	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Beryllium	1.0		0.13	0.038	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cadmium	1.5		0.17	0.058	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Chromium	100		0.24	0.078	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cobalt	18		0.21	0.063	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Copper	160		0.29	0.098	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Lead	1,500		13	3.8	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Mercury	2.1		0.094	0.0053	mg/Kg	Dry	5.000	EPA 7471A	METHOD
Molybdenum	1.1		0.43	0.14	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Nickel	130		0.41	0.14	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Selenium	0.28		0.26	0.086	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Silver	1.5		0.13	0.027	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Thallium	0.18		0.067	0.021	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Vanadium	84		0.47	0.16	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Zinc	740		67	15	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	7		1		\$	As Recd	1.000	ASTM D2216/CLP	METHOD

Page 4 of 8

Client Sample ID : 1279TPF2-1[DUP] Laboratory Sample ID : 261194-018

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Naphthalene	11		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Acenaphthylene	13		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Phenanthrene	75		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Fluoranthene	110		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Pyrene	120		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)anthracene	76		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Chrysene	99		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(b)fluoranthene	120		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(k)fluoranthene	40		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)pyrene	71		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Indeno(1,2,3-cd)pyrene	23		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(g,h,i)perylene	25		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Antimony	3.8		0.15	0.050	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Arsenic	6.5		0.25	0.085	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Barium	810		21	6.9	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Beryllium	1.1		0.13	0.037	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cadmium	1.4		0.17	0.056	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Chromium	96		0.23	0.076	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cobalt	14		0.21	0.061	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Copper	170		0.29	0.095	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Lead	1,700		13	3.7	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Mercury	1.9		0.089	0.0050	mg/Kg	Dry	5.000	EPA 7471A	METHOD
Molybdenum	1.2		0.42	0.14	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Nickel	110		0.40	0.13	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Selenium	0.33		0.25	0.083	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Silver	1.4		0.13	0.026	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Thallium	0.19		0.065	0.020	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Vanadium	86		0.46	0.15	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Zinc	790		65	14	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	5		1		olo	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279TPG1-2[0.5-1.5]D

Laboratory Sample ID : 261194-019

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Phenanthrene	13		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Fluoranthene	23		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Pyrene	24		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)anthracene	15		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Chrysene	20		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(b)fluoranthene	27		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)pyrene	16		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Antimony	1.9		0.15	0.049	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Arsenic	6.6		0.25	0.084	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Barium	520		20	6.8	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Beryllium	0.60		0.13	0.036	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cadmium	0.94		0.17	0.055	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Chromium	260		22	7.5	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Cobalt	29		0.20	0.060	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Copper	230		0.28	0.094	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Lead	1,300		13	3.7	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Mercury	0.57		0.019	0.0011	mg/Kg	Dry	1.000	EPA 7471A	METHOD
Molybdenum	0.86		0.41	0.14	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Nickel	450		40	13	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Silver	0.83		0.13	0.026	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Thallium	0.13		0.064	0.020	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Vanadium	65		0.45	0.15	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Zinc	610		64	14	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	5		1		\$0	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279TPF0-1[1.5]D Laboratory Sample ID : 261194-020

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Naphthalene	22		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Acenaphthylene	17		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Acenaphthene	20		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Fluorene	31		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Phenanthrene	250		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Anthracene	59		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Fluoranthene	300		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Pyrene	290		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)anthracene	150		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Chrysene	170		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(b)fluoranthene	180		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(k)fluoranthene	68		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(a)pyrene	140		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Indeno(1,2,3-cd)pyrene	43		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Dibenz(a,h)anthracene	17		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Benzo(g,h,i)perylene	43		10	2.1	ug/Kg	Dry	2.000	EPA 8270C-SIM	EPA 3550B
Antimony	2.2		0.14	0.048	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Arsenic	6.4		0.25	0.082	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Barium	920		20	6.6	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Beryllium	0.98		0.12	0.035	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cadmium	1.7		0.16	0.054	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Chromium	55		0.22	0.073	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Cobalt	11		0.20	0.059	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Copper	350		27	9.2	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Lead	2,400		12	3.6	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Mercury	1.8		0.089	0.0050	mg/Kg	Dry	5.000	EPA 7471A	METHOD
Molybdenum	1.1		0.40	0.13	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Nickel	58		0.39	0.13	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Selenium	0.26		0.24	0.080	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Silver	1.7		0.12	0.025	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Thallium	0.19		0.062	0.020	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Vanadium	79		0.44	0.15	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Zinc	980		62	14	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	5		1		00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBH1-1[0.5]S Laboratory Sample ID : 261194-021

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	110		0.13	0.036	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	3		1		00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBH1-2[0.5]S Laboratory Sample ID : 261194-022

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	66		0.12	0.035	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	3		1		00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBH1-3[0.5]S Laboratory Sample ID : 261194-023

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Me	lethod	Prep Method
Lead	94		0.20	0.065	mg/Kg	Dry	25.00	EPA 6	020	EPA 3050B
Moisture, Percent	3		1		00	As Recd	1.000	ASTM 1	D2216/CLP	METHOD

Client Sample ID : 1279SBG2-1[0.5]S Laboratory Sample ID : 261194-024

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	110		0.21	0.070	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	7		1		00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBH2-1[0.5]S Laboratory Sample ID :

261194-025

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	7.0		0.20	0.068	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	9		1		olo	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBH0-2[0.5]S Laboratory Sample ID : 261194-027

Analyte	Result	Flags	RL	MDL	Units	Basis	IDF	Method	Prep Method
Lead	160		0.20	0.068	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	3		1		00	As Recd	1.000	ASTM D2216/CLP	METHOD

	Semivolatile Org	anics by GC/MS	SIM
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM
Field ID:	1279TP305-D[3.5]	Batch#:	215869
Lab ID:	261194-001	Sampled:	09/22/14
Matrix:	Soil	Received:	09/24/14
Units:	ug/Kg	Prepared:	09/29/14
Basis:	dry	Analyzed:	09/30/14
Diln Fac:	2.000		

Moisture: 7%

Analyte	Result	RL	
Naphthalene	ND	21	
Acenaphthylene	ND	21	
Acenaphthene	ND	21	
Fluorene	ND	21	
Phenanthrene	32	21	
Anthracene	ND	21	
Fluoranthene	76	21	
Pyrene	72	21	
Benzo(a)anthracene	45	21	
Chrysene	60	21	
Benzo(b)fluoranthene	76	21	
Benzo(k)fluoranthene	ND	21	
Benzo(a)pyrene	49	21	
Indeno(1,2,3-cd)pyrene	23	21	
Dibenz(a,h)anthracene	ND	21	
Benzo(g,h,i)perylene	28	21	

Surrogate	%REC	Limits
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	71	30-115
Terphenyl-d14	69	18-137

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivolatile Org	anics by GC/MS	SIM
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM
Field ID:	1279TP304-D[3.5]	Batch#:	215869
Lab ID:	261194-005	Sampled:	09/22/14
Matrix:	Soil	Received:	09/24/14
Units:	ug/Kg	Prepared:	09/29/14
Basis:	dry	Analyzed:	09/30/14
Diln Fac:	2.000		

Moisture: 6%

Analyte	Result	RL	
Naphthalene	ND	21	
Acenaphthylene	ND	21	
Acenaphthene	ND	21	
Fluorene	ND	21	
Phenanthrene	ND	21	
Anthracene	ND	21	
Fluoranthene	35	21	
Pyrene	31	21	
Benzo(a)anthracene	ND	21	
Chrysene	24	21	
Benzo(b)fluoranthene	30	21	
Benzo(k)fluoranthene	ND	21	
Benzo(a)pyrene	ND	21	
Indeno(1,2,3-cd)pyrene	ND	21	
Dibenz(a,h)anthracene	ND	21	
Benzo(g,h,i)perylene	ND	21	

Surrogate	%REC	Limits
Nitrobenzene-d5	64	23-120
2-Fluorobiphenyl	68	30-115
Terphenyl-d14	68	18-137

ND= Not Detected RL= Reporting Limit Page 1 of 1

Semivolatile Organics by GC/MS SIM						
Lab #:	261194	Location:	Presidio - Lendrum Court			
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B			
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM			
Field ID:	1279TPA1-2[2.0]D	Batch#:	215869			
Lab ID:	261194-008	Sampled:	09/23/14			
Matrix:	Soil	Received:	09/24/14			
Units:	ug/Kg	Prepared:	09/29/14			
Basis:	dry	Analyzed:	09/30/14			
Diln Fac:	2.000					

Moisture: 5%

Analyte	Result	RL	
Naphthalene	ND	21	
Acenaphthylene	ND	21	
Acenaphthene	ND	21	
Fluorene	ND	21	
Phenanthrene	110	21	
Anthracene	ND	21	
Fluoranthene	150	21	
Pyrene	130	21	
Benzo(a)anthracene	66	21	
Chrysene	85	21	
Benzo(b)fluoranthene	100	21	
Benzo(k)fluoranthene	30	21	
Benzo(a)pyrene	68	21	
Indeno(1,2,3-cd)pyrene	31	21	
Dibenz(a,h)anthracene	ND	21	
Benzo(g,h,i)perylene	36	21	

Surrogate	%REC	Limits
Nitrobenzene-d5	55	23-120
2-Fluorobiphenyl	68	30-115
Terphenyl-d14	62	18-137

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivolatile Orga	anics by GC/MS	SIM
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM
Field ID:	1279TPF2-1[0.0-1.0]D	Batch#:	215869
Lab ID:	261194-017	Sampled:	09/24/14
Matrix:	Soil	Received:	09/24/14
Units:	ug/Kg	Prepared:	09/29/14
Basis:	dry	Analyzed:	09/29/14
Diln Fac:	2.000		

Moisture: 7%

Analyte	Result	RL	
Naphthalene	ND	11	
Acenaphthylene	ND	11	
Acenaphthene	ND	11	
Fluorene	ND	11	
Phenanthrene	33	11	
Anthracene	ND	11	
Fluoranthene	47	11	
Pyrene	50	11	
Benzo(a)anthracene	24	11	
Chrysene	36	11	
Benzo(b)fluoranthene	48	11	
Benzo(k)fluoranthene	15	11	
Benzo(a)pyrene	31	11	
Indeno(1,2,3-cd)pyrene	14	11	
Dibenz(a,h)anthracene	ND	11	
Benzo(g,h,i)perylene	18	11	

Surrogate	%REC	Limits	
Nitrobenzene-d5	73	23-120	
2-Fluorobiphenyl	75	30-115	
Terphenyl-d14	73	18-137	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivolatile Org	anics by GC/MS	SIM
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM
Field ID:	1279TPF2-1[DUP]	Batch#:	215869
Lab ID:	261194-018	Sampled:	09/24/14
Matrix:	Soil	Received:	09/24/14
Units:	ug/Kg	Prepared:	09/29/14
Basis:	dry	Analyzed:	09/29/14
Diln Fac:	2.000		

Moisture: 5%

Analyte	Result	RL	
Naphthalene	11	10	
Acenaphthylene	13	10	
Acenaphthene	ND	10	
Fluorene	ND	10	
Phenanthrene	75	10	
Anthracene	ND	10	
Fluoranthene	110	10	
Pyrene	120	10	
Benzo(a)anthracene	76	10	
Chrysene	99	10	
Benzo(b)fluoranthene	120	10	
Benzo(k)fluoranthene	40	10	
Benzo(a)pyrene	71	10	
Indeno(1,2,3-cd)pyrene	23	10	
Dibenz(a,h)anthracene	ND	10	
Benzo(g,h,i)perylene	25	10	

Surrogate	%REC	Limits
Nitrobenzene-d5	84	23-120
2-Fluorobiphenyl	81	30-115
Terphenyl-d14	79	18-137

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivolatile Orga	anics by GC/MS	SIM
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM
Field ID:	1279TPG1-2[0.5-1.5]D	Batch#:	215869
Lab ID:	261194-019	Sampled:	09/24/14
Matrix:	Soil	Received:	09/24/14
Units:	ug/Kg	Prepared:	09/29/14
Basis:	dry	Analyzed:	09/29/14
Diln Fac:	2.000		

Moisture: 5%

Analyte	Result	RL	
Naphthalene	ND	10	
Acenaphthylene	ND	10	
Acenaphthene	ND	10	
Fluorene	ND	10	
Phenanthrene	13	10	
Anthracene	ND	10	
Fluoranthene	23	10	
Pyrene	24	10	
Benzo(a)anthracene	15	10	
Chrysene	20	10	
Benzo(b)fluoranthene	27	10	
Benzo(k)fluoranthene	ND	10	
Benzo(a)pyrene	16	10	
Indeno(1,2,3-cd)pyrene	ND	10	
Dibenz(a,h)anthracene	ND	10	
Benzo(g,h,i)perylene	ND	10	

Surrogate	%REC	Limits	
Nitrobenzene-d5	72	23-120	
2-Fluorobiphenyl	73	30-115	
Terphenyl-d14	72	18-137	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivolatile Orga	anics by GC/MS	SIM
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM
Field ID:	1279TPF0-1[1.5]D	Batch#:	215869
Lab ID:	261194-020	Sampled:	09/24/14
Matrix:	Soil	Received:	09/24/14
Units:	ug/Kg	Prepared:	09/29/14
Basis:	dry	Analyzed:	09/29/14
Diln Fac:	2.000		

Moisture:

5%

Analyte	Result	RL	
Naphthalene	22	10	
Acenaphthylene	17	10	
Acenaphthene	20	10	
Fluorene	31	10	
Phenanthrene	250	10	
Anthracene	59	10	
Fluoranthene	300	10	
Pyrene	290	10	
Benzo(a)anthracene	150	10	
Chrysene	170	10	
Benzo(b)fluoranthene	180	10	
Benzo(k)fluoranthene	68	10	
Benzo(a)pyrene	140	10	
Indeno(1,2,3-cd)pyrene	43	10	
Dibenz(a,h)anthracene	17	10	
Benzo(g,h,i)perylene	43	10	

Surrogate	%REC	Limits
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	73	30-115
Terphenyl-d14	76	18-137

	Semivolatile Orga	anics by GC/MS	SIM
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM
Туре:	BLANK	Diln Fac:	1.000
Lab ID:	QC759487	Batch#:	215869
Matrix:	Soil	Prepared:	09/29/14
Units:	ug/Kg	Analyzed:	09/29/14

Analyte	Result	RL	
Naphthalene	ND	4.9	
Acenaphthylene	ND	4.9	
Acenaphthene	ND	4.9	
Fluorene	ND	4.9	
Phenanthrene	ND	4.9	
Anthracene	ND	4.9	
Fluoranthene	ND	4.9	
Pyrene	ND	4.9	
Benzo(a)anthracene	ND	4.9	
Chrysene	ND	4.9	
Benzo(b)fluoranthene	ND	4.9	
Benzo(k)fluoranthene	ND	4.9	
Benzo(a)pyrene	ND	4.9	
Indeno(1,2,3-cd)pyrene	ND	4.9	
Dibenz(a,h)anthracene	ND	4.9	
Benzo(g,h,i)perylene	ND	4.9	

Surrogate	%REC	Limits
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	66	30-115
Terphenyl-d14	69	18-137

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Semivolatile Orga	anics by GC/MS	SIM
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM
Туре:	LCS	Diln Fac:	1.000
Lab ID:	QC759488	Batch#:	215869
Matrix:	Soil	Prepared:	09/29/14
Units:	ug/Kg	Analyzed:	09/29/14

Analyte	Spiked	Result	%REC	Limits
Acenaphthene	33.15	21.69	65	31-137
Pyrene	33.15	25.39	77	35-142

Surrogate	%REC	Limits	
Nitrobenzene-d5	76	23-120	
2-Fluorobiphenyl	68	30-115	
Terphenyl-d14	67	18-137	

	Semivolatile Org	anics by GC/MS	SIM
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM
Field ID:	ZZZZZZZZZ	Batch#:	215869
MSS Lab ID:	261246-009	Sampled:	09/26/14
Matrix:	Soil	Received:	09/26/14
Units:	ug/Kg	Prepared:	09/29/14
Basis:	as received	Analyzed:	09/29/14
Diln Fac:	2.000		

Type: MS		Lab ID:	QC759489		
Analyte	MSS Result	Spiked	Result	%REC	Limits
Acenaphthene	<0.9944	32.93	28.08	85	31-137
Pyrene	10.33	32.93	32.29	67	35-142

Surrogate	%REC	Limits
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	77	30-115
Terphenyl-d14	64	18-137

Туре:	MSD			Lab ID:	QCT	59490			
1	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Acenaphthene	e		32.91		27.96	85	31-137	0	19
Pyrene			32.91		30.52	61	35-142	б	36
នា	urrogate	%REC	Limits						
Nitrobenzene	e-d5	78	23-120						
2-Fluorobiph	henyl	76	30-115						
Terphenyl-d	14	67	18-137						

California Title 22 Metals								
Lab #:	261194	Project#:	B00025.07 T4D					
Client:	Erler & Kalinowski, Inc.	Location:	Presidio - Lendrum Court					
Field ID:	1279TP305-D[3.5]	Basis:	dry					
Lab ID:	261194-001	Sampled:	09/22/14					
Matrix:	Soil	Received:	09/24/14					
Units:	mg/Kg							

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	1.8	0.16	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Arsenic	7.2	0.26	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Barium	560	21	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Beryllium	0.57	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cadmium	1.4	0.18	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Chromium	190	0.24	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cobalt	25	0.21	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Copper	130	0.30	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Lead	950	13	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Mercury	0.53	0.018	1.000	215965	10/01/14	10/01/14	METHOD	EPA 7471A
Molybdenum	1.1	0.43	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Nickel	320	42	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Selenium	0.26	0.26	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Silver	0.67	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Thallium	0.16	0.067	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Vanadium	63	0.47	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Zinc	1,100	67	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020

Lead										
Lab #:	261194		Locatio	n:	Presidio	- Lendrum	Court			
Client:	Erler & Kalinowski, Ind	2.	Prep:		EPA 3050B					
Project#:	B00025.07 T4D		Analysi	s:	EPA 6020					
Analyte:	Lead		Basis:		dry					
Matrix:	Soil		Receive	d:	09/24/14					
Units:	mg/Kg									
		D = ===1+		Ma		Databel d	1 11	D	1	
		Result		Moisture	Diln Fac	Batch# S	sampred	Prepared	Analyzed	
1279TP302-S[0.5]	SAMPLE 261194-002	110	0.13	6%	25.00	212862 09	9/22/14	09/29/14	09/29/14	
1279TP301-S[0.5]	SAMPLE 261194-003	44	0.13	5%	25.00	215862 09	9/22/14	09/29/14	09/29/14	
1279TP303-S[0.5]	SAMPLE 261194-004	38	0.12	48	25.00	215862 09	9/22/14	09/29/14	09/29/14	
1279SBA2-1[0.5]S	SAMPLE 261194-006	43	0.13	7%	25.00	215862 09	9/23/14	09/29/14	09/29/14	
1279TPA1-1[0.5]S	SAMPLE 261194-007	62	0.13	7%	25.00	215862 09	9/23/14	09/29/14	09/29/14	
1279SBB1-1[0.5]S	SAMPLE 261194-009	290	13	4%	2,500	215862 09	9/23/14	09/29/14	09/30/14	
1279SBC1-1[0.5]S	SAMPLE 261194-010	490	12	7%	2,500	215862 09	9/23/14	09/29/14	09/30/14	
1279SBD1-1[0.5]S	SAMPLE 261194-013	270	0.14	98	25.00	215862 09	9/23/14	09/29/14	09/29/14	
1279SBE1-1[0.5]S	SAMPLE 261194-014	220	0.14	13%	25.00	215862 09	9/23/14	09/29/14	09/29/14	
1279SBE1-2[0.5]S	SAMPLE 261194-015	50	0.13	5%	25.00	215862 09	9/23/14	09/29/14	09/29/14	
1279SBD2-1[0.5]S	SAMPLE 261194-016	71	0.13	7%	25.00	215862 09	$\frac{3}{24} \frac{14}{14}$	09/29/14	09/29/14	

0.13

0.12

0.20

0.21

0.20

0.20

0.13

0.20

3%

3%

3%

7%

9%

3%

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

215862 09/24/14

215862 09/24/14

215914 09/24/14

215914 09/24/14

215914 09/24/14

215914 09/24/14

215862

215914

09/29/14

09/29/14

09/30/14

09/30/14

09/30/14

09/30/14

09/29/14

09/30/14

09/29/14

09/29/14

09/30/14

09/30/14

09/30/14

09/30/14

09/29/14

09/30/14

ND= Not Detected RL= Reporting Limit Page 1 of 1

1279SBH1-1[0.5]S

1279SBH1-2[0.5]S

1279SBH1-3[0.5]S

1279SBG2-1[0.5]S

1279SBH2-1[0.5]S

1279SBH0-2[0.5]S

SAMPLE 261194-021

SAMPLE 261194-022

SAMPLE 261194-023

SAMPLE 261194-024

SAMPLE 261194-025

SAMPLE 261194-027

QC759666

BLANK QC759464

BLANK

110

66

94

7.0

110

160

ND

ND

California Title 22 Metals									
Lab #:	261194	Project#:	B00025.07 T4D						
Client:	Erler & Kalinowski, Inc.	Location:	Presidio - Lendrum Court						
Field ID:	1279TP304-D[3.5]	Basis:	dry						
Lab ID:	261194-005	Sampled:	09/22/14						
Matrix:	Soil	Received:	09/24/14						
Units:	mg/Kg								

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	0.40	0.15	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Arsenic	3.8	0.26	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Barium	280	21	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Beryllium	0.51	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cadmium	0.66	0.17	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Chromium	110	0.23	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cobalt	17	0.21	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Copper	83	0.29	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Lead	490	13	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Mercury	0.27	0.019	1.000	215965	10/01/14	10/01/14	METHOD	EPA 7471A
Molybdenum	0.66	0.42	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Nickel	120	0.41	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Selenium	0.31	0.25	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Silver	0.21	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Thallium	0.10	0.065	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Vanadium	55	0.46	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Zinc	470	65	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020

California Title 22 Metals								
Lab #:	261194	Project#:	B00025.07 T4D					
Client:	Erler & Kalinowski, Inc.	Location:	Presidio - Lendrum Court					
Field ID:	1279TPA1-2[2.0]D	Basis:	dry					
Lab ID:	261194-008	Sampled:	09/23/14					
Matrix:	Soil	Received:	09/24/14					
Units:	mg/Kg							

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	2.7	0.15	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Arsenic	6.6	0.25	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Barium	630	21	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Beryllium	0.79	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cadmium	1.5	0.17	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Chromium	55	0.23	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cobalt	10	0.21	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Copper	140	0.28	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Lead	1,800	13	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Mercury	1.5	0.091	5.000	215965	10/01/14	10/01/14	METHOD	EPA 7471A
Molybdenum	1.1	0.42	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Nickel	58	0.40	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Selenium	0.32	0.25	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Silver	0.92	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Thallium	0.14	0.064	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Vanadium	71	0.45	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Zinc	890	64	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020

California Title 22 Metals								
Lab #:	261194	Project#:	B00025.07 T4D					
Client:	Erler & Kalinowski, Inc.	Location:	Presidio - Lendrum Court					
Field ID:	1279TPF2-1[0.0-1.0]D	Basis:	dry					
Lab ID:	261194-017	Sampled:	09/24/14					
Matrix:	Soil	Received:	09/24/14					
Units:	mg/Kg							

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	1.8	0.16	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Arsenic	6.0	0.26	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Barium	830	21	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Beryllium	1.0	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cadmium	1.5	0.17	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Chromium	100	0.24	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cobalt	18	0.21	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Copper	160	0.29	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Lead	1,500	13	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Mercury	2.1	0.094	5.000	215965	10/01/14	10/01/14	METHOD	EPA 7471A
Molybdenum	1.1	0.43	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Nickel	130	0.41	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Selenium	0.28	0.26	25.00	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Silver	1.5	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Thallium	0.18	0.067	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Vanadium	84	0.47	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Zinc	740	67	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020

California Title 22 Metals								
Lab #:	261194	Project#:	B00025.07 T4D					
Client:	Erler & Kalinowski, Inc.	Location:	Presidio - Lendrum Court					
Field ID:	1279TPF2-1[DUP]	Basis:	dry					
Lab ID:	261194-018	Sampled:	09/24/14					
Matrix:	Soil	Received:	09/24/14					
Units:	mg/Kg							

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	3.8	0.15	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Arsenic	6.5	0.25	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Barium	810	21	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Beryllium	1.1	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cadmium	1.4	0.17	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Chromium	96	0.23	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cobalt	14	0.21	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Copper	170	0.29	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Lead	1,700	13	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Mercury	1.9	0.089	5.000	215965	10/01/14	10/01/14	METHOD	EPA 7471A
Molybdenum	1.2	0.42	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Nickel	110	0.40	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Selenium	0.33	0.25	25.00	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Silver	1.4	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Thallium	0.19	0.065	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Vanadium	86	0.46	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Zinc	790	65	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020

	California T	itle 22 Metals	
Lab #:	261194	Project#:	B00025.07 T4D
Client:	Erler & Kalinowski, Inc.	Location:	Presidio - Lendrum Court
Field ID:	1279TPG1-2[0.5-1.5]D	Basis:	dry
Lab ID:	261194-019	Sampled:	09/24/14
Matrix:	Soil	Received:	09/24/14
Units:	mg/Kg		

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	1.9	0.15	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Arsenic	6.6	0.25	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Barium	520	20	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Beryllium	0.60	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cadmium	0.94	0.17	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Chromium	260	22	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Cobalt	29	0.20	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Copper	230	0.28	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Lead	1,300	13	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Mercury	0.57	0.019	1.000	215965	10/01/14	10/01/14	METHOD	EPA 7471A
Molybdenum	0.86	0.41	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Nickel	450	40	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Selenium	ND	0.25	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Silver	0.83	0.13	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Thallium	0.13	0.064	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Vanadium	65	0.45	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Zinc	610	64	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020

	California T	itle 22 Metals	
Lab #:	261194	Project#:	B00025.07 T4D
Client:	Erler & Kalinowski, Inc.	Location:	Presidio - Lendrum Court
Field ID:	1279TPF0-1[1.5]D	Basis:	dry
Lab ID:	261194-020	Sampled:	09/24/14
Matrix:	Soil	Received:	09/24/14
Units:	mg/Kg		

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	2.2	0.14	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Arsenic	б.4	0.25	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Barium	920	20	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Beryllium	0.98	0.12	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cadmium	1.7	0.16	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Chromium	55	0.22	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Cobalt	11	0.20	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Copper	350	27	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Lead	2,400	12	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Mercury	1.8	0.089	5.000	215965	10/01/14	10/01/14	METHOD	EPA 7471A
Molybdenum	1.1	0.40	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Nickel	58	0.39	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Selenium	0.26	0.24	25.00	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020
Silver	1.7	0.12	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Thallium	0.19	0.062	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Vanadium	79	0.44	25.00	215862	09/29/14	09/29/14	EPA 3050B	EPA 6020
Zinc	980	62	2,500	215862	09/29/14	09/30/14	EPA 3050B	EPA 6020

California Title 22 Metals								
Lab #:	261194	Location:	Presidio - Lendrum Court					
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3050B					
Project#:	B00025.07 T4D	Analysis:	EPA 6020					
Туре:	BLANK	Diln Fac:	25.00					
Lab ID:	QC759464	Batch#:	215862					
Matrix:	Soil	Prepared:	09/29/14					
Units:	mg/Kg	Analyzed:	09/29/14					

Analyte	Result	RL	
Antimony	ND	0.15	
Arsenic	ND	0.25	
Barium	ND	0.20	
Beryllium	ND	0.13	
Cadmium	ND	0.16	
Chromium	ND	0.22	
Cobalt	ND	0.20	
Copper	ND	0.28	
Lead	ND	0.13	
Molybdenum	ND	0.41	
Nickel	ND	0.39	
Selenium	ND	0.24	
Silver	ND	0.13	
Thallium	ND	0.063	
Vanadium	ND	0.44	
Zinc	ND	0.63	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	L	ead	
Lab #:	261194	Location:	Presidio - Lendrum Cour
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3050B
Project#:	B00025.07 T4D	Analysis:	EPA 6020
Analyte:	Lead	Basis:	dry
Matrix:	Soil	Diln Fac:	25.00
Units:	mg/Kg	Received:	09/24/14

Field ID	Type	MSS Lab ID L	Lab ID	MSS Result	Spiked	Result	%REC	Limits	Moisture RPD	Lim	Batch# Sampled	Prepared	Analyzed
	BS	QC75	59465		25.00	26.19	105	75-125			215862	09/29/14	09/29/14
	BSD	QC75	59466		25.00	26.04	104	75-125	1	30	215862	09/29/14	09/29/14
1279TP305-D[3.5]	MS	261194-001 QC75	59467	946.0	26.59	743.2 >LR	-763 NM	75-125	7%		215862 09/22/14	09/29/14	09/29/14
1279TP305-D[3.5]	MSD	261194-001 QC75	59468		26.41	2,633 >LR	6388 NM	75-125	7% NC	30	215862 09/22/14	09/29/14	09/29/14
	BS	QC75	59667		25.00	26.93	108	75-125			215914	09/30/14	09/30/14
	BSD	QC75	59668		25.00	25.51	102	75-125	5	30	215914	09/30/14	09/30/14
1279SBH1-3[0.5]S	MS	261194-023 QC75	59669	93.97	25.22	113.8	79	75-125	3%		215914 09/24/14	09/30/14	10/01/14
1279SBH1-3[0.5]S	MSD	261194-023 QC75	59670		24.85	120.6	107	75-125	3% 6	30	215914 09/24/14	09/30/14	10/01/14

NC= Not Calculated NM= Not Meaningful: Sample concentration > 4X spike concentration >LR= Response exceeds instrument's linear range RPD= Relative Percent Difference Page 1 of 1

	California T	itle 22 Metals	
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3050B
Project#:	B00025.07 T4D	Analysis:	EPA 6020
Matrix:	Soil	Batch#:	215862
Units:	mg/Kg	Prepared:	09/29/14
Diln Fac:	25.00	Analyzed:	09/29/14

Type: BS	Lab I	D: QC759	465	
Analyte	Spiked	Result	%REC	Limits
Antimony	25.00	24.58	98	75-125
Arsenic	25.00	23.66	95	75-125
Barium	25.00	24.58	98	75-125
Beryllium	25.00	23.90	96	75-125
Cadmium	25.00	24.10	96	75-125
Chromium	25.00	25.31	101	75-125
Cobalt	25.00	25.33	101	75-125
Copper	25.00	23.54	94	75-125
Lead	25.00	26.19	105	75-125
Molybdenum	25.00	24.44	98	75-125
Nickel	25.00	24.94	100	75-125
Selenium	25.00	24.83	99	75-125
Silver	25.00	24.73	99	75-125
Thallium	25.00	24.35	97	75-125
Vanadium	25.00	24.08	96	75-125
Zinc	25.00	23.58	94	75-125

Type: BSD	Lab II	QC759	466			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	25.00	23.96	96	75-125	3	30
Arsenic	25.00	23.96	96	75-125	1	30
Barium	25.00	24.68	99	75-125	0	30
Beryllium	25.00	23.88	96	75-125	0	30
Cadmium	25.00	24.00	96	75-125	0	30
Chromium	25.00	25.03	100	75-125	1	30
Cobalt	25.00	25.01	100	75-125	1	30
Copper	25.00	23.38	94	75-125	1	30
Lead	25.00	26.04	104	75-125	1	30
Molybdenum	25.00	24.14	97	75-125	1	30
Nickel	25.00	25.05	100	75-125	0	30
Selenium	25.00	24.89	100	75-125	0	30
Silver	25.00	24.56	98	75-125	1	30
Thallium	25.00	24.25	97	75-125	0	30
Vanadium	25.00	24.28	97	75-125	1	30
Zinc	25.00	23.46	94	75-125	0	30

	California T	itle 22 Metals	
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3050B
Project#:	B00025.07 T4D	Analysis:	EPA 6020
Field ID:	1279TP305-D[3.5]	Batch#:	215862
MSS Lab ID:	261194-001	Sampled:	09/22/14
Matrix:	Soil	Received:	09/24/14
Units:	mg/Kg	Prepared:	09/29/14
Basis:	dry	Analyzed:	09/29/14
Diln Fac:	25.00	-	

Type: Lab ID:

MS QC759467

Moisture:

7%

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	1.816	26.59	10.53	33 *	75-125
Arsenic	7.159	26.59	31.38	91	75-125
Barium	555.9	26.59	553.5 >LR	-9 NM	75-125
Beryllium	0.5658	26.59	26.36	97	75-125
Cadmium	1.427	26.59	27.03	96	75-125
Chromium	191.2	26.59	210.5	72 NM	75-125
Cobalt	24.93	26.59	49.06	91	75-125
Copper	128.4	26.59	147.7	73 NM	75-125
Lead	946.0	26.59	743.2 >LR	-763 NN	1 75-125
Molybdenum	1.147	26.59	24.12	86	75-125
Nickel	319.1	26.59	308.2 >LR	-41 NM	75-125
Selenium	0.2635	26.59	24.13	90	75-125
Silver	0.6686	26.59	27.13	100	75-125
Thallium	0.1612	26.59	25.82	96	75-125
Vanadium	63.14	26.59	86.77	89	75-125
Zinc	1,056	26.59	898.2 >LR	-594 NN	1 75-125

Type: Lab ID:	MSD QC759468	Mois	ture: 7%				
1	Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony		26.41	10.35	32 *	75-125	1	30
Arsenic		26.41	31.28	91	75-125	0	30
Barium		26.41	547.3 >LR	-33 NM	75-125	NC	30
Beryllium		26.41	26.12	97	75-125	0	30
Cadmium		26.41	27.13	97	75-125	1	30
Chromium		26.41	224.3	125 NM	75-125	6	30
Cobalt		26.41	50.58	97	75-125	3	30
Copper		26.41	145.8	66 NM	75-125	1	30
Lead		26.41	2,633 >LR	6388 NM	75-125	NC	30
Molvbdenum		26.41	23.79	86	75-125	1	30
Nickel		26.41	321.5 >LR	9 NM	75-125	NC	30
Selenium		26.41	24.25	91	75-125	1	30
Silver		26.41	26.82	99	75-125	1	30
Thallium		26.41	25.34	95	75-125	1	30
Vanadium		26.41	89.25	99	75-125	3	30
Zinc		26.41	932.3 >LR	-469 NM	75-125	NC	30

*= Value outside of QC limits; see narrative NC= Not Calculated NM= Not Meaningful: Sample concentration > 4X spike concentration >LR= Response exceeds instrument's linear range RPD= Relative Percent Difference Page 1 of 1

23.0

	California 1	Title 22 Metals	
Lab #:	261194	Location:	Presidio - Lendrum Court
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD
Project#:	B00025.07 T4D	Analysis:	EPA 7471A
Analyte:	Mercury	Diln Fac:	1.000
Type:	BLANK	Batch#:	215965
Lab ID:	QC759854	Prepared:	10/01/14
Matrix:	Soil	Analyzed:	10/01/14
Units:	mg/Kg		
Pequit	DT		

Result	RL	
ND	0.017	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals							
Lab #:	261194	Location:	Presidio - Lendrum Court				
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD				
Project#:	B00025.07 T4D	Analysis:	EPA 7471A				
Analyte:	Mercury	Batch#:	215965				
Matrix:	Soil	Prepared:	10/01/14				
Units:	mg/Kg	Analyzed:	10/01/14				
Diln Fac:	1.000						

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC759855	0.2083	0.2020	97	75-125		
BSD	QC759856	0.2083	0.2042	98	75-125	1	35

QC759858

MSD

California Title 22 Metals								
Lab #:	261194	Location:	Presidio - L	endrum Court				
Client:	Erler & Kalinowski, Ind	c. Prep:	METHOD					
Project#:	B00025.07 T4D	Analysis:	EPA 7471A					
Analyte:	Mercury	Diln Fac:	1.000					
Field ID:	ZZZZZZZZZ	Batch#:	215965					
MSS Lab ID:	261289-001	Sampled:	09/29/14					
Matrix:	Soil	Received:	09/30/14					
Units:	mg/Kg	Prepared:	10/01/14					
Basis:	as received	Analyzed:	10/01/14					
Type Lab	ID MSS Result	Spiked Re	esult %REC	Limits RPD	Lim			
MS 0C759	0.03471	0.2049	0.2463 103	75-125				

0.2119

0.2574

105

28.0

35

75-125 2

Moisture							
Lab #:	261194	Location:	Presidio - Lendrum Court				
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD				
Project#:	B00025.07 T4D	Analysis:	ASTM D2216/CLP				
Analyte:	Moisture, Percent	Diln Fac:	1.000				
Matrix:	Soil	Received:	09/24/14				
Units:	8	Analyzed:	09/25/14				

Field ID	Lab ID	Result	RL	Batch#	Sampled
1279TP305-D[3.5]	261194-001	7	1	215804	09/22/14
1279TP302-S[0.5]	261194-002	6	1	215804	09/22/14
1279TP301-S[0.5]	261194-003	5	1	215804	09/22/14
1279TP303-S[0.5]	261194-004	4	1	215804	09/22/14
1279TP304-D[3.5]	261194-005	6	1	215804	09/22/14
1279SBA2-1[0.5]S	261194-006	7	1	215804	09/23/14
1279TPA1-1[0.5]S	261194-007	7	1	215804	09/23/14
1279TPA1-2[2.0]D	261194-008	5	1	215804	09/23/14
1279SBB1-1[0.5]S	261194-009	4	1	215804	09/23/14
1279SBC1-1[0.5]S	261194-010	7	1	215804	09/23/14
1279SBD1-1[0.5]S	261194-013	9	1	215804	09/23/14
1279SBE1-1[0.5]S	261194-014	13	1	215804	09/23/14
1279SBE1-2[0.5]S	261194-015	5	1	215804	09/23/14
1279SBD2-1[0.5]S	261194-016	7	1	215804	09/24/14
1279TPF2-1[0.0-1.0]D	261194-017	7	1	215804	09/24/14
1279TPF2-1[DUP]	261194-018	5	1	215804	09/24/14
1279TPG1-2[0.5-1.5]D	261194-019	5	1	215804	09/24/14
1279TPF0-1[1.5]D	261194-020	5	1	215804	09/24/14
1279SBH1-1[0.5]S	261194-021	3	1	215804	09/24/14
1279SBH1-2[0.5]S	261194-022	3	1	215804	09/24/14
1279SBH1-3[0.5]S	261194-023	3	1	215805	09/24/14
1279SBG2-1[0.5]S	261194-024	7	1	215805	09/24/14
1279SBH2-1[0.5]S	261194-025	9	1	215805	09/24/14
1279SBH0-2[0.5]S	261194-027	3	1	215805	09/24/14

Moisture							
Lab #:	261194	Location:	Presidio - Lendrum Court				
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD				
Project#:	B00025.07 T4D	Analysis:	ASTM D2216/CLP				
Analyte:	Moisture, Percent	Units:	90 0				
Туре:	SDUP	Diln Fac:	1.000				
Matrix:	Soil	Analyzed:	09/25/14				

Field ID	MSS Lab ID	Lab ID M	MSS R	Result	Result	RL	RPD	Lim	Batch#	Sampled	Received
1279SBH1-2[0.5]S	261194-022	QC759252		2.854	2.911	1.000	2	10	215804	09/24/14	09/24/14
ZZZZZZZZZZ	261212-001	QC759253	2	21.49	21.96	1.000	2	10	215805	09/23/14	09/25/14

RL= Reporting Limit RPD= Relative Percent Difference Page 1 of 1

and setting to the

H

Laboratory Job Number 261249 ANALYTICAL REPORT

Erler & Kalinowski, Inc.Project : B00025.07 T4D1870 Ogden DriveLocation : PresidioBurlingame, CA 94010-5306Level : II

Sample ID	Lah ID	Sample ID	Lah TD
1279TPK-1[0.5]S	261249-001	1279SBL-3[DUP]	261249-016
1279SBK-1[0.5]S	261249-002	1279TPI1-1[0.5]S	261249-017
1279SBK-2[0.5]S	261249-003	1279TPI2-1[0.5]S	261249-018
1279SBK-3[0.5]S	261249-004	1279TPI2-1[1.5]D	261249-019
1279SBK-4[0.5]S	261249-005	1279TPI2-2[0.5]S	261249-020
1279SBA1-1[0.5]S	261249-006	1279SBJI-2[0.5]S	261249-021
1279SBA2-3[0.5]S	261249-007	1279SBJ2-2[0.5]S	261249-022
1279SBA2-4[0.5]S	261249-008	1279SBJ1-1[0.5]S	261249-023
1279SBA2-5[0.5]S	261249-009	1279SBJ3-1[0.5]S	261249-024
1279SBM-1[0.5]S	261249-010	1279SBJ3-2[0.5]S	261249-025
1279SBM-2[0.5]S	261249-011	1279SBJ3-2[DUP]	261249-026
1279SBM-3[0.5]S	261249-012	1279SBJ4-1[0.5]S	261249-027
1279SBL-1[0.5]S	261249-013	1279SBJ4-2[0.5]S	261249-028
1279SBL-2[0.5]S	261249-014	1279SBJ2-1[0.5]S	261249-029
1279SBL-3[0.5]S	261249-015		

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar Project Manager tracy.babjar@ctberk.com (510) 204-2226

Date: <u>10/09/2014</u>

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 261249 Erler & Kalinowski, Inc. B00025.07 T4D Presidio 09/26/14, 09/30/14 09/26/14

This data package contains sample and QC results for twenty nine soil samples, requested for the above referenced project on 09/26/14 and 09/30/14. The samples were received cold and intact. All samples underwent the (ISM) Incremental Sampling Method for all analysis

Semivolatile Organics by GC/MS SIM (EPA 8270C-SIM):

Matrix spikes QC759808,QC759809 (batch 215948) were not reported because the parent sample required a dilution that would have diluted out the spikes. 1279TPI2-1[1.5]D (lab # 261249-019) was diluted due to the dark and viscous nature of the sample extract. No other analytical problems were encountered.

Metals (EPA 6020 and EPA 7471A):

Low recoveries were observed for antimony in the MS/MSD of 1279TPK-1[0.5]S (lab # 261249-001); the BS/BSD were within limits. High RPD was also observed for antimony; the RPD was acceptable in the BS/BSD, and this analyte was not detected at or above the RL in the associated sample. No other analytical problems were encountered.

Moisture (ASTM D2216/CLP):

High RPD was observed for moisture, percent in the SDUP of 1279TPI2-2[0.5]S (lab # 261249-020). No other analytical problems were encountered.

7.1

261249

Subject:RE: B00025.07 T4D - C&T Login Summary (261249) Date:Tue, 30 Sep 2014 16:02:27 +0000 From:correia, daniel <u><DCorreia@EKICONSULT.COM></u> To:Tracy Babjar <u><tracy.babjar@ctberk.com></u>, "montgomery-brown, john" <u><JMontgomery-Brown@EKICONSULT.COM></u>, "dewitt, john" <u><jdewitt@EKICONSULT.COM></u>

Good morning Tracy,

I spoke with John about this COC. We decided that yes, we do want to run sample 1279SBJ2-1[0.5]S for lead and moisture with ISM. We also decided to run the sample we put on hold 1279SBL-2[0.5]S for lead and moisture with ISM as well. I've attached a PDF'ed revision for clarification.

I'll be out of the office till next tuesday, I'm getting married :), so if you have any questions please contact John DeWitt or John Montgomery-Brown. Thanks Tracy!

-DJC

Daniel Correia **Erler & Kalinowski, Inc.** 1870 Ogden Drive Burlingame, CA 94010 Office: (650)292-9100 <u>DCorreia@EKIconsult.com</u>

261249

Erler & Kalinowski, Inc.

CHAIN OF CUSTODY RECORD

CONSULTING ENGINEERS AND SCIE	NTISTS		1870 Ogden Drive, Burlingame, CA 94010 Project No.:						Phor	e: (650)	292-9	9100				
Project Name:		Broject				<u> </u>			Fax:	(650) 55	52-901	2				
Presidio - Lendrum Court	Ł	B00025.(0 07 T4D					ANA	LYSE	S REQ	UEST	ED			EKI	COC No. 20140926-1 Revision 1a
Project Location:		Laborate	ory:	Curtis & Tor	nokins		R	Τ	T	r		1	<u> </u>	<u> </u>	┼──	
Presidio of San Francisco, CA			•	2323 5th Str Berkeley, C/ (510) 486-05	reet A 94710 900	od 8270C	PA Metho	EPA	d 6020			1			QND	
Report Results to:		Sampled	By:	(010) 400 00		Veth-	by E	ls by	letho				۲ ۲		ARO	
John DeWitt, Labs EKI, Daniel Correia			-	Daniel	Correia	L V I	etals	Furai 13B	MA				ontei		TUR	
Field Sample	Lab	Data	Time	Type of	No, of	Γ Α Α	2 M	18 & I od 16	ρ Γ	-			Le C		TED	
Identification	Sample No.	. Date	Time	Sample	Containers	PAHs w/ SII	Title 2 6020	Dioxir Metho	Lead				Moistu	рюн	EXPEC	Remarks
1279SBJ2-1[0.5]S		9/26/2014	1125	soil	1 gallon size zip-lock bag				x				x		std	
1279SBL-2[0.5]S		9/25/2014	1615	soil	1 gallon size zip-lock bag				x				x		std.	
						1						-			┟──┦	
				<u> </u>										<u> </u>	┝──┦	
	1			†										┝──┦		
				<u> </u>										┨────┤	┝──┦	
				<u> </u>											┝──┤	
		<u> </u>		<u> </u>									'	<u> </u>	\mid	
		┝───┤		<u> </u>												
				<u> </u>		<u> </u>										
												_				
<u>Special Instructions:</u> Please perform ISM on all samples prior Email laboratory confirmation, EDFs, and USE Presidio QAPP	to analysis - R I pdfs of lab sh	un Moistu ieets to jde	n Moisture after ISM ets to jdewitt@ekiconsult.com and cc LABS@ekiconsult.com			and do	orreia@	ekicon	nsult.co	om on al	ll corre	espone	dence	•		
Relinquished by: (Signature)		Date: Time: Re			Recei	ved By:									Time:	
Daniel Correia	EKI	30-Sep-14 0855			Ì	,										
Relinquished by: (Signature)		Date: Time: Rec			Received By:							Time:				
Relinquished by: (Signature)	<u> </u>		Date: Time: Re			Received By:							Time:			

Erler & Kalinowski, Inc.

HZGIZYG provel of 3 CHAIN OF CUSTODY RECORD

CONSULTING ENGINEERS AND SCIEN	TISTS				1870 Og	den Drive, B	urlingame, CA 940	10		-	Phon	e: (650) 292-9	100				
Project Name:		Prok	ect No.								Fax: (650) 552-901	2				
Presidio - Lendrum Court		8000	25.07	Г4D						ANA	LYSE		TED			EKI	COC No. 7014097 (-1
Project Location:		Labo	ratory:	-	Curtis &	Tompkins		¥	R	T	r			<u> </u>	т	<u> </u>	
Presidio of San Francisco, CA					2323 5th Berkeley	Street CA 94710		d 8270C	A Metho	EPA	0703			Test.		Q	
Report Results to:		Sam	oled By	<i>r</i> :	(310) 40			- lễ		A .	Z			3		L S S	
John DeWitt, Labs EKI, Daniel Correia					Dani	el Correia		PA V	tals t	linem 138	L m			3	,	URN	
Field Sample	Lab	Dat		Timo	Type of	r	No. of	۲ ۵	2 M	6 G 16	1			5	P	E E	ļ
Identification	Sample No.				Sample		Containers	SAHs	E8	Vetho	3			2	E	DEC	
1279 TPK-1(0.5)5		1/20	14 00	150	501	1 maile	n size via look her	1===			Y		+	$\overline{\mathbf{\nabla}}$	<u> </u>		Remarks
127958K-1[0.5]5			10	10	 						\mathbf{E}		┼──┤	\sim	 	std.	
12795RK-250575		+	00	20	┽╌┼╌	+	_				$\tilde{\leftarrow}$		┨	X		\square	
12795BK-310.575		┼─┨	107	<u>30</u> 62	┼──┼─			+	<u> </u>		X		 	$\left \right\rangle$			
12795AV-4[0.5]5			10	<u>72</u>	+ $+$	+			ļ		X			<u>}</u>		\square	
12795841-1 [0 575				~	┼╌╉					ļ	X			\times		Ш	
127452 42 210 525			- 11	<u> </u>	┝╌┟╴		<u> </u>		 		X			\succ			
12715 BAL-30.513	·		14	30	+-+	<u> </u>					\mathbf{x}			\times			
1279SBAF-9LUSIS			14	55							X			X			
1243BAL-3[0.5]5			19	515							$\overline{\mathbf{X}}$			X			
127158M-1[0.5]5			15	30							×			X			
12795BM-2[0.5]S			15	٩O							×			$\frac{1}{\lambda}$		┝╋┥	·
12795BM-3[0.5]5			-15	50			1				×		┝──┤	$\frac{1}{2}$	\vdash	┢╼╋┥	
Special instructions: Please perfor	nm 15/	M u	~ ~	.h	Supple	DOIN)	to malise	- Kv	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-0157~	<u>ل_</u> ۲-	· 62. 7	<u> </u>	<u></u>			L
Email laboratory confirmation, EDFs, and pdf	s of lab shee	ts to id	a witten		, 		- U-					and 1		•			
USE Presidio QAPP							gyekiconsuit.com, a	and doon	reia@ek	consul	.com c	n all correspo	Indence).			
(Dave) Come	NFK				Pate:	Time:		Recei	ved By:	1	·	· · · · · · · · · · · · · · · · · · ·		<u></u>			Time:
Relinquished by: (Agnature)					Date:	Time:		Elecei	ANDY:	F	\equiv		·.				हरदा
Relingershed by: (Signature)					12414	1.79	٥	1	Λ	1_	$\underline{1}$	ip					USD
/ /								100	yed By:			\mathcal{O}					Time:
•	·									~~~	_	······································					L
											<u>_</u> _	· • ·					A .
											ωN	ed b	6 1	lee	1-	11	EL.

Erler & Kalinowski, Inc.

CHAIN OF CUSTODY RECORD

#241249pge 2 053

Project Name:		Project	No.:			Fax	(650) 552-9	012							
Project ocation:		B00025	.07 T4D					ANA	LYSE	S REQUE	STED			EKI	COC No. 2014 (ID)
Presidio of San Francisco, CA		Labora	tory:	Curtis & 7 2323 5th 3 Berkeley, 1 (510) 486	ompkins Street CA 94710 0900	d 8270C w	A Method	EPA	970			the state		<u> </u>	
Report Results to: John DeWitt, Labs EKI, Daniel Correia		Sample	d By:	Danie		A Metho	le by EF	arris by B	A			ر د د		INAROU	
Field Sample	Lab Sample No.	Date	Time	Type of	No. of		e 22 Meta	kins & Fu thod 1613	Tr			Et re	る	CCTED TUR	
12795BL-1[0.5]5		9/25/	1605			s 2 0	Ē	83	17			2	<u>±</u>	EC.	Remarks
2795BL-210.975		T	1/10	NON	1 galion size zip-k	ck bag		+	\sim		_	×		atd.	
12795BL-3[0.5]5		¥261.	(190)	-							·		X		
2795BL-3[ONP]		- AN	10,00						X			X			
27155TP-IL						<u> </u>		+	X			X			
2795PE1-160.525			0430				+				+				
127971952-160.535			1015				+		X			X			
279TA12-1[1.5]0			1020				+		X		<u> </u>	X			
279 1912-260515			1045			<u> </u> X	+ <u>}</u>		_			X			
2795831-260.575			211					┼─┤	X			$\boldsymbol{\lambda}$			
2795 8572-260.575		+-	IRA				<u> </u>	┿╌┥	×			ア			
L7958J1-160.5]5			105					┼─┤	×		_	$\boldsymbol{\lambda}$			
vecial instructions:									χI			$\boldsymbol{\succ}$		7	
nail laboratory confirmation, EDFs, and pdf:	s of lab sheets	s to jdewi	ti@ekicons	Sering Ult.com an	ks prive b	onlysis	- fre	i m	are to	re në	ter S	SM	•		
linguished by (Signature)				Date: T			relagel	iconsult.	.com o	n all corresp	ondence	9.			
linquished by: (Singletune)	Green)	ERI		2414 Date:	1539	Rece		3/	2_			_		ľ	Time: 539
linquished by (Signature)			<u> </u>	26/14 Date:	1750 Time:	Rece	27	1	R	N	VA				Time: 1250
									\bigcup	/	O			Ī	Time:
														l	

	NTISTS			1870 Ogd	en Drive, Burlingame, CA 940	10			Phone	(650) 292-9100			U	
Presidio - Lendrum Court		Project	No.:			- <u> </u>			Fax: (6	50) 552-9012	<u> </u>		I	
roject Location:		Laborat	.07 T4D	Cartie & To			T			REQUESTED	<u> </u>		EKI	COC No. 20140926-
residio of San Francisco, CA				2323 5th St Bericeley, C (510) 488-0	reet A 94710 ann	d 8270C	A Methox	EPA	020		154		Q	
eport Results to: ohn DeWitt, Labs EKI, Daniel Correia		Sample	d By:	<u>(0.0)</u>	<u>.</u>	Metho	ру Ш	ans by 3	PA (3		INAROL	
Field Sample Identification	Lab Sample No.	Date	Date Time		No. of	AHs by EPA IM	tte 22 Metal 220	toxine & Fun ethod 16136	s for		6 Chre	19/9	PECTED TUR	
12795873-1[0.515		1/26/14	1135	ent			F8	<u> </u> ŏ⊻	- V			12	ង	Remarks
2795873-260.53			1140	+ <u>m</u> +	I goldti size zip-lock bag	+			$\frac{7}{}$		X		std.	
2795B 73-2[0NP]									$\hat{\mathbf{v}}$		$\left \begin{array}{c} \\ \\ \end{array} \right $			
2795854-160.535			1145					┼─┤	$\frac{2}{x}$		IC			
2795 834-2(0.575		2	1150						x		Ŕ		\pm	
	ļ										ŕ		-	
	·													
				<u> </u>										
				 										
				-	· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·
ecial instructions: A			L											
ail laboratory confirmation, EDFs, and po E Presidio QAPP inquished by: (Signature)	Ifs of lab sheet	is to jdewi	n & \\ tt@ekicon	Stern and	ccLABS@ekiconsuit.com, a	nd doom	eia@ekic	xm xxnsuit.	.com on	all correspondence	ध २.	<u>c</u> sm		
inquished by Signature)	LUANICI	Grei	-) [4	9/24/14 Date: 1	1534	Recen	ĥN	4/	2	Ā				^{Time:} /379
inquished by: (Signature)				125/14 Date/ 11	<u>1750</u>	Det	\mathcal{I}	\checkmark	4	Tre	\sim			Time: 1730
			/			12			\mathcal{O}		0		Ī	Time;

7 of 28

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login # 261249 Date Received $9/26/121$ Nu Client 1261249 Date Received $9/26/121$ Nu	mber of coolers 2
Date Opened 9/26 By (print) (sign) Date Logged in 9/26 By (print) (sign)	A R
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES -NO
2A. Were custody seals present? □ YES (circle) on cooler How many Name I	on samples XNO Date
2B. Were custody seals intact upon arrival?	YES NO N/A
3. Were custody papers dry and intact when received?	TES NO
4. Were custody papers filled out properly (ink, signed, etc)?	TES NO
 Is the project identifiable from custody papers? (If so fill out top of Indicate the packing in cooler: (if other, describe) 	form) YES NO
□ Bubble Wrap □ Foam blocks ⊠ Bags	□ None □ Paper towels
7. Temperature documentation: * Notify PM if temperature excee	ds 6°C
Type of ice used: Wet Blue/Gel None Te	mp(°C)
Samples Received on ice & cold without a temperature blank	; temp. taken with IR gun
Samples received on ice directly from the field. Cooling proc	cess had begun
8. Were Method 5035 sampling containers present?	YES NO.
If YES, what time were they transferred to freezer?	125 110 4
9. Did all bottles arrive unbroken/unopened?	YES NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples?	TES NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests?	Ally VES NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete?	ALTA VES NO VES NO VES NO VES NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers?	VES NO YES NO YES NO YES NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested?	VES NO VES NO VES NO VES NO VES NO VES NO VES NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved?	YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
9. Did all bottles arrive unbroken/unopened?	YES NO YES NO
9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check?	YES NO YES NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you change the hold time in LIMS for unpreserved VOAs?	YES NO YES NO
 If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA complex? 	YES NO YES NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery?	YES NO YES NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? If YES, Who was called?	YES NO YES NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? If YES, Who was called?	VES NO VA VES NO VA VES NO VA VES NO VA VES NO VA VES NO VA VES NO VA VES NO VA VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A VES NO N/A
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? If YES, Who was called? By	YES NO YES NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 21. Was the client contacted concerning this sample delivery? 21. Was the client contacted concerning this sample delivery? 22. Are bubbles > 6mm absent in VOA samples? 23. Did you was called? By	VES NO VES NO
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS ID 10. Plecend Extra Science not concerning the sample sent on (2) 11. Was the client contacted concerning this sample delivery? If YES, Who was called? 12. May the client contacted concerning the sample not (2) ID 13. Did you change the hold time in LIMS concerned terracores? ID 14. Was the client contacted concerning this sample delivery? If YES, Who was called? 10. If Concerned	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS 10 10 90. Plecend 110 12.79 12.50 13.00 10 14.01 10 15.02 10 16.03 10 17.04 10 18.04 10 19.05 10 10 10 1	$\begin{array}{c c} & & & & & \\ & & & & & & \\ & & & & & & $
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS 10 10 110 279 120 121 122 123 124 125 125 126 127 128 129 129 1279 120 <td>$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & &$</td>	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS 10 Plecend 11. Was the client contacted concerning this sample delivery? 11. Was the client contacted concerning the sample woft con (contacted contacted contacted contacted contacted contacted contacted c	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS 10 Yee the sample in	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Detections Summary for 261249

Results for any subcontracted analyses are not included in this summary.

Client : Erler & Kalinowski, Inc. Project : B00025.07 T4D Location : Presidio

Client Sample ID : 1279TPK-1[0.5]S Laboratory Sample ID : 261249-001

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	230		19	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	1		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBK-1[0.5]S Laboratory Sample ID : 261249-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	81		0.13	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBK-2[0.5]S Laboratory Sample ID : 261249-003

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	83		0.13	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBK-3[0.5]S Laboratory Sample ID : 261249-004

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	94		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBK-4[0.5]S Laboratory Sample ID :

261249-005

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	340		20	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	2		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBA1-1[0.5]S Laboratory Sample ID :

261249-006

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	23		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	1		1	00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBA2-3[0.5]S Laboratory Sample ID : 261249-007

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	16		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBA2-4[0.5]S Laboratory Sample ID : 261249-008

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	28		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBA2-5[0.5]S Laboratory Sample ID :

261249-009

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	26		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBM-1[0.5]S

Laboratory Sample ID : 261249-010

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	67		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBM-2[0.5]S

Laboratory Sample ID : 261249-011

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	52		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBM-3[0.5]S

Laboratory Sample ID : 261249-012

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	67		0.13	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBL-1[0.5]S

261249-013 Laboratory Sample ID :

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	37		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	3		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBL-2[0.5]S

Laboratory Sample ID : 261249-014

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	69		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBL-3[0.5]S

Laboratory Sample ID :

261249-015

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	54		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBL-3[DUP]

Laboratory Sample ID :

261249-016

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	52		0.13	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279TPI1-1[0.5]S Laboratory Sample ID :

261249-017

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	150		0.13	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	2		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279TPI2-1[0.5]S Laboratory Sample ID :

261249-018

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	54		0.13	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B

Client Sample ID : 1279TPI2-1[1.5]D Laboratory Sample ID :

261249-019

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Arsenic	3.9		0.24	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Barium	120		0.19	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Beryllium	0.24		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Chromium	290		21	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Cobalt	40		0.19	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Copper	30		0.27	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Lead	340		12	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Mercury	0.065		0.019	mg/Kg	Dry	1.000	EPA 7471A	METHOD
Nickel	460		38	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Silver	0.30		0.12	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Thallium	0.14		0.060	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Vanadium	47		0.43	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Zinc	56		0.60	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	3		1	80	As Recd	1.000	ASTM D2216/CLF	METHOD

Client Samp	le ID	: 1279	TPI2-	2[0	.5]S		Laborat	ory Sa	mple ID :	261249-020
Analyte	Resu	lt Fla	ıgs	R	L	Units	Basis	IDF	Method	Prep Method
Lead	54		-	0	.19	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Client Samp	le ID	: 1279	SBJI-	2[0	.5]S		Laborat	ory Sa	mple ID :	261249-021
Analyte	е	Resul	t Fla	ags	RL	Units	Basis	IDF	Method	Prep Method
Lead		820			20	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Per	rcent	2			1	olo	As Recd	1.000	ASTM D2216/CLE	P METHOD
Client Samp	le ID	: 1279	SBJ2-	2[0	.5]S		Laborat	ory Sa	mple ID :	261249-022
Analyte		Result	Flags		RL	Units	Basis	IDF	Method	Prep Method
Lead		170			0.20	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Per	rcent	3			1	00	As Recd	1.000	ASTM D2216/CLE	P METHOD
Client Samp	le ID e	: 1279 Resul	SBJ1- t Fla	1[0 ags	.5]S	Units	Laborat Basis	ory Sa	mple ID : Method	261249-023 Prep Method
Lead		680			20	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Per	rcent	2			1	010	As Recd	1.000	ASTM D2216/CLE	P METHOD
Client Samp	le ID	: 1279	SBJ3-	1[0	.5]S		Laborat	ory Sa	mple ID :	261249-024
Analyte		Result	Flags		RL	Units	Basis	IDF	Method	Prep Method
Lead		120			0.19	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Per	rcent	2			1	%	As Recd	1.000	ASTM D2216/CLE	P METHOD
Client Samp	le ID	: 1279	SBJ3-	2[0	.5]S		Laborat	ory Sa	mple ID :	261249-025
Analyte		Result	Flags		RL	Units	Basis	IDF	Method	Prep Method
Lead		50		_	0.20	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Per	rcent	3			1	olo	As Recd	1.000	ASTM D2216/CLE	METHOD
Client Samp	le ID	: 1279	SBJ3-	ים] 2	UP]	I	Laborato	ry Sam	ple ID :	261249-026
Analyte		Result	Flags		RL	Units	Basis	IDF	Method	Prep Method
Lead		35			0.20	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Per	rcent	2			1	00	As Recd	1.000	ASTM D2216/CLE	P METHOD

Client Sample ID : 1279SBJ4-1[0.5]S Laboratory Sample ID : 261249-027

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	370		20	mg/Kg	Dry	2500	EPA 6020	EPA 3050B
Moisture, Percent	2		1	00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBJ4-2[0.5]S Laboratory Sample ID :

261249-028

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	200		0.20	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	6		1	00	As Recd	1.000	ASTM D2216/CLP	METHOD

Client Sample ID : 1279SBJ2-1[0.5]S Laboratory Sample ID : 261249-029

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	180		0.19	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	3		1	00	As Recd	1.000	ASTM D2216/CLP	METHOD

	Semivolatile Org	anics by GC/MS	SIM
Lab #:	261249	Location:	Presidio
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM
Field ID:	1279TPI2-1[1.5]D	Batch#:	215948
Lab ID:	261249-019	Sampled:	09/26/14
Matrix:	Soil	Received:	09/26/14
Units:	ug/Kg	Prepared:	09/30/14
Basis:	dry	Analyzed:	10/02/14
Diln Fac:	20.00		

Analyte	Result	RL	
Naphthalene	ND	100	
Acenaphthylene	ND	100	
Acenaphthene	ND	100	
Fluorene	ND	100	
Phenanthrene	ND	100	
Anthracene	ND	100	
Fluoranthene	ND	100	
Pyrene	ND	100	
Benzo(a)anthracene	ND	100	
Chrysene	ND	100	
Benzo(b)fluoranthene	ND	100	
Benzo(k)fluoranthene	ND	100	
Benzo(a)pyrene	ND	100	
Indeno(1,2,3-cd)pyrene	ND	100	
Dibenz(a,h)anthracene	ND	100	
Benzo(g,h,i)perylene	ND	100	

Surrogate	%REC	Limits	
Nitrobenzene-d5	DO	23-120	
2-Fluorobiphenyl	DO	30-115	
Terphenyl-d14	DO	18-137	

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 1

Semivolatile Organics by GC/MS SIM								
Lab #:	261249	Location:	Presidio					
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B					
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM					
Туре:	BLANK	Diln Fac:	1.000					
Lab ID:	QC759806	Batch#:	215948					
Matrix:	Soil	Prepared:	09/30/14					
Units:	ug/Kg	Analyzed:	10/01/14					

Analyte	Result	RL	
Naphthalene	ND	5.0	
Acenaphthylene	ND	5.0	
Acenaphthene	ND	5.0	
Fluorene	ND	5.0	
Phenanthrene	ND	5.0	
Anthracene	ND	5.0	
Fluoranthene	ND	5.0	
Pyrene	ND	5.0	
Benzo(a)anthracene	ND	5.0	
Chrysene	ND	5.0	
Benzo(b)fluoranthene	ND	5.0	
Benzo(k)fluoranthene	ND	5.0	
Benzo(a)pyrene	ND	5.0	
Indeno(1,2,3-cd)pyrene	ND	5.0	
Dibenz(a,h)anthracene	ND	5.0	
Benzo(g,h,i)perylene	ND	5.0	

Surrogate	%REC	Limits	
Nitrobenzene-d5	67	23-120	
2-Fluorobiphenyl	75	30-115	
Terphenyl-d14	79	18-137	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Semivolatile Organics by GC/MS SIM								
Lab #:	261249	Location:	Presidio					
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3550B					
Project#:	B00025.07 T4D	Analysis:	EPA 8270C-SIM					
Туре:	LCS	Diln Fac:	1.000					
Lab ID:	QC759807	Batch#:	215948					
Matrix:	Soil	Prepared:	09/30/14					
Units:	ug/Kg	Analyzed:	10/01/14					

Analyte	Spiked	Result	%REC	Limits
Acenaphthene	33.15	24.51	74	31-137
Pyrene	33.15	24.42	74	35-142

Surrogate	%REC	Limits
Nitrobenzene-d5	65	23-120
2-Fluorobiphenyl	69	30-115
Terphenyl-d14	69	18-137

		Lead	
Lab #:	261249	Location:	Presidio
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3050B
Project#:	B00025.07 T4D	Analysis:	EPA 6020
Analyte:	Lead	Basis:	dry
Matrix:	Soil	Received:	09/26/14
Units:	mg/Kg		

Field ID	Type	Lab ID	Result	RL	Moisture	Diln Fac	Batch#	Sampled	Prepared	Analyzed
1279TPK-1[0.5]S	SAMPLE	261249-001	230	19	1%	2,500	215984	09/25/14	10/01/14	10/02/14
1279SBK-1[0.5]S	SAMPLE	261249-002	81	0.13	2%	25.00	215984	09/25/14	10/01/14	10/01/14
1279SBK-2[0.5]S	SAMPLE	261249-003	83	0.13	2%	25.00	215984	09/25/14	10/01/14	10/01/14
1279SBK-3[0.5]S	SAMPLE	261249-004	94	0.12	2%	25.00	215984	09/25/14	10/01/14	10/01/14
1279SBK-4[0.5]S	SAMPLE	261249-005	340	20	2%	2,500	215984	09/25/14	10/01/14	10/02/14
1279SBA1-1[0.5]S	SAMPLE	261249-006	23	0.12	1%	25.00	215984	09/25/14	10/01/14	10/01/14
1279SBA2-3[0.5]S	SAMPLE	261249-007	16	0.12	2%	25.00	215984	09/25/14	10/01/14	10/01/14
1279SBA2-4[0.5]S	SAMPLE	261249-008	28	0.12	2%	25.00	215984	09/25/14	10/02/14	10/02/14
1279SBA2-5[0.5]S	SAMPLE	261249-009	26	0.12	2%	25.00	215984	09/25/14	10/02/14	10/02/14
1279SBM-1[0.5]S	SAMPLE	261249-010	67	0.12	2%	25.00	215984	09/25/14	10/02/14	10/02/14
1279SBM-2[0.5]S	SAMPLE	261249-011	52	0.12	2%	25.00	215984	09/25/14	10/02/14	10/02/14
1279SBM-3[0.5]S	SAMPLE	261249-012	67	0.13	2%	25.00	215984	09/25/14	10/02/14	10/02/14
1279SBL-1[0.5]S	SAMPLE	261249-013	37	0.12	3%	25.00	215984	09/25/14	10/02/14	10/02/14
1279SBL-2[0.5]S	SAMPLE	261249-014	69	0.12	2%	25.00	215984	09/25/14	10/02/14	10/02/14
1279SBL-3[0.5]S	SAMPLE	261249-015	54	0.12	2%	25.00	215984	09/26/14	10/02/14	10/02/14
1279SBL-3[DUP]	SAMPLE	261249-016	52	0.13	2%	25.00	215984	09/26/14	10/02/14	10/02/14
1279TPI1-1[0.5]S	SAMPLE	261249-017	150	0.13	2%	25.00	215984	09/26/14	10/02/14	10/02/14
1279TPI2-1[0.5]S	SAMPLE	261249-018	54	0.13	18	25.00	215984	09/26/14	10/02/14	10/02/14

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Lead									
Lab #:	261249		Location	:	Presidio				
Client:	Erler & Kalinowski, I	nc.	Prep:		EPA 3050B				
Project#:	B00025.07 T4D		Analysis	:	EPA 6020				
Analyte:	Lead		Basis:		dry				
Matrix:	Soil		Received	:	09/26/14				
Units:	mg/Kg								
Field ID	Type Lab ID	Result	RL	Moisture	Diln Fac	Batch#	Sampled	Prepared	Analyzed
10700070 010 010	GAMPIE 261240 020		0 10	0.9.		216020	00/20/14	10/00/14	10/02/14

	11							
1279TPI2-2[0.5]S	SAMPLE 261249-020	54	0.19	0%	25.00	216029 09/26/14	10/02/14	10/03/14
1279SBJI-2[0.5]S	SAMPLE 261249-021	820	20	2%	2,500	216029 09/26/14	10/02/14	10/03/14
1279SBJ2-2[0.5]S	SAMPLE 261249-022	170	0.20	3%	25.00	216029 09/26/14	10/02/14	10/03/14
1279SBJ1-1[0.5]S	SAMPLE 261249-023	680	20	2%	2,500	216029 09/26/14	10/02/14	10/03/14
1279SBJ3-1[0.5]S	SAMPLE 261249-024	120	0.19	2%	25.00	216029 09/26/14	10/02/14	10/03/14
1279SBJ3-2[0.5]S	SAMPLE 261249-025	50	0.20	3%	25.00	216029 09/26/14	10/02/14	10/03/14
1279SBJ3-2[DUP]	SAMPLE 261249-026	35	0.20	2%	25.00	216029 09/26/14	10/02/14	10/03/14
1279SBJ4-1[0.5]S	SAMPLE 261249-027	370	20	2%	2,500	216029 09/26/14	10/02/14	10/03/14
1279SBJ4-2[0.5]S	SAMPLE 261249-028	200	0.20	6%	25.00	216029 09/26/14	10/03/14	10/06/14
1279SBJ2-1[0.5]S	SAMPLE 261249-029	180	0.19	3%	25.00	216029 09/26/14	10/03/14	10/06/14
	BLANK QC759920	ND	0.13		25.00	215984	10/01/14	10/01/14
	BLANK QC760100	ND	0.20		25.00	216029	10/02/14	10/03/14

ND= Not Detected RL= Reporting Limit Page 2 of 2

California Title 22 Metals								
Lab #:	261249	Project#:	B00025.07 T4D					
Client:	Erler & Kalinowski, Inc.	Location:	Presidio					
Field ID:	1279TPI2-1[1.5]D	Basis:	dry					
Lab ID:	261249-019	Sampled:	09/26/14					
Matrix:	Soil	Received:	09/26/14					
Units:	mg/Kg							

Moisture: 3%

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.14	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Arsenic	3.9	0.24	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Barium	120	0.19	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Beryllium	0.24	0.12	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Cadmium	ND	0.16	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Chromium	290	21	2,500	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Cobalt	40	0.19	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Copper	30	0.27	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Lead	340	12	2,500	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Mercury	0.065	0.019	1.000	215965	10/01/14	10/01/14	METHOD	EPA 7471A
Molybdenum	ND	0.39	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Nickel	460	38	2,500	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Selenium	ND	0.20	25.00	215984	10/02/14	10/03/14	EPA 3050B	EPA 6020
Silver	0.30	0.12	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Thallium	0.14	0.060	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Vanadium	47	0.43	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020
Zinc	56	0.60	25.00	215984	10/02/14	10/02/14	EPA 3050B	EPA 6020

	California	Title 22 Meta	ls	
Lab #:	261249	Location:	Presidio	
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD	
Project#:	B00025.07 T4D	Analysis:	EPA 7471A	
Analyte:	Mercury	Diln Fac:	1.000	
Type:	BLANK	Batch#:	215965	
Lab ID:	QC759854	Prepared:	10/01/14	
Matrix:	Soil	Analyzed:	10/01/14	
Units:	mg/Kg			
Degul+	DI			

Result	RL	
ND	0.017	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	California T	itle 22 Metals	
Lab #:	261249	Location:	Presidio
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD
Project#:	B00025.07 T4D	Analysis:	EPA 7471A
Analyte:	Mercury	Batch#:	215965
Matrix:	Soil	Prepared:	10/01/14
Units:	mg/Kg	Analyzed:	10/01/14
Diln Fac:	1.000		

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC759855	0.2083	0.2020	97	75-125		
BSD	QC759856	0.2083	0.2042	98	75-125	1	35

QC759858

MSD

	California Title 22 Metals								
Lab #:		261249	Location:	Pres	ldio				
Client:		Erler & Kalinowski, Inc	. Prep:	METHO	DD				
Project#:		B00025.07 T4D	Analysis:	EPA 7	7471A				
Analyte:		Mercury	Diln Fac:	1.000)				
Field ID:		ZZZZZZZZZ	Batch#:	21596	55				
MSS Lab II	D:	261289-001	Sampled:	09/29	0/14				
Matrix:		Soil	Received:	09/30)/14				
Units:		mg/Kg	Prepared:	10/01	/14				
Basis:		as received	Analyzed:	10/01	/14				
Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim	
MS QC'	759857	0.03471	0.2049	0.2463	103	75-125			

0.2119

0.2574

105

75-125 2

35

California Title 22 Metals								
Lab #:	261249	Location:	Presidio					
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3050B					
Project#:	B00025.07 T4D	Analysis:	EPA 6020					
Туре:	BLANK	Diln Fac:	25.00					
Lab ID:	QC759920	Batch#:	215984					
Matrix:	Soil	Prepared:	10/01/14					
Units:	mg/Kg	Analyzed:	10/01/14					

Analyte	Result	RL	
Antimony	ND	0.15	
Arsenic	ND	0.25	
Barium	ND	0.20	
Beryllium	ND	0.13	
Cadmium	ND	0.16	
Chromium	ND	0.22	
Cobalt	ND	0.20	
Copper	ND	0.28	
Lead	ND	0.13	
Molybdenum	ND	0.41	
Nickel	ND	0.39	
Selenium	ND	0.24	
Silver	ND	0.13	
Thallium	ND	0.063	
Vanadium	ND	0.44	
Zinc	ND	0.63	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Lead								
Lab #:	261249	Location:	Presidio						
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3050B						
Project#:	B00025.07 T4D	Analysis:	EPA 6020						
Analyte:	Lead	Basis:	dry						
Matrix:	Soil	Diln Fac:	25.00						
Units:	mg/Kg	Received:	09/26/14						

Field ID	Туре	MSS Lab ID La	ab ID	MSS Result	Spiked	Result	%REC	Limits	Moisture RPD	Lim	n Batch#	Sampled	Prepared	Analyzed
	BS	QC75	9921		25.00	29.35	117	75-125			215984		10/01/14	10/01/14
	BSD	QC75	9922		25.00	30.53	122	75-125	4	30	215984		10/01/14	10/01/14
1279TPK-1[0.5]S	MS	261249-001 QC75	9923	227.3	24.85	258.2 >LR	125 NM	75-125	1%		215984	09/25/14	10/01/14	10/01/14
1279TPK-1[0.5]S	MSD	261249-001 QC75	9924		24.49	317.9 >LR	370 NM	75-125	1% NC	30	215984	09/25/14	10/01/14	10/01/14
	BS	QC76	0101		25.00	26.16	105	75-125			216029		10/02/14	10/03/14
	BSD	QC76	0102		25.00	25.99	104	75-125	1	30	216029		10/02/14	10/03/14
1279SBJ1-1[0.5]S	MS	261249-023 QC76	0103	682.2	24.41	1,974 >LR	5291 NM	75-125	2%		216029	09/26/14	10/02/14	10/03/14
1279SBJ1-1[0.5]S	MSD	261249-023 QC76	0104		25.06	495.9 >LR	-743 NM	75-125	2% NC	30	216029	09/26/14	10/02/14	10/03/14

NC= Not Calculated NM= Not Meaningful: Sample concentration > 4X spike concentration >LR= Response exceeds instrument's linear range RPD= Relative Percent Difference Page 1 of 1

	California T	itle 22 Metals	
Lab #:	261249	Location:	Presidio
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3050B
Project#:	B00025.07 T4D	Analysis:	EPA 6020
Matrix:	Soil	Batch#:	215984
Units:	mg/Kg	Prepared:	10/01/14
Diln Fac:	25.00	-	

Type: BS	Lab I	D: QC759	9921		
Analyte	Spiked	Result	%REC	Limits	Analyzed
Antimony	25.00	26.50	106	75-125	10/01/14
Arsenic	25.00	27.33	109	75-125	10/01/14
Barium	25.00	27.49	110	75-125	10/01/14
Beryllium	25.00	27.14	109	75-125	10/01/14
Cadmium	25.00	27.36	109	75-125	10/01/14
Chromium	25.00	28.84	115	75-125	10/01/14
Cobalt	25.00	28.83	115	75-125	10/01/14
Copper	25.00	26.93	108	75-125	10/01/14
Lead	25.00	29.35	117	75-125	10/01/14
Molybdenum	25.00	27.28	109	75-125	10/01/14
Nickel	25.00	29.00	116	75-125	10/01/14
Selenium	25.00	29.45	118	75-125	10/07/14
Silver	25.00	27.21	109	75-125	10/01/14
Thallium	25.00	27.03	108	75-125	10/01/14
Vanadium	25.00	27.86	111	75-125	10/01/14
Zinc	25.00	26.70	107	75-125	10/01/14

Type:	BSD	Lab ID:	QC759922		
Analyt	e Spiked	Result	%REC Limit	s RPD	Lim Analyzed
Antimony	25.00	27.66	111 75-12	54	30 10/01/14
Arsenic	25.00) 29.04	116 75-12	56	30 10/01/14
Barium	25.00) 28.59	114 75-12	54	30 10/01/14
Beryllium	25.00) 28.11	112 75-12	54	30 10/01/14
Cadmium	25.00) 28.31	113 75-12	53	30 10/01/14
Chromium	25.00) 29.81	119 75-12	53	30 10/01/14
Cobalt	25.00) 29.94	120 75-12	54	30 10/01/14
Copper	25.00) 28.86	115 75-12	57	30 10/01/14
Lead	25.00) 30.53	122 75-12	54	30 10/01/14
Molybdenum	25.00) 28.45	114 75-12	54	30 10/01/14
Nickel	25.00) 29.96	120 75-12	53	30 10/01/14
Selenium	25.00) 29.53	118 75-12	50	30 10/07/14
Silver	25.00) 28.28	113 75-12	54	30 10/01/14
Thallium	25.00) 28.11	112 75-12	54	30 10/01/14
Vanadium	25.00) 28.83	115 75-12	53	30 10/01/14
Zinc	25.00) 28.74	115 75-12	57	30 10/01/14

	California T	itle 22 Metals	
Lab #:	261249	Location:	Presidio
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3050B
Project#:	B00025.07 T4D	Analysis:	EPA 6020
Field ID:	1279TPK-1[0.5]S	Batch#:	215984
MSS Lab ID:	261249-001	Sampled:	09/25/14
Matrix:	Soil	Received:	09/26/14
Units:	mg/Kg	Prepared:	10/01/14
Basis:	dry	Analyzed:	10/01/14
Diln Fac:	25.00	-	

Type: Lab ID:

Zinc

Thallium

Vanadium

MS QC759923

Moisture:

1%

113 113

113

113

27.85

90.92 79.20

Analyte	MSS Result	Spiked	Result	%REC Limits
Antimony	1.988	24.85	9.143	29 * 75-125
Arsenic	6.153	24.85	33.13	109 75-125
Barium	111.6	24.85	138.8	109 NM 75-125
Beryllium	0.4877	24.85	28.68	113 75-125
Cadmium	0.1004	24.85	27.92	112 75-125
Chromium	89.23	24.85	117.2	113 75-125
Cobalt	14.40	24.85	43.05	115 75-125
Copper	18.54	24.85	47.57	117 75-125
Lead	227.3	24.85	258.2 >LR	125 NM 75-125
Molybdenum	0.5870	24.85	24.17	95 75-125
Nickel	66.90	24.85	93.84	108 75-125
Selenium	0.3229	24.85	30.21	120 75-125
Silver	0.06391	24.85	27.80	112 75-125
Thallium	0.1552	24.85	28.00	112 75-125
Vanadium	63.33	24.85	90.98	111 75-125
Zinc	51.59	24.85	78.80	109 75-125

Type: Lab ID:	MSD QC759924	Moist	ure: 1%			
I	Analyte	Spiked	Result	%REC	Limits R	PD Lim
Antimony		24.49	14.24	50 *	75-125 4	5 * 30
Arsenic		24.49	34.06	114	75-125 4	30
Barium		24.49	139.7	115 NM	75-125 1	30
Bervllium		24.49	28.40	114	75-125 0	30
Cadmium		24.49	27.95	114	75-125 2	30
Chromium		24.49	117.7	116	75-125 1	30
Cobalt		24.49	42.67	115	75-125 0	30
Copper		24.49	47.43	118	75-125 1	30
Lead		24.49	317.9 >LR	370 NM	75-125 N	C 30
Molvbdenum		24.49	24.55	98	75-125 3	30
Nickel		24.49	95.32	116	75-125 2	30
Selenium		24.49	30.27	122	75-125 2	30
Silver		24.49	27.65	113	75-125 1	30
mh - 114		21.12		110		20

24.49

24.49

24.49

*= Value outside of QC limits; see narrative NC= Not Calculated NM= Not Meaningful: Sample concentration > 4X spike concentration >LR= Response exceeds instrument's linear range RPD= Relative Percent Difference Page 1 of 1

13.1

30 30

30

30

75-125 1

75-125 0

1

75-125

	М	oisture		
Lab #:	261249	Location:	Presidio	
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD	
Project#:	B00025.07 T4D	Analysis:	ASTM D2216/CLP	
Analyte:	Moisture, Percent	Diln Fac:	1.000	
Matrix:	Soil	Received:	09/26/14	
Units:	00	Analyzed:	10/04/14	

Field ID	Lab ID	Result	RL	Batch#	Sampled
1279TPK-1[0.5]S	261249-001	1	1	216082	09/25/14
1279SBK-1[0.5]S	261249-002	2	1	216082	09/25/14
1279SBK-2[0.5]S	261249-003	2	1	216082	09/25/14
1279SBK-3[0.5]S	261249-004	2	1	216082	09/25/14
1279SBK-4[0.5]S	261249-005	2	1	216082	09/25/14
1279SBA1-1[0.5]S	261249-006	1	1	216082	09/25/14
1279SBA2-3[0.5]S	261249-007	2	1	216082	09/25/14
1279SBA2-4[0.5]S	261249-008	2	1	216082	09/25/14
1279SBA2-5[0.5]S	261249-009	2	1	216082	09/25/14
1279SBM-1[0.5]S	261249-010	2	1	216082	09/25/14
1279SBM-2[0.5]S	261249-011	2	1	216082	09/25/14
1279SBM-3[0.5]S	261249-012	2	1	216082	09/25/14
1279SBL-1[0.5]S	261249-013	3	1	216082	09/25/14
1279SBL-2[0.5]S	261249-014	2	1	216082	09/25/14
1279SBL-3[0.5]S	261249-015	2	1	216082	09/26/14
1279SBL-3[DUP]	261249-016	2	1	216082	09/26/14
1279TPI1-1[0.5]S	261249-017	2	1	216082	09/26/14
1279TPI2-1[0.5]S	261249-018	1	1	216082	09/26/14
1279TPI2-1[1.5]D	261249-019	3	1	216082	09/26/14
1279TPI2-2[0.5]S	261249-020	ND	1	216082	09/26/14
1279SBJI-2[0.5]S	261249-021	2	1	216083	09/26/14
1279SBJ2-2[0.5]S	261249-022	3	1	216083	09/26/14
1279SBJ1-1[0.5]S	261249-023	2	1	216083	09/26/14
1279SBJ3-1[0.5]S	261249-024	2	1	216083	09/26/14
1279SBJ3-2[0.5]S	261249-025	3	1	216083	09/26/14
1279SBJ3-2[DUP]	261249-026	2	1	216083	09/26/14
1279SBJ4-1[0.5]S	261249-027	2	1	216083	09/26/14
1279SBJ4-2[0.5]S	261249-028	6	1	216083	09/26/14
1279SBJ2-1[0.5]S	261249-029	3	1	216083	09/26/14

ND= Not Detected RL= Reporting Limit Page 1 of 1

		Moisture		
Lab #:	261249	Location:	Presidio	
Client:	Erler & Kalinowski, Inc.	Prep:	METHOD	
Project#:	B00025.07 T4D	Analysis:	ASTM D2216/CLP	
Analyte:	Moisture, Percent	Diln Fac:	1.000	
Type:	SDUP	Sampled:	09/26/14	
Matrix:	Soil	Received:	09/26/14	
Units:	0	Analyzed:	10/04/14	
Field ID	MSS Lab ID Lab ID	MSS Result Res	sult RL RPD	Lim Batch#

Field ID	MSS Lab ID Lab ID	MSS Result	Result	RL	RPD	Lim	Batch#
1279TPI2-2[0.5]S	261249-020 QC760314	<1.000	0.5597	1.000	28 *	10	216082
1279SBJ2-1[0.5]S	261249-029 QC760315	3.166	2.864	1.000	10	10	216083

*= Value outside of QC limits; see narrative
RL= Reporting Limit
RPD= Relative Percent Difference
Page 1 of 1

and setting to the

H

Laboratory Job Number 261692 ANALYTICAL REPORT

Erler & Kalinowski, Inc. 1870 Ogden Drive Burlingame, CA 94010-5306 Project : B00025.07 T4D Location : Presidio - Lendrum Court Level : II

<u>Sample ID</u> 1279SBH1-4[0.5]S <u>Lab ID</u> 261692-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar Project Manager tracy.babjar@ctberk.com (510) 204-2226

CA ELAP# 2896, NELAP# 4044-001

Date: <u>10/21/2014</u>

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 261692 Erler & Kalinowski, Inc. B00025.07 T4D Presidio - Lendrum Court 10/14/14 09/24/14

This data package contains sample and QC results for one soil sample, requested for the above referenced project on 10/14/14. The sample was received cold and intact.All samples underwent the (ISM) Incremental Sampling Method for all analysis.

Metals (EPA 6020):

No analytical problems were encountered.

Moisture (ASTM D2216/CLP):

No analytical problems were encountered.

5.1

261692

Subject: RE: B00025.07 T4D - C&T Login Summary (261249) From: "correia, daniel" <DCorreia@EKICONSULT.COM> Date: 10/14/2014 12:02 PM To: 'Tracy Babjar' <tracy.babjar@ctberk.com>

Hey Tracy,

Thanks for the congrats, it was a beautiful day.

I would like to request that C&T analyze a sample we placed on hold. I've attached a revised COC to reflect the request. The sample is 1279SBH1-4[0.5]S, and analytes are Lead, and moisture content. Let me know if you have any questions. Thanks Tracy.

-DJC

T# 261194-026

From: Tracy Babjar [mailto:tracy.babjar@ctberk.com]
Sent: Tuesday, September 30, 2014 11:50 AM
To: correia, daniel
Cc: montgomery-brown, john; dewitt, john; Goy >> John Goyette
Subject: Re: B00025.07 T4D - C&T Login Summary (261249)

Hi Daniel,

We will get those two samples added on.

Congratulations!

Tracy ③:-)

On 9/30/2014 9:02 AM, correia, daniel wrote: Good morning Tracy,

I spoke with John about this COC. We decided that yes, we do want to run sample 1279SBJ2-1[0.5]S for lead and moisture with ISM. We also decided to run the sample we put on hold 1279SBL-2[0.5]S for lead and moisture with ISM as well. I've attached a PDF'ed revision for clarification.

I'll be out of the office till next tuesday, I'm getting married :), so if you have any questions please contact John DeWitt or John Montgomery-Brown. Thanks Tracy!

-DJC

Daniel Correia Erler & Kalinowski, Inc. 1870 Ogden Drive Burlingame, CA 94010 Office: (650)292-9100 DCorreia@EKIconsult.com

From: Tracy Babjar [<u>tracy.babjar@ctberk.com]</u> Sent: Monday, September 29, 2014 1:49 PM To: montgomery-brown, john; cheng, cindy; correia, daniel; daugherty, jessica; dewitt, john Subject: B00025.07 T4D - C&T Login Summary (261249)

Received an extra sample not on COC with sample ID: 1279SBJ2-1[0.5]S and sampling time of 09/26/14 at 1125. Placed on hold, Please Advise.

C&T Login Summary for 261249

CHAIN OF CUSTODY RECORD

261692

CONSULTING ENGINEERS AND SCIENTISTS

1870 Ogden Drive, Burlingame, CA 94010

Phone: (650) 292-9100 Fax: (650) 552-9012

Project Name: Presidio - Lendr	um Ct.	Project No B00025.07	.: ' T4D					ANA	LYSES	REQU	JESTE	D			EKI (
Project Location: Presidio of San Francisc	o, CA	Laborator	<i>v:</i>	Curtis & Tom 2323 5th Stree Berkeley, CA (510) 486-090	pkins et 94710 00	6020									GNC
Report Results to:		Sampled B	By:		-	hod									AROU
John DeWitt, Daniel Cor	rreia	_	•	Daniel Cor	reia	Met	ntent				1				URN/
Field Sample	Lab	Date	Time	Type of	No. of	l by EPA	isture Con								PECTED T
Identification	Sample No.			Sample	Containers	Lee	β					ļ			EXI
1279SBH1-4[0.5]S		9/24/2014	1545	soil	l gallon zip-lock bag	x	x								std.
					<u> </u>										
				┼──┤		+									
													<u> </u>		
						_									
				1 1	andu yangan k										
						-									
Encoial Instructions															
Prepare ISM for sample Email laboratory confirm USE Presidio QAPP	prior to analyst nation, EDFs, a	is. Run moi ind pdfs of l	sture after ab sheets (ISM to jdewitt@ek	iconsult.com with cc to do	correia@e	kiconsult.	com an	d labs@	ekiconsi	ılt.com	on all c	orrespo	ondenc	e.

Relinquished by: (Signature)	Date:	Time:	Received By:
Daniel Correia	14-Oct-14	1155	
Relinquished by: (Signature)	Date:	Time:	Received By:
Relinquished by: (Signature)	Date:	Time:	Received By:

4 of 14

261692

~

COC No. 20140924-1
Revision 1a
/
Dementer
Remarks
· · · · · · · · · · · · · · · · · · ·
Time:
Time:
Time:

5 of 14

CHAIN OF CUSTODY RECORD

26/194

Project Name:		Dust	4.81-		Duningunie, 0A 840			_	Fax: (a: (650) : 650) <u>5</u> 52	292-9100 2-9012			•
Presidio - Lendrum Court		B0002	5.07 T4D					ANA	LYSE	S REQ	JESTED		EKI	COC No. 2014(1977 -1
Project Location:		Labor	atory:	Curtis & T 2323 5th S	ompkins Street	8	thod	Τ					<u> </u>	
Presidio of San Francisco, CA				Berkeley, ((510) 486-	CA 94710 0900	10d 827	EPA Me	y EPA	20				GNDC	
John DeWitt, Labs EKI, Daniel Correia		Sampi	ed By:	Dania	1 Correio	A Met	l yd sl	rans b B	60 l				IRNAR	
Field Sample	Lab	Date	Time	Type of	No. of		22 Meta	ns & Fu od 1613	al				TED TL	
	Sample No.			Sample	Containers	PAHS SIM	Title 6020	Dioxii Metho	16				EXPEC	Remarks
1279 TP305- 050				soil	1 gallon size zip-lock bag							+	sta	ATZ
1279 TP305-0[3.5]		4/22/	m 1152	SUIL	I guillon zyp bock long	X	X	0					str	Rotan Ton to ELF
1279 [19302 - 5[0 5]			1320	+				移	X				11	
1279 14801 - 560.53		┨━┥─	1350	-		_			X					
$\frac{1277}{1270} \frac{1277}{1270} \frac{12}{12} \frac{12}{$			1445			_		6.	X					
1217 11 3001 0[3.5]		1	1015	4	L		X	0					4	Return Jon to EtiI
				<u> </u>		_		-						
												<u> </u>		
												<u> </u>		
								+						
			+					+						
Special instructions:	L	L	_ <u></u>										<u> </u>	L
Email laboratory confirmation, EDFs, and po	lfs of lab shee	ets to jde	witt@ekicor	sult.com ar	nd cc. I ABS@ekiconsult.com		lJn 1	nois	fure q	itte.	ISM			
USE Presidio QAPP (Repace FS) Relinquisted by/(Signature)	n for MIS	Amples	phin 1	b Analysis	Retry Macked Sty	nie ucon	EKI		n.com c	Andy	responden <u>Ric lay</u>	othis.		From the second s
Relinguisher by: (Signature)	mela)	EK1		19724/19	1604	Rece		//	2	<u> </u>	t			Time: 1604
Relinguished by (Signature)				2/24/4	11me:/730	Recei	71	N	/	1	N	T		Time: 1730
				Daté:	Time:	Rece	By:		t	/	- 7	5		Time:
						· · · ·	,		• •••	•				1

what on we cold Re

6 of 14

CHAIN OF CUSTODY RECORD

261194

CONSULTING ENGINEERS AND SCIENTISTS 1870 Ogden Drive, Burlingame, CA 94010 Phone: (650) 292-9100 Fax: (650) 552-9012 Project Name: Project No.: Presidio - Lendrum Court ANALYSES REQUESTED EKI COC No. 2014(1923-) B00025.07 T4D Project Location: Laboratory: 5A620 Curtis & Tompkins Title 22 Metals by EPA Method 8020 PAHs by EPA Method 8270C v SIM 2323 5th Street Presidio of San Francisco, CA Dioxins & Furans by EPA Method 1613B Berkeley, CA 94710 EXPECTED TURNAROUND (510) 486-0900 Report Results to: only Sampled By: John DeWitt, Labs EKI, Daniel Correia Daniel Correia Lead Field Sample Lab Type of No. of Date Time Identification Sample No. Sample Containers Remarks 12785BA2-110575 1/23/14 0840 Ant X soil 1 gallon size zip-lock bag std. 1279 TPAI-110.575 0900 AA NIT 8 1279 TPA1-2 2.01 Ω 0920 Х Х Return Juto Ext 12795BB1-1 10.575 1000 X 12795BC1-1 10.515 (6) 1045 VXXX Х HOLDSAD 1279TPC1-1 [1.5]Δ 1100 Rohm Janto EKE 1552 1279 TP (1-) [3.0] Π 1150 SIP HOLD Rotur The to EKE 10.575 17795301-1 13 1200 R Х 1412795BE1.1[0.5]5 1415 WAR WE 12795BE1-210-525 1510 4 An X Special Instructions: Rui maisture Alke 15m. Email laboratory confirmation, EDFs, and pdfs of lab sheets to idewitt@ekiconsult.com and cc LABS@ekiconsult.com, and dcorreia@ekiconsult.com on all correspondence. USE Presidio QAPP • Prese ISM for all samples prior to Analysis - Retvan Machael JASAmples to ELE for Malysis by others... Relinquisted by: (Signature) Date: Time: 9/24/14 603 - Wantel correct EKI Relinquished by: (Signature) Time: 730 Date: Received Relinquished by: (Signature) Date Time: Received By: Time:

intest on is all the

đ

4

CHAIN OF CUSTODY RECORD

2/01194

CONSULTING ENGINEERS AND SCIENTISTS 1870 Ogden Drive, Burlingame, CA 94010 Phone: (650) 292-9100 Fax: (650) 552-9012 Proiect Name: Project No.: EKI COC No. 20140914-1 ANALYSES REQUESTED Presidio - Lendrum Court B00025.07 T4D Project Location: Laboratory: Curtis & Tompkins Ditate by EPA Method 8270C \ (helpel 2323 5th Street Presidio of San Francisco, CA Dioxins & Furans by EPA Method 1613B Berkelev, CA 94710 EXPECTED TURNAROUND (510) 486-0900 Meth Report Results to: Sampled By: 22 John DeWitt, Labs EKI, Daniel Correia Чd Daniel Correia Hold PAHs by E SIM Field Sample Lab F.H.C EPA Type of No. of Date Time Identification Sample No. Sample Containers Remarks 9/21/14 0900 12795802-110.525 16 × 1 gallon size zip-lock bag soit std TPF2-110.0-1.070 0945 X Return JAN to EKT 1279 TPF2-1[OUP] Ń 0945 \bigcirc 279 TPG1-2 [0.5-1.5] A lous X 0 1279 TP FQ-1(1.5] D 1325 X \mathbf{O} Leturn Into Ext 12795841-160.515 1355 \times 12795BH1-250.575 22 1420 Х 23 12795RH1-3[0.5]5 1940 12725RG2-1[05]5 24 1525 X 12795842-1[0.5]5 25 1540 12793841-4[0.5]5 U ×m 1545 X Hold ism a lso 127958140-2[0.5]5 21 1600 ∞ Run mostine After ISin Special Instructions: Date: Fime: Onte /frane 9/24/14/1602 Time: (Amiel Conera) EKI 1602 Relinquished by. (Signature) Time: 1241 Z/) Relinquisted by: (Signature) Date: Time: Received By: Time:

intait on 112 wid Re

 ∞ ō 4

COOLER RECEIPT CHECKLIST Curtis & Tompkins, Ltd.
Login # 2(2)194 Date Received 972414 Number of coolers Z Client FK Project B000 25.07 TYD
Date Opened Date Logged in By (print) F1 (sign) _
1. Did cooler come with a shipping slip (airbill, etc) YES NO Shipping info
2A. Were custody seals present? □YES (circle) on cooler on samples □-NQ How manyNameDate
□ Bubble Wrap □ Foam blocks □ Bags □ None □ Cloth material □ Cardboard □ Styrofoam □ Paper towels 7. Temperature documentation: * Notify PM if temperature exceeds 6°C
Type of ice used: \square Wet \square Blue/Gel \square None Temp(°C)
Samples Received on ice & cold without a temperature blank; temp. taken with IR gun-
□ Samples received on ice directly from the field. Cooling process had begun
8. Were Method 5035 sampling containers present?YES <u>WO</u> If YES, what time were they transferred to freezer?
9. Did all bottles arrive unbroken/unopened?
10. Are there any missing / extra samples? YES THE
12 Are sample labels present in good condition and complete?
13. Do the sample labels agree with custody papers?
14. Was sufficient amount of sample sent for tests requested? YES NO
15. Are the samples appropriately preserved?YES NO N/A
16. Did you check preservatives for all bottles for each sample?YES NO N/A
17. Did vou document vour preservative check? YES NO N/A
18. Did you change the hold time in LIMS for unpreserved VOAs?YES NO N/A
18. Did you change the hold time in LIMS for unpreserved VOAs? YES NO N/A 19. Did you change the hold time in LIMS for preserved terracores? YES NO N/A
18. Did you change the hold time in LIMS for unpreserved VOAs? YES NO N/A 19. Did you change the hold time in LIMS for preserved terracores? YES NO N/A 20. Are bubbles > 6mm absent in VOA samples? YES NO N/A 21. Was the client contented concerning this sample delivery? YES NO
18. Did you change the hold time in LIMS for unpreserved VOAs? YES NO N/A 19. Did you change the hold time in LIMS for preserved terracores? YES NO N/A 20. Are bubbles > 6mm absent in VOA samples? YES NO N/A 21. Was the client contacted concerning this sample delivery? YES NO If YES. Who was called? By Date: Date:
18. Did you change the hold time in LIMS for unpreserved VOAs? YES NO N/A 19. Did you change the hold time in LIMS for preserved terracores? YES NO N/A 20. Are bubbles > 6mm absent in VOA samples? YES NO N/A 21. Was the client contacted concerning this sample delivery? YES NO If YES, Who was called? By Date:
18. Did you change the hold time in LIMS for unpreserved VOAs? YES NO N/A 19. Did you change the hold time in LIMS for preserved terracores? YES NO N/A 20. Are bubbles > 6mm absent in VOA samples? YES NO N/A 21. Was the client contacted concerning this sample delivery? YES NO If YES, Who was called? By Date:
18. Did you change the hold time in LIMS for unpreserved VOAs?YES NO N/A 19. Did you change the hold time in LIMS for preserved terracores?YES NO N/A 20. Are bubbles > 6mm absent in VOA samples?YES NO N/A 21. Was the client contacted concerning this sample delivery?YES NO- If YES, Who was called?ByDate: COMMENTSYES NO- ISTASAMPL_LALCAISTAOPZICD_VP ,
18. Did you change the hold time in LIMS for unpreserved VOAs? YES NO N/A 19. Did you change the hold time in LIMS for preserved terracores? YES NO N/A 19. Did you change the hold time in LIMS for preserved terracores? YES NO N/A 20. Are bubbles > 6mm absent in VOA samples? YES NO N/A 21. Was the client contacted concerning this sample delivery? YES NO If YES, Who was called? By Date:
18. Did you change the hold time in LIMS for unpreserved VOAs?YES NO N/A 19. Did you change the hold time in LIMS for preserved terracores?YES NO N/A 20. Are bubbles > 6mm absent in VOA samples?YES NO N/A 21. Was the client contacted concerning this sample delivery?YES NO- If YES, Who was called?ByDate: COMMENTS 13. Did You change the hold time in LIMS for preserved terracores?YES NO- If YES, Who was called?ByDate: COMMENTS 13. Did You change the list of the

Detections Summary for 261692

Results for any subcontracted analyses are not included in this summary.

Client : Erler & Kalinowski, Inc. Project : B00025.07 T4D Location : Presidio - Lendrum Court

Client Sample ID : 1279SBH1-4[0.5]S Laboratory Sample ID :

261692-001

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Lead	170		0.20	mg/Kg	Dry	25.00	EPA 6020	EPA 3050B
Moisture, Percent	9		1	010	As Recd	1.000	ASTM D2216/CLP	METHOD

Lead							
Lab #:	261692	Location:	Presidio - Lendrum Court				
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3050B				
Project#:	B00025.07 T4D	Analysis:	EPA 6020				
Analyte:	Lead	Batch#:	216573				
Field ID:	1279SBH1-4[0.5]S	Sampled:	09/24/14				
Matrix:	Soil	Received:	09/24/14				
Units:	mg/Kg	Prepared:	10/20/14				
Basis:	dry	Analyzed:	10/20/14				
Diln Fac:	25.00						

Type	Lab ID	Result	RL	Moisture
SAMPLE	261692-001	170	0.20	9%
BLANK	QC762260	ND	0.20	

ND= Not Detected RL= Reporting Limit Page 1 of 1

QC762262

QC762263

QC762264

167.1

BSD

MSD

MS

Lead									
Lab #:	261692		Pres	idio - L	endrum Court				
Client:	Erler & Kalinowski,	Inc.	Prep:	EPA	3050B				
Project#:	ject#: B00025.07 T4D Analysis:				EPA 6020				
Analyte:	e: Lead Diln Fac:		25.00						
Field ID:	1279SBH1-4[0.5]S	279SBH1-4[0.5]S		216573					
MSS Lab ID:	Lab ID: 261692-001 Sampled:		Sampled:	09/24/14					
Matrix:	Soil		Received:	09/24/14					
Units:	mg/Kg		Prepared:	10/20/14					
Basis:	dry		Analyzed:	10/2	0/14				
Type Lab ID	MSS Result	Spiked	Result	%REC	Limits	Moisture RPD	Lim		
BS QC762261		50.00	49.54	99	75-125				

53.16

229.3

209.5

106

115

77

75-125

75-125

75-125

9%

9%

7

9

30

30

50.00

54.03

Moisture							
Lab #:	261692 Erlor (Kalipowski Ing	Location:	Presidio - Lendrum Court				
Project#:	B00025.07 T4D	Analysis:	ASTM D2216/CLP				
Analyte:	Moisture, Percent	Diln Fac:	1.000				
Field ID:	1279SBH1-4[0.5]S	Batch#:	216480				
Lab ID:	261692-001	Sampled:	09/24/14				
Matrix:	Soil	Received:	09/24/14				
Units:	8	Analyzed:	10/15/14				
Result	RL						
9	1						

Moisture										
Lab #:	2616	92	Location	.:	Presid	io -	Lendrum C	lourt		
Client:	Erle	r & Kalinowski,	Inc. Prep:		METHOD					
Project#:	B000	25.07 T4D	Analysis	Analysis:			ASTM D2216/CLP			
Analyte:	Mois	ture, Percent	Units:		00					
Field ID:	ZZZZ	ZZZZZ	Diln Fac	::	1.000					
Type:	SDUP	i	Batch#:	Batch#:			216480			
Matrix:	Soil		Analyzed	Analyzed: 10/15/14						
MSS Lab ID	Lab ID	MSS Result	Result	RL	RPD	Lim	Sampled	Received		
261718-005	QC761898	31.48	31.61	1.000	0	10	10/09/14	10/14/14		
261724-001	QC761899	10.20	10.96	1.000	7	10	10/14/14	10/15/14		
261732-003	32-003 QC761900 9.962		10.09	.09 1.000		10	10/15/14	10/15/14		

RL= Reporting Limit RPD= Relative Percent Difference Page 1 of 1

October 16, 2014 Vista Project I.D.: 1400718

Mr. John DeWitt Erler & Kalinowski, Inc 1870 Ogden Drive Burlingame, CA 94010

Dear Mr. DeWitt,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on October 02, 2014. This sample set was analyzed on a standard turn-around time, under your Project Name 'B00025.07 T4D'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 1400718 Case Narrative

Sample Condition on Receipt:

Seven soil samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1613

These samples were extracted and analyzed for the 2,3,7,8-substituted chlorinated dioxins and furans by EPA Method 1613 using a ZB-5MS GC column. The results are reported to the EPA Method 1613 Minimum Levels.

Holding Times

These samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	15
Certifications	16
Sample Receipt	17

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1400718-01	1279TP305-D[3.5]	22-Sep-14 11:52	02-Oct-14 09:02	Glass Jar, 120mL
				Glass Jar, 120mL
1400718-02	1279TP304-D[3.5]	22-Sep-14 15:15	02-Oct-14 09:02	Glass Jar, 120mL
				Glass Jar, 120mL
1400718-03	1279TPA1-2[2.0]D	23-Sep-14 09:20	02-Oct-14 09:02	Glass Jar, 120mL
				Glass Jar, 120mL
1400718-04	1279TPF2-1[0.0-1.0]D	24-Sep-14 09:45	02-Oct-14 09:02	Glass Jar, 120mL
				Glass Jar, 120mL
1400718-05	1279TPF2-1[DUP]	24-Sep-14 09:45	02-Oct-14 09:02	Glass Jar, 120mL
				Glass Jar, 120mL
1400718-06	1279TPG1-2[0.5-1.5]D	24-Sep-14 10:45	02-Oct-14 09:02	Glass Jar, 120mL
				Glass Jar, 120mL
1400718-07	1279TPF0-1[1.5]D	24-Sep-14 13:25	02-Oct-14 09:02	Glass Jar, 120mL
				Glass Jar, 120mL

ANALYTICAL RESULTS

Sample ID: Method Blank									EPA Me	thod 1613B
Matrix: So Sample Size: 10.	lid .0 g		QC Batch: Date Extracted:	B4J0030 07-Oct-2014 8:30		La Da	ab Sample: B4J0030-BLK1 ate Analyzed : 10-Oct-14 18:1	l 11 Column: ZB-5N	//S Analyst: MAS	
Analyte	Conc. (pg/g)	RL			Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.00	1			IS	13C-2,3,7,8-TCDD	88.2	25 - 164	
1,2,3,7,8-PeCDD	ND	5.00					13C-1,2,3,7,8-PeCDD	92.5	25 - 181	
1,2,3,4,7,8-HxCDD	ND	5.00					13C-1,2,3,4,7,8-HxCDD	99.9	32 - 141	
1,2,3,6,7,8-HxCDD	ND	5.00					13C-1,2,3,6,7,8-HxCDD	101	28 - 130	
1,2,3,7,8,9-HxCDD	ND	5.00					13C-1,2,3,7,8,9-HxCDD	101	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	5.00					13C-1,2,3,4,6,7,8-HpCDD	105	23 - 140	
OCDD	ND	10.0					13C-OCDD	100	17 - 157	
2,3,7,8-TCDF	ND	1.00					13C-2,3,7,8-TCDF	87.4	24 - 169	
1,2,3,7,8-PeCDF	ND	5.00					13C-1,2,3,7,8-PeCDF	86.4	24 - 185	
2,3,4,7,8-PeCDF	ND	5.00					13C-2,3,4,7,8-PeCDF	85.5	21 - 178	
1,2,3,4,7,8-HxCDF	ND	5.00					13C-1,2,3,4,7,8-HxCDF	105	26 - 152	
1,2,3,6,7,8-HxCDF	ND	5.00					13C-1,2,3,6,7,8-HxCDF	88.7	26 - 123	
2,3,4,6,7,8-HxCDF	ND	5.00					13C-2,3,4,6,7,8-HxCDF	95.9	28 - 136	
1,2,3,7,8,9-HxCDF	ND	5.00					13C-1,2,3,7,8,9-HxCDF	98.2	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	5.00					13C-1,2,3,4,6,7,8-HpCDF	103	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	5.00					13C-1,2,3,4,7,8,9-HpCDF	116	26 - 138	
OCDF	ND	10.0					13C-OCDF	99.1	17 - 157	
						CRS	37Cl-2,3,7,8-TCDD	88.6	35 - 197	
							Toxic Equivalent Quotient (7	ΓEQ) Data		
							TEQMinWHO2005Dioxin	0.00		

RL - Reporting limit

LCL-UCL- Lower control limit - upper control limit The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Sample ID: OPR								EPA Method 1613B
Matrix: Solid Sample Size: 10.0 g	QC Date	Batch: E Extracted: 0	34J0030)7-Oct-2014	8:30		Lab Sample: B4J0030-BS1 Date Analyzed: 10-Oct-14 15:45 C	Column: ZB-5MS Ana	ılyst: MAS
Analyte	Amt Found (pg/g)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	19.4	20.0	97.0	67 - 158	IS	13C-2,3,7,8-TCDD	85.6	20 - 175
1,2,3,7,8-PeCDD	98.1	100	98.1	70 - 142		13C-1,2,3,7,8-PeCDD	95.0	21 - 227
1,2,3,4,7,8-HxCDD	96.6	100	96.6	70 - 164		13C-1,2,3,4,7,8-HxCDD	93.3	21 - 193
1,2,3,6,7,8-HxCDD	92.9	100	92.9	76 - 134		13C-1,2,3,6,7,8-HxCDD	96.0	25 - 163
1,2,3,7,8,9-HxCDD	94.1	100	94.1	64 - 162		13C-1,2,3,7,8,9-HxCDD	92.1	21 - 193
1,2,3,4,6,7,8-HpCDD	99.1	100	99.1	70 - 140		13C-1,2,3,4,6,7,8-HpCDD	89.3	26 - 166
OCDD	186	200	93.1	78 - 144		13C-OCDD	91.1	13 - 199
2,3,7,8-TCDF	19.7	20.0	98.5	75 - 158		13C-2,3,7,8-TCDF	81.5	22 - 152
1,2,3,7,8-PeCDF	101	100	101	80 - 134		13C-1,2,3,7,8-PeCDF	91.2	21 - 192
2,3,4,7,8-PeCDF	103	100	103	68 - 160		13C-2,3,4,7,8-PeCDF	89.0	13 - 328
1,2,3,4,7,8-HxCDF	95.6	100	95.6	72 - 134		13C-1,2,3,4,7,8-HxCDF	104	19 - 202
1,2,3,6,7,8-HxCDF	96.7	100	96.7	84 - 130		13C-1,2,3,6,7,8-HxCDF	88.0	21 - 159
2,3,4,6,7,8-HxCDF	95.6	100	95.6	70 - 156		13C-2,3,4,6,7,8-HxCDF	89.8	22 - 176
1,2,3,7,8,9-HxCDF	97.1	100	97.1	78 - 130		13C-1,2,3,7,8,9-HxCDF	89.0	17 - 205
1,2,3,4,6,7,8-HpCDF	90.5	100	90.5	82 - 122		13C-1,2,3,4,6,7,8-HpCDF	93.4	21 - 158
1,2,3,4,7,8,9-HpCDF	92.2	100	92.2	78 - 138		13C-1,2,3,4,7,8,9-HpCDF	98.4	20 - 186
OCDF	189	200	94.6	63 - 170		13C-OCDF	87.8	13 - 199
					CRS	37Cl-2,3,7,8-TCDD	86.8	31 - 191

LCL-UCL - Lower control limit - upper control limit
Sample ID: 127	9TP305-D[3.5]									EPA Me	thod 1613B
Client DataName:EProject:EDate Collected:2	Erler & Kalinowski, Inc 800025.07 T4D 2-Sep-2014 11:52		Sample Data Matrix: Sample Size: % Solids:	Soil 10.1 g 95.5		Lal Lab QC Dat	Doratory Data Sample: Batch: e Analyzed :	1400718-01 B4J0030 10-Oct-14 23:0 13-Oct-14 17:4	Date Received: Date Extracted: 1 Column: ZB-5MS 1 Column: DB-225	02-Oct-2014 07-Oct-2014 Analyst: MAS Analyst: ANP	9:02 8:30
Analyte	Conc. (pg/g)	RL			Qualifiers		Labeled Stand	ard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.00				IS	13C-2,3,7,8-TC	CDD	75.2	25 - 164	
1,2,3,7,8-PeCDD	ND	5.00					13C-1,2,3,7,8-1	PeCDD	87.7	25 - 181	
1,2,3,4,7,8-HxCDD	ND	5.00					13C-1,2,3,4,7,8	8-HxCDD	91.4	32 - 141	
1,2,3,6,7,8-HxCDD	ND	5.00					13C-1,2,3,6,7,8	8-HxCDD	91.2	28 - 130	
1,2,3,7,8,9-HxCDD	ND	5.00					13C-1,2,3,7,8,9	-HxCDD	88.8	32 - 141	
1,2,3,4,6,7,8-HpCD	D ND	5.00					13C-1,2,3,4,6,7	7,8-HpCDD	94.4	23 - 140	
OCDD	29.2	10.0					13C-OCDD		84.4	17 - 157	
2,3,7,8-TCDF	4.97	1.00					13C-2,3,7,8-TC	CDF	68.3	24 - 169	
1,2,3,7,8-PeCDF	ND	5.00					13C-1,2,3,7,8-1	PeCDF	77.6	24 - 185	
2,3,4,7,8-PeCDF	5.49	5.00					13C-2,3,4,7,8-1	PeCDF	78.3	21 - 178	
1,2,3,4,7,8-HxCDF	ND	5.00					13C-1,2,3,4,7,8	8-HxCDF	90.1	26 - 152	
1,2,3,6,7,8-HxCDF	ND	5.00					13C-1,2,3,6,7,8	3-HxCDF	77.8	26 - 123	
2,3,4,6,7,8-HxCDF	6.01	5.00					13C-2,3,4,6,7,8	3-HxCDF	85.1	28 - 136	
1,2,3,7,8,9-HxCDF	ND	5.00					13C-1,2,3,7,8,9	9-HxCDF	87.4	29 - 147	
1,2,3,4,6,7,8-HpCD	F 16.2	5.00					13C-1,2,3,4,6,7	7,8-HpCDF	88.2	28 - 143	
1,2,3,4,7,8,9-HpCD	F ND	5.00					13C-1,2,3,4,7,8	3,9-HpCDF	102	26 - 138	
OCDF	ND	10.0					13C-OCDF		82.3	17 - 157	
						CRS	37Cl-2,3,7,8-T	CDD	75.8	35 - 197	
							Toxic Equivale	ent Quotient (TE	CQ) Data		
							TEQMinWHO	2005Dioxin	4.90		
						LCL UC	I Lawren aantral lim	it unner control line			

LCL-UCL- Lower control limit - upper control limit The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: 1279	ГР304-D[3.5]									EPA Me	thod 1613B
Client DataName:ErlProject:B0Date Collected:22-	er & Kalinowski, Inc 0025.07 T4D Sep-2014 15:15		Sample Data Matrix: Sample Size: % Solids:	Soil 10.0 g 95.9		Lat Lab QC Dat	Doratory Data Sample: Batch: e Analyzed :	1400718-02 B4J0030 10-Oct-14 23:49 13-Oct-14 17:09	Date Received: Date Extracted: Column: ZB-5MS Column: DB-225	02-Oct-2014 07-Oct-2014 Analyst: MAS Analyst: ANP	9:02 8:30
Analyte	Conc. (pg/g)	RL			Qualifiers		Labeled Stand	ard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.00				IS	13C-2,3,7,8-TC	CDD	93.4	25 - 164	
1,2,3,7,8-PeCDD	ND	5.00					13C-1,2,3,7,8-I	PeCDD	101	25 - 181	
1,2,3,4,7,8-HxCDD	ND	5.00					13C-1,2,3,4,7,8	-HxCDD	103	32 - 141	
1,2,3,6,7,8-HxCDD	ND	5.00					13C-1,2,3,6,7,8	-HxCDD	106	28 - 130	
1,2,3,7,8,9-HxCDD	ND	5.00					13C-1,2,3,7,8,9	-HxCDD	104	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	5.00					13C-1,2,3,4,6,7	,8-HpCDD	107	23 - 140	
OCDD	23.2	10.0					13C-OCDD		112	17 - 157	
2,3,7,8-TCDF	1.63	1.00					13C-2,3,7,8-TC	CDF	93.1	24 - 169	
1,2,3,7,8-PeCDF	ND	5.00					13C-1,2,3,7,8-I	PeCDF	98.1	24 - 185	
2,3,4,7,8-PeCDF	ND	5.00					13C-2,3,4,7,8-I	PeCDF	91.0	21 - 178	
1,2,3,4,7,8-HxCDF	ND	5.00					13C-1,2,3,4,7,8	-HxCDF	109	26 - 152	
1,2,3,6,7,8-HxCDF	ND	5.00					13C-1,2,3,6,7,8	-HxCDF	91.9	26 - 123	
2,3,4,6,7,8-HxCDF	ND	5.00					13C-2,3,4,6,7,8	-HxCDF	98.0	28 - 136	
1,2,3,7,8,9-HxCDF	ND	5.00					13C-1,2,3,7,8,9	-HxCDF	103	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	5.00					13C-1,2,3,4,6,7	,8-HpCDF	101	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	5.00					13C-1,2,3,4,7,8	3,9-HpCDF	117	26 - 138	
OCDF	ND	10.0					13C-OCDF		110	17 - 157	
						CRS	37Cl-2,3,7,8-T	CDD	94.4	35 - 197	
							Toxic Equivale	ent Quotient (TEO	Q) Data		
							TEQMinWHO	2005Dioxin	1.26		

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: 127	79TPA1-2[2.0]D									EPA Me	thod 1613B
Client Data Name: Project: Date Collected:	Erler & Kalinowski, Inc B00025.07 T4D 23-Sep-2014 9:20		Sample Data Matrix: Sample Size: % Solids:	Soil 10.0 g 95.9		Lat Lab QC Dat	ooratory Data Sample: Batch: e Analyzed :	1400718-03 B4J0030 11-Oct-14 00:3 13-Oct-14 16:3	Date Received: Date Extracted: 8 Column: ZB-5MS	02-Oct-2014 07-Oct-2014 Analyst: MAS Analyst: ANP	9:02 8:30
Analyte	Conc. (pg/g)	RL			Qualifiers		Labeled Stand	lard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.00				IS	13C-2,3,7,8-T	CDD	94.2	25 - 164	-
1,2,3,7,8-PeCDD	ND	5.00					13C-1,2,3,7,8-1	PeCDD	105	25 - 181	
1,2,3,4,7,8-HxCDI	D ND	5.00					13C-1,2,3,4,7,8	8-HxCDD	107	32 - 141	
1,2,3,6,7,8-HxCDI) ND	5.00					13C-1,2,3,6,7,8	8-HxCDD	107	28 - 130	
1,2,3,7,8,9-HxCDI) ND	5.00					13C-1,2,3,7,8,9	9-HxCDD	105	32 - 141	
1,2,3,4,6,7,8-HpCI	DD 9.39	5.00					13C-1,2,3,4,6,7	7,8-HpCDD	109	23 - 140	
OCDD	32.4	10.0					13C-OCDD		110	17 - 157	
2,3,7,8-TCDF	12.5	1.00					13C-2,3,7,8-TC	CDF	93.1	24 - 169	
1,2,3,7,8-PeCDF	7.91	5.00					13C-1,2,3,7,8-	PeCDF	90.7	24 - 185	
2,3,4,7,8-PeCDF	11.9	5.00					13C-2,3,4,7,8-	PeCDF	97.7	21 - 178	
1,2,3,4,7,8-HxCDF	6.71	5.00					13C-1,2,3,4,7,8	8-HxCDF	107	26 - 152	
1,2,3,6,7,8-HxCDF	F 6.66	5.00					13C-1,2,3,6,7,8	8-HxCDF	90.4	26 - 123	
2,3,4,6,7,8-HxCDH	7.99	5.00					13C-2,3,4,6,7,8	8-HxCDF	99.7	28 - 136	
1,2,3,7,8,9-HxCDF	F ND	5.00					13C-1,2,3,7,8,9	9-HxCDF	104	29 - 147	
1,2,3,4,6,7,8-HpCI	OF 29.8	5.00					13C-1,2,3,4,6,7	7,8-HpCDF	105	28 - 143	
1,2,3,4,7,8,9-HpCI	DF ND	5.00					13C-1,2,3,4,7,8	8,9-HpCDF	117	26 - 138	
OCDF	14.5	10.0					13C-OCDF		106	17 - 157	
						CRS	37Cl-2,3,7,8-T	CDD	95.0	35 - 197	
							Toxic Equival	ent Quotient (TH	EQ) Data		
							TEQMinWHO	2005Dioxin	9.53		

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: 127	79TPF2-1[0.0-1.0]D									EPA Me	thod 1613B
Client Data			Sample Data	0.11		Lal	poratory Data	1400710.04	Data Daaring da	02 0 4 2014	0.02
Name:	Erler & Kalinowski, Inc		Matrix:	5011			Datah:	1400/18-04 D410020	Date Received:	02-Oct-2014	9:02
Project:	B00025.07 14D		Sample Size:	10.5 g			Balen:	B4J0030	Date Extracted:	07-Oct-2014	8:30
Date Collected.	24-Sep-2014 9:45		% Solids:	94.7		Dai	e Analyzeu .	11-Oct-14 01:2	Column: ZB-5MS	Analyst: MAS	
Analyta	Cono (ng/g)	DI			Qualifiana		Labeled Stand	13-001-14 10.0	0/ D	Analyst. ANP	Qualifiana
	ND	1.00			Quaimers	IC			70K	1CL-UCL	Quaimers
2,3,7,8-1CDD	ND	1.00				15	13C-2,3,7,8-10		94.1	25 - 164	
1,2,3,7,8-PeCDD	ND	5.00					13C-1,2,3,7,8-	PeCDD	99.2	25 - 181	
1,2,3,4,7,8-HxCDI	D ND	5.00					13C-1,2,3,4,7,	8-HxCDD	107	32 - 141	
1,2,3,6,7,8-HxCDI	D ND	5.00					13C-1,2,3,6,7,	8-HxCDD	108	28 - 130	
1,2,3,7,8,9-HxCDI	D ND	5.00					13C-1,2,3,7,8,9	9-HxCDD	111	32 - 141	
1,2,3,4,6,7,8-HpCI	DD 18.0	5.00					13C-1,2,3,4,6,	7,8-HpCDD	107	23 - 140	
OCDD	99.9	10.0					13C-OCDD		107	17 - 157	
2,3,7,8-TCDF	12.3	1.00					13C-2,3,7,8-T	CDF	86.8	24 - 169	
1,2,3,7,8-PeCDF	7.55	5.00					13C-1,2,3,7,8-	PeCDF	96.2	24 - 185	
2,3,4,7,8-PeCDF	13.5	5.00					13C-2,3,4,7,8-	PeCDF	94.6	21 - 178	
1,2,3,4,7,8-HxCDI	F 7.12	5.00					13C-1,2,3,4,7,	8-HxCDF	104	26 - 152	
1,2,3,6,7,8-HxCDI	F 7.07	5.00					13C-1,2,3,6,7,	8-HxCDF	91.2	26 - 123	
2,3,4,6,7,8-HxCDI	F 9.17	5.00					13C-2,3,4,6,7,	8-HxCDF	97.7	28 - 136	
1,2,3,7,8,9-HxCDI	F ND	5.00					13C-1,2,3,7,8,9	9-HxCDF	106	29 - 147	
1,2,3,4,6,7,8-HpCI	DF 34.1	5.00					13C-1,2,3,4,6,	7,8-HpCDF	105	28 - 143	
1,2,3,4,7,8,9-HpCI	DF ND	5.00					13C-1,2,3,4,7,	8,9-HpCDF	114	26 - 138	
OCDF	24.6	10.0					13C-OCDF		104	17 - 157	
						CRS	37Cl-2,3,7,8-T	CDD	91.0	35 - 197	
							Toxic Equival	ent Quotient (TH	EQ) Data		
							TEQMinWHO	2005Dioxin	12.0		
							L Lower control lin	ait upper control lim	i+		

LCL-UCL- Lower control limit - upper control limit The results are reported in dry weight. The sample size is reported in wet weight.

Client Data Name: Eff & Kalinowski, Inc Project: Sample Data Matrix: Sample Data Matrix: Laboratory Data Soil Laboratory Data Lab Sample: 1400718-05 Date Received: 02-Oct-2014 9:02 Date Collected: 24-Sep-2014 9:45 Soil Soil Date Analyzed: 11-Oct-14 09:44 Column: DB-225 Analyste NA Analyte Conc. (pg/g) RL Qualifiers Labeded Standard %R LCL-UCL Qualifiers 2,3,7.8-TCDD 1.14 1.00 Is 13C-1,2,3,7,8-PeCDD 90.4 25 - 164 1,2,3,4,7,8-HxCDD ND 5.00 Is I3C-1,2,3,6,7,8-HxCDD 98.7 32 - 141 1,2,3,7,8-PeCDD ND 5.00 Is I3C-1,2,3,4,7,8-HxCDD 98.7 32 - 141 1,2,3,7,8-PeCDD ND 5.00 Is I3C-1,2,3,4,7,8-HxCDD 98.7 32 - 141 1,2,3,7,8-PeCDF ND 5.00 Is I3C-1,2,3,4,7,8-HxCDD 95.7 32 - 141 1,2,3,7,8-PeCDF 1.0 1.0 IS I3C-1,2,3,4,7,8-HxCDD	Sample ID: 12	279TPF2-1[D	UP]								EPA Me	thod 1613B
Analyte Conc. (pg/g) RL Qualifiers Labeled Standard %R LCL-UCL Qualifiers 2,3,7,8-TCDD 1.14 1.00 1S 13C-2,3,7,8-TCDD 90.4 25 - 164 1,2,3,7,8-PCDD ND 5.00 13C-1,2,3,7,8-PCDD 102 25 - 181 1,2,3,6,7,8-HxCDD ND 5.00 13C-1,2,3,7,8-HxCDD 98.7 32 - 141 1,2,3,6,7,8-HxCDD ND 5.00 13C-1,2,3,6,7,8-HxCDD 98.7 32 - 141 1,2,3,6,7,8-HxCDD ND 5.00 13C-1,2,3,6,7,8-HxCDD 98.7 32 - 141 1,2,3,6,7,8-HxCDD ND 5.00 13C-1,2,3,6,7,8-HxCDD 95.7 32 - 141 1,2,3,7,8,9-HxCDD ND 5.00 13C-1,2,3,6,7,8-HxCDD 95.7 32 - 141 1,2,3,7,8,9-HxCDD 19.6 5.00 13C-1,2,3,7,8,9-HxCDD 95.7 32 - 141 1,2,3,7,8-PCDF 14.6 1.00 13C-2,3,7,8-TCDF 86.7 24 + 169 1,2,3,7,8-PeCDF 81.2 5.00 13C-1,2,3,7,8-PeCDF 96.3 21 - 178 <th>Client Data Name: Project: Date Collected:</th> <th>Erler & Kalino B00025.07 T4I 24-Sep-2014</th> <th>wski, Inc)):45</th> <th>Sample Data Matrix: Sample Size: % Solids:</th> <th>Soil 10.0 g 95.0</th> <th></th> <th>Lal Lab QC Dat</th> <th>boratory Data Sample: Batch: e Analyzed :</th> <th>1400718-05 B4J0030 11-Oct-14 09:4 13-Oct-14 15:3</th> <th>Date Received: Date Extracted: 4 Column: ZB-5MS 3 Column: DB-225</th> <th>02-Oct-2014 07-Oct-2014 Analyst: MAS Analyst: ANP</th> <th>9:02 8:30</th>	Client Data Name: Project: Date Collected:	Erler & Kalino B00025.07 T4I 24-Sep-2014	wski, Inc)):45	Sample Data Matrix: Sample Size: % Solids:	Soil 10.0 g 95.0		Lal Lab QC Dat	boratory Data Sample: Batch: e Analyzed :	1400718-05 B4J0030 11-Oct-14 09:4 13-Oct-14 15:3	Date Received: Date Extracted: 4 Column: ZB-5MS 3 Column: DB-225	02-Oct-2014 07-Oct-2014 Analyst: MAS Analyst: ANP	9:02 8:30
2,3,7,8-TCDD1.141.00IS13C-2,3,7,8-TCDD90.425 - 1641,2,3,7,8-PeCDDND5.0013C-1,2,3,7,8-PeCDD10225 - 1811,2,3,4,7,8-HxCDDND5.0013C-1,2,3,4,7,8-HxCDD98.732 - 1411,2,3,6,7,8-HxCDDND5.0013C-1,2,3,6,7,8-HxCDD96.428 - 1301,2,3,4,7,8-HxCDDND5.0013C-1,2,3,6,7,8-HxCDD95.732 - 1411,2,3,4,6,7,8-HxCDDND5.0013C-1,2,3,4,5,8-HxCDD95.732 - 1411,2,3,4,6,7,8-HpCDD19.65.0013C-1,2,3,4,5,8-HpCDD95.423 - 140OCDD85.810.013C-0CDD98.317 - 1572,3,7,8-PeCDF14.61.0013C-02,3,7,8-PeCDF90.024 - 1852,3,4,7,8-PeCDF14.05.0013C-1,2,3,7,8-PeCDF96.321 - 1781,2,3,4,7,8-PeCDF14.05.0013C-1,2,3,7,8-PeCDF96.321 - 1781,2,3,4,7,8-PeCDF14.05.0013C-1,2,3,4,7,8-HxCDF10326 - 1521,2,3,6,7,8-HxCDF7.615.0013C-1,2,3,4,7,8-HxCDF87.226 - 1231,2,3,4,6,7,8-HxCDF9.535.0013C-1,2,3,4,6,7,8-HxCDF93.128 - 1361,2,3,4,6,7,8-HxCDF9.5013C-1,2,3,4,6,7,8-HxCDF95.829 - 1471,2,3,4,6,7,8-HxCDF9.5013C-1,2,3,4,6,7,8-HxCDF95.829 - 1471,2,3,4,6,7,8-HxCDFND5.0013C-1,2,3,4,6,7,8-HxCDF95.828 - 1431,2,3,4,6,7,8-HxCDFND	Analyte	Conc. (pg/g) RL			Qualifiers		Labeled Stand	ard	%R	LCL-UCL	Qualifiers
1,2,3,7,8-PeCDD ND 5.00 13C-1,2,3,7,8-PeCDD 102 25 - 181 1,2,3,4,7,8-HxCDD ND 5.00 13C-1,2,3,4,7,8-HxCDD 98.7 32 - 141 1,2,3,6,7,8-HxCDD ND 5.00 13C-1,2,3,6,7,8-HxCDD 96.4 28 - 130 1,2,3,4,5,7,8-HxCDD ND 5.00 13C-1,2,3,7,8,9-HxCDD 95.7 32 - 141 1,2,3,4,5,7,8-HxCDD ND 5.00 13C-1,2,3,7,8,9-HxCDD 95.7 32 - 141 1,2,3,4,5,7,8-HxCDD ND 5.00 13C-1,2,3,7,8,9-HxCDD 95.7 32 - 141 1,2,3,4,5,7,8-HxCDD 19.6 5.00 13C-1,2,3,7,8,9-HxCDD 95.7 32 - 141 1,2,3,4,5,7,8-HxCDF 14.6 1.00 13C-0,2,3,4,7,8-HxCDF 95.7 32 - 140 0CDD 85.8 10.0 13C-0,2,3,4,7,8-PxCDF 96.3 21 - 157 2,3,7,8-PeCDF 14.6 1.00 13C-2,3,4,7,8-PxCDF 96.3 21 - 178 1,2,3,4,7,8-HxCDF 7.58 5.00 13C-1,2,3,4,7,8-HxCDF 103 26 - 152 1,2,3,4,5,7,8-HxCDF 7.61 5.00 13C-1,2,3,4,6,7,8-HxCDF 93.1 28 -	2,3,7,8-TCDD	1.14	1.00				IS	13C-2,3,7,8-TC	CDD	90.4	25 - 164	
1,2,3,4,7,8-HxCDDND5.0013C-1,2,3,4,7,8-HxCDD98.732 - 1411,2,3,6,7,8-HxCDDND5.0013C-1,2,3,6,7,8-HxCDD96.428 - 1301,2,3,7,8,9-HxCDDND5.0013C-1,2,3,7,8,9-HxCDD95.732 - 1411,2,3,4,6,7,8-HpCDD19.65.0013C-1,2,3,7,8,9-HxCDD95.732 - 1410CDD85.810.013C-1,2,3,4,6,7,8-HpCDD95.423 - 1400CDD85.810.013C-0CDD98.317 - 1572,3,7,8-TCDF14.61.0013C-2,3,7,8-TCDF86.724 - 1691,2,3,7,8-PeCDF8.125.0013C-2,3,7,8-PeCDF90.024 - 1852,3,4,7,8-PeCDF14.05.0013C-2,3,4,7,8-PeCDF96.321 - 1781,2,3,4,7,8-HxCDF7.585.0013C-1,2,3,4,7,8-HxCDF10326 - 1521,2,3,4,7,8-HxCDF7.615.0013C-1,2,3,4,7,8-HxCDF87.226 - 1232,3,4,6,7,8-HxCDF9.535.0013C-1,2,3,4,7,8-HxCDF93.128 - 1361,2,3,4,6,7,8-HxCDF9.535.0013C-1,2,3,4,6,7,8-HxCDF93.128 - 1361,2,3,4,6,7,8-HxCDFND5.0013C-1,2,3,4,6,7,8-HxCDF95.829 - 1471,2,3,4,6,7,8-HpCDFND5.0013C-1,2,3,4,6,7,8-HpCDF95.829 - 1471,2,3,4,6,7,8-HpCDFND5.0013C-1,2,3,4,6,7,8-HpCDF96.217 - 1571,2,3,4,7,8,9-HpCDFND5.0013C-1,2,3,7,8,9-HpCDF96.217 - 1571,2,3,4,7,8,9-HpCDF<	1,2,3,7,8-PeCDD	ND	5.00					13C-1,2,3,7,8-1	PeCDD	102	25 - 181	
1,2,3,6,7,8-HxCDDND 5.00 $13C-1,2,3,6,7,8-HxCDD$ 96.4 $28-130$ $1,2,3,7,8,9-HxCDD$ ND 5.00 $13C-1,2,3,7,8,9-HxCDD$ 95.7 $32-141$ $1,2,3,4,6,7,8-HpCDD$ 19.6 5.00 $13C-1,2,3,4,6,7,8-HpCDD$ 95.4 $23-140$ OCDD 85.8 10.0 $13C-0CDD$ 98.3 $17-157$ $2,3,7,8-PCDF$ 14.6 1.00 $13C-2,3,7,8-PCDF$ 86.7 $24-169$ $1,2,3,7,8-PeCDF$ 8.12 5.00 $13C-2,3,7,8-PeCDF$ 90.0 $24-185$ $2,3,4,7,8-PeCDF$ 14.0 5.00 $13C-2,3,4,7,8-PeCDF$ 90.0 $24-185$ $1,2,3,4,7,8-PxCDF$ 7.58 5.00 $13C-2,3,4,7,8-PeCDF$ 90.0 $24-185$ $1,2,3,4,7,8-PxCDF$ 7.61 5.00 $13C-1,2,3,4,7,8-PxCDF$ 103 $26-152$ $1,2,3,6,7,8-HxCDF$ 7.61 5.00 $13C-1,2,3,4,6,7,8-HxCDF$ 87.2 $26-123$ $2,3,4,6,7,8-HxCDF$ 9.53 5.00 $13C-1,2,3,4,6,7,8-HxCDF$ 93.1 $28-136$ $1,2,3,7,8,9-HxCDF$ ND 5.00 $13C-1,2,3,4,6,7,8-HxCDF$ 95.8 $29-147$ $1,2,3,4,6,7,8-HpCDF$ 32.4 5.00 $13C-1,2,3,4,7,8,9-HxCDF$ 98.5 $28-143$ $1,2,3,4,7,8,9-HpCDF$ ND 5.00 $13C-1,2,3,4,7,8,9-HpCDF$ 98.5 $28-143$ $1,2,3,4,7,8,9-HpCDF$ ND 5.00 $13C-1,2,3,4,7,8,9-HpCDF$ 98.5 $28-143$ $1,2,3,4,7,8,9-HpCDF$ ND 5.00 $13C-1,2,3,4,7,8,9-HpCDF$ 96.2 1	1,2,3,4,7,8-HxCD	D ND	5.00					13C-1,2,3,4,7,8	3-HxCDD	98.7	32 - 141	
1,2,3,7,8,9-HxCDDND5.0013C-1,2,3,7,8,9-HxCDD95.732 - 1411,2,3,4,6,7,8-HpCDD19.65.0013C-1,2,3,4,6,7,8-HpCDD95.423 - 140OCDD85.810.013C-0CDD98.317 - 1572,3,7,8-TCDF14.61.0013C-2,3,7,8-TCDF86.724 - 1691,2,3,7,8-PeCDF8.125.0013C-1,2,3,7,8-PeCDF90.024 - 1852,3,4,7,8-PeCDF14.05.0013C-2,3,4,7,8-PeCDF96.321 - 1781,2,3,4,7,8-HxCDF7.585.0013C-1,2,3,4,7,8-HxCDF10326 - 1521,2,3,6,7,8-HxCDF7.615.0013C-1,2,3,6,7,8-HxCDF87.226 - 1232,3,4,6,7,8-HxCDF9.535.0013C-2,3,4,7,8-HxCDF93.128 - 1361,2,3,4,7,8-HxCDFND5.0013C-1,2,3,4,7,8-HxCDF95.829 - 1471,2,3,4,7,8-HxCDFND5.0013C-1,2,3,4,7,8-HxCDF95.829 - 1471,2,3,4,7,8-HxCDFND5.0013C-1,2,3,4,7,8-HxCDF98.528 - 1431,2,3,4,7,8-HxCDFND5.0013C-1,2,3,4,7,8-HxCDF98.528 - 1431,2,3,4,7,8-HpCDFND5.0013C-1,2,3,4,7,8-HpCDF10426 - 1381,2,3,4,7,8,9-HpCDFND5.0013C-1,2,3,7,8-HpCDF96.217 - 1571,2,3,4,7,8,9-HpCDFND5.0013C-1,2,3,7,8-HpCDF96.217 - 1571,2,3,4,7,8,9-HpCDFND5.0013C-1,2,3,7,8-TCDD90.835 - 197	1,2,3,6,7,8-HxCD	D ND	5.00					13C-1,2,3,6,7,8	3-HxCDD	96.4	28 - 130	
1,2,3,4,6,7,8-HpCDD19.65.0013C-1,2,3,4,6,7,8-HpCDD95.423 - 140OCDD85.810.013C-OCDD98.317 - 1572,3,7,8-TCDF14.61.0013C-2,3,7,8-TCDF86.724 - 1691,2,3,7,8-PeCDF8.125.0013C-1,2,3,7,8-PeCDF90.024 - 1852,3,4,7,8-PeCDF14.05.0013C-2,3,4,7,8-PeCDF96.321 - 1781,2,3,4,7,8-HxCDF7.585.0013C-1,2,3,4,7,8-HxCDF10326 - 1521,2,3,6,7,8-HxCDF7.615.0013C-1,2,3,4,7,8-HxCDF87.226 - 1232,3,4,6,7,8-HxCDF9.535.0013C-1,2,3,4,6,7,8-HxCDF93.128 - 1361,2,3,7,8,9-HxCDFND5.0013C-1,2,3,4,6,7,8-HxCDF95.829 - 1471,2,3,4,6,7,8-HpCDF32.45.0013C-1,2,3,4,6,7,8-HpCDF98.528 - 1431,2,3,4,7,8-PhCDFND5.0013C-1,2,3,4,7,8-PhCDF96.528 - 1431,2,3,4,6,7,8-HpCDFND5.0013C-1,2,3,4,7,8-PhCDF96.528 - 1431,2,3,4,6,7,8-HpCDFND5.0013C-1,2,3,4,7,8-PhCDF96.217 - 1570,2,4,6,7,8-HpCDFND5.0013C-1,2,3,7,8,9-HpCDF10426 - 1381,2,3,4,7,8,9-HpCDFND5.0013C-0,2,3,7,8-TCDD90.835 - 197	1,2,3,7,8,9-HxCD	D ND	5.00					13C-1,2,3,7,8,9	-HxCDD	95.7	32 - 141	
OCDD85.810.013C-OCDD98.317 - 1572,3,7,8-TCDF14.61.0013C-2,3,7,8-TCDF86.724 - 1691,2,3,7,8-PeCDF8.125.0013C-1,2,3,7,8-PeCDF90.024 - 1852,3,4,7,8-PeCDF14.05.0013C-2,3,4,7,8-PeCDF96.321 - 1781,2,3,4,7,8-HxCDF7.585.0013C-1,2,3,4,7,8-HxCDF10326 - 1521,2,3,6,7,8-HxCDF7.615.0013C-1,2,3,6,7,8-HxCDF87.226 - 1232,3,4,6,7,8-HxCDF9.535.0013C-2,3,4,6,7,8-HxCDF93.128 - 1361,2,3,7,8,9-HxCDFND5.0013C-1,2,3,4,6,7,8-HxCDF95.829 - 1471,2,3,4,6,7,8-HpCDF32.45.0013C-1,2,3,4,6,7,8-HpCDF98.528 - 1431,2,3,4,7,8,9-HpCDFND5.0013C-1,2,3,4,7,8,9-HpCDF10426 - 1380CDF15.010.013C-0CDF96.217 - 157CRS 37C1-2,3,7,8-TCDD90.835 - 197	1,2,3,4,6,7,8-HpC	CDD 19.6	5.00					13C-1,2,3,4,6,7	7,8-HpCDD	95.4	23 - 140	
2,3,7,8-TCDF14.61.0013C-2,3,7,8-TCDF86.724 - 1691,2,3,7,8-PeCDF8.125.0013C-1,2,3,7,8-PeCDF90.024 - 1852,3,4,7,8-PeCDF14.05.0013C-2,3,4,7,8-PeCDF96.321 - 1781,2,3,4,7,8-HxCDF7.585.0013C-1,2,3,4,7,8-HxCDF10326 - 1521,2,3,6,7,8-HxCDF7.615.0013C-1,2,3,6,7,8-HxCDF87.226 - 1232,3,4,6,7,8-HxCDF9.535.0013C-2,3,4,6,7,8-HxCDF93.128 - 1361,2,3,7,8,9-HxCDFND5.0013C-1,2,3,7,8,9-HxCDF95.829 - 1471,2,3,4,6,7,8-HpCDF32.45.0013C-1,2,3,4,6,7,8-HpCDF98.528 - 1431,2,3,4,7,8,9-HpCDFND5.0013C-1,2,3,4,7,8,9-HpCDF10426 - 138OCDF15.010.013C-OCDF96.217 - 157CRS37CI-2,3,7,8-TCDD90.835 - 197	OCDD	85.8	10.0					13C-OCDD		98.3	17 - 157	
1,2,3,7,8-PeCDF8.125.0013C-1,2,3,7,8-PeCDF90.024 - 1852,3,4,7,8-PeCDF14.05.0013C-2,3,4,7,8-PeCDF96.321 - 1781,2,3,4,7,8-HxCDF7.585.0013C-1,2,3,4,7,8-HxCDF10326 - 1521,2,3,6,7,8-HxCDF7.615.0013C-1,2,3,6,7,8-HxCDF87.226 - 1232,3,4,6,7,8-HxCDF9.535.0013C-2,3,4,6,7,8-HxCDF93.128 - 1361,2,3,7,8,9-HxCDFND5.0013C-1,2,3,4,6,7,8-HxCDF95.829 - 1471,2,3,4,6,7,8-HpCDF32.45.0013C-1,2,3,4,6,7,8-HpCDF98.528 - 1431,2,3,4,7,8,9-HpCDFND5.0013C-1,2,3,4,7,8,9-HpCDF10426 - 1380CDF15.010.013C-OCDF96.217 - 157CRS37Cl-2,3,7,8-TCDD90.835 - 197	2,3,7,8-TCDF	14.6	1.00					13C-2,3,7,8-TC	CDF	86.7	24 - 169	
2,3,4,7,8-PeCDF14.05.0013C-2,3,4,7,8-PeCDF96.321 - 1781,2,3,4,7,8-HxCDF7.585.0013C-1,2,3,4,7,8-HxCDF10326 - 1521,2,3,6,7,8-HxCDF7.615.0013C-1,2,3,6,7,8-HxCDF87.226 - 1232,3,4,6,7,8-HxCDF9.535.0013C-2,3,4,6,7,8-HxCDF93.128 - 1361,2,3,7,8,9-HxCDFND5.0013C-1,2,3,7,8,9-HxCDF95.829 - 1471,2,3,4,6,7,8-HpCDF32.45.0013C-1,2,3,4,6,7,8-HpCDF98.528 - 1431,2,3,4,7,8,9-HpCDFND5.0013C-1,2,3,4,7,8,9-HpCDF10426 - 1380CDF15.010.013C-0CDF96.217 - 157CRS37C1-2,3,7,8-TCDD90.835 - 197	1,2,3,7,8-PeCDF	8.12	5.00					13C-1,2,3,7,8-1	PeCDF	90.0	24 - 185	
1,2,3,4,7,8-HxCDF7.585.0013C-1,2,3,4,7,8-HxCDF10326 - 1521,2,3,6,7,8-HxCDF7.615.0013C-1,2,3,6,7,8-HxCDF87.226 - 1232,3,4,6,7,8-HxCDF9.535.0013C-2,3,4,6,7,8-HxCDF93.128 - 1361,2,3,7,8,9-HxCDFND5.0013C-1,2,3,7,8,9-HxCDF95.829 - 1471,2,3,4,6,7,8-HpCDF32.45.0013C-1,2,3,4,6,7,8-HpCDF98.528 - 1431,2,3,4,6,7,8-HpCDFND5.0013C-1,2,3,4,7,8,9-HpCDF10426 - 1380CDF15.010.013C-0CDF96.217 - 157CRS37Cl-2,3,7,8-TCDD90.835 - 197	2,3,4,7,8-PeCDF	14.0	5.00					13C-2,3,4,7,8-1	PeCDF	96.3	21 - 178	
1,2,3,6,7,8-HxCDF7.615.0013C-1,2,3,6,7,8-HxCDF87.226 - 1232,3,4,6,7,8-HxCDF9.535.0013C-2,3,4,6,7,8-HxCDF93.128 - 1361,2,3,7,8,9-HxCDFND5.0013C-1,2,3,7,8,9-HxCDF95.829 - 1471,2,3,4,6,7,8-HpCDF32.45.0013C-1,2,3,4,6,7,8-HpCDF98.528 - 1431,2,3,4,7,8,9-HpCDFND5.0013C-1,2,3,4,7,8,9-HpCDF10426 - 138OCDF15.010.013C-0CDF96.217 - 157CRS37C1-2,3,7,8-TCDD90.835 - 197	1,2,3,4,7,8-HxCD	0F 7.58	5.00					13C-1,2,3,4,7,8	3-HxCDF	103	26 - 152	
2,3,4,6,7,8-HxCDF9.535.0013C-2,3,4,6,7,8-HxCDF93.128 - 1361,2,3,7,8,9-HxCDFND5.0013C-1,2,3,7,8,9-HxCDF95.829 - 1471,2,3,4,6,7,8-HpCDF32.45.0013C-1,2,3,4,6,7,8-HpCDF98.528 - 1431,2,3,4,7,8,9-HpCDFND5.0013C-1,2,3,4,7,8,9-HpCDF10426 - 138OCDF15.010.013C-OCDF96.217 - 157CRS37C1-2,3,7,8-TCDD90.835 - 197	1,2,3,6,7,8-HxCD	OF 7.61	5.00					13C-1,2,3,6,7,8	8-HxCDF	87.2	26 - 123	
1,2,3,7,8,9-HxCDFND5.0013C-1,2,3,7,8,9-HxCDF95.829 - 1471,2,3,4,6,7,8-HpCDF32.45.0013C-1,2,3,4,6,7,8-HpCDF98.528 - 1431,2,3,4,7,8,9-HpCDFND5.0013C-1,2,3,4,7,8,9-HpCDF10426 - 138OCDF15.010.013C-OCDF96.217 - 157CRS37C1-2,3,7,8-TCDD90.835 - 197	2,3,4,6,7,8-HxCD	9.53 PF	5.00					13C-2,3,4,6,7,8	8-HxCDF	93.1	28 - 136	
1,2,3,4,6,7,8-HpCDF 32.4 5.00 13C-1,2,3,4,6,7,8-HpCDF 98.5 28 - 143 1,2,3,4,7,8,9-HpCDF ND 5.00 13C-1,2,3,4,7,8,9-HpCDF 104 26 - 138 OCDF 15.0 10.0 13C-0CDF 96.2 17 - 157 CRS 37C1-2,3,7,8-TCDD 90.8 35 - 197	1,2,3,7,8,9-HxCD	F ND	5.00					13C-1,2,3,7,8,9	9-HxCDF	95.8	29 - 147	
1,2,3,4,7,8,9-HpCDF ND 5.00 13C-1,2,3,4,7,8,9-HpCDF 104 26 - 138 OCDF 15.0 10.0 13C-OCDF 96.2 17 - 157 CRS 37C1-2,3,7,8-TCDD 90.8 35 - 197	1,2,3,4,6,7,8-HpC	CDF 32.4	5.00					13C-1,2,3,4,6,7	7,8-HpCDF	98.5	28 - 143	
OCDF 15.0 10.0 13C-OCDF 96.2 17 - 157 CRS 37Cl-2,3,7,8-TCDD 90.8 35 - 197	1,2,3,4,7,8,9-HpC	DF ND	5.00					13C-1,2,3,4,7,8	3,9-HpCDF	104	26 - 138	
CRS 37CI-2,3,7,8-TCDD 90.8 35 - 197	OCDF	15.0	10.0					13C-OCDF		96.2	17 - 157	
							CRS	37Cl-2,3,7,8-T	CDD	90.8	35 - 197	
Toxic Equivalent Quotient (TEQ) Data								Toxic Equivale	ent Quotient (TE	Q) Data		
TEQMinWHO2005Dioxin 13.2								TEQMinWHO	2005Dioxin	13.2		

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

-2[0.5-1.5]D								EPA Me	thod 1613B
alinowski, Inc 7 T4D 014 10:45	Sample Data Matrix: Sample Size: % Solids:	Soil 9.99 g 94.9		Lat Lab QC Dat	boratory Data Sample: Batch: Me Analyzed :	1400718-06 B4J0030 11-Oct-14 10:33 13-Oct-14 15:00	Date Received: Date Extracted: Column: ZB-5MS Column: DB-225	02-Oct-2014 07-Oct-2014 Analyst: MAS Analyst: ANP	9:02 8:30
(pg/g) RL			Qualifiers		Labeled Stand	ard	%R	LCL-UCL	Qualifiers
ND 1.00				IS	13C-2,3,7,8-TC	CDD	90.6	25 - 164	
ND 5.00					13C-1,2,3,7,8-I	PeCDD	109	25 - 181	
ND 5.00					13C-1,2,3,4,7,8	-HxCDD	94.2	32 - 141	
ND 5.00					13C-1,2,3,6,7,8	-HxCDD	97.0	28 - 130	
ND 5.00					13C-1,2,3,7,8,9	-HxCDD	98.9	32 - 141	
22.7 5.00					13C-1,2,3,4,6,7	,8-HpCDD	97.5	23 - 140	
95.1 10.0					13C-OCDD		103	17 - 157	
5.18 1.00					13C-2,3,7,8-TC	CDF	85.8	24 - 169	
ND 5.00					13C-1,2,3,7,8-1	PeCDF	94.1	24 - 185	
3.38 5.00					13C-2,3,4,7,8-1	PeCDF	100	21 - 178	
7.28 5.00					13C-1,2,3,4,7,8	-HxCDF	96.5	26 - 152	
5.73 5.00					13C-1,2,3,6,7,8	-HxCDF	84.3	26 - 123	
3.95 5.00					13C-2,3,4,6,7,8	-HxCDF	88.3	28 - 136	
ND 5.00					13C-1,2,3,7,8,9	-HxCDF	96.0	29 - 147	
37.8 5.00					13C-1,2,3,4,6,7	,8-HpCDF	95.1	28 - 143	
ND 5.00					13C-1,2,3,4,7,8	3,9-HpCDF	105	26 - 138	
20.6 10.0					13C-OCDF		100	17 - 157	
				CRS	37Cl-2,3,7,8-T	CDD	94.9	35 - 197	
					Toxic Equivale	ent Quotient (TE	Q) Data		
					TEQMinWHO	2005Dioxin	8.04		
	alinowski, Inc 7 T4D)14 10:45 (pg/g) RL ND 1.00 ND 5.00 22.7 5.00 95.1 10.0 5.18 1.00 ND 5.00 3.38 5.00 5.73 5.00 3.95 5.00 ND 5.00 37.8 5.00 20.6 10.0	Sample Data alinowski, Inc 7 T4D 014 10:45 MD 1.00 ND 1.00 ND 5.00 Sample Data Matrix: Sample Size: % Solids: ''D 5.00 ND 5.00 Sample Size: ''D Substate Substate ''D ''D ''D Substate ''D Substate ''D Substate ''D <tr< td=""><td>Sample Data alinowski, Inc 7 T4D 014 10:45 MD ND 1.00 ND 1.00 ND 5.00 Sample Data Matrix: Solids: 94.9 ''Solids: 94.9 'Solids: 94.9</td><td>Sample Data alinowski, Inc 7 T4D 914 10:45 Matrix: Solids: 9.99 g % Solids: 94.9 (pg/g) RL Qualifiers VD 1.00 VD 5.00 Sample Data Matrix: Solids: 94.9 VD 5.00 VD 5.00 VD 5.00 S11 10.0 S18 1.00 VD 5.00 S23 5.00 S38 5.00 S40 5.00 S73 5.00 S00 37.8 S00 20.6 VD 5.00 S00 20.6</td><td>Sample Data Lal alinowski, Inc Matrix: Soil Lal Sample Size: 9.99 g QC 9% Solids: 94.9 Dat VD 1.00 IS VD 5.00 IS Sass <t< td=""><td>Sample Data Laboratory Data alinowski, Inc 7 T4D Matrix: Soil Lab Sample: QC Batch: 014 10:45 9.99 g % Solids: 94.9 Date Analyzed : Date Analyzed : (pg/g) RL Qualifiers Labeled Stand ND 1.00 18 13C-1,2,3,7,8-TC ND 5.00 13C-1,2,3,4,7,8 Sys5</td><td>Sample Data Matrix: Soil Sample Size: Soil Sample Size: Laboratory Data Lab Sample: Laboratory Data Lab Sample: Lab Sample: 1400718-06 QC Batch: 114 10:45 Sample Size: 9.99 g Date Analyzed : 11-Oct-14 10:3; 13-Oct-14 15:0 (pg/g) RL Qualifiers Labeled Standard VD 1.00 IS 13C-1,2,3,7,8-TCDD VD 5.00 13C-1,2,3,6,7,8-HxCDD VD 5.00 13C-1,2,3,6,7,8-HxCDD VD 5.00 13C-1,2,3,7,8-PCDD VD 5.00 13C-1,2,3,7,8-PCDD VD 5.00 13C-1,2,3,6,7,8-HxCDD VD 5.00 13C-1,2,3,7,8-PCDF VD 5.00 13C-1,2,3,7,8-PCDF VD 5.00 13C-2,3,7,8-PCDF S.18 1.00 13C-2,3,7,8-PCDF S.38 5.00 13C-1,2,3,4,7,8-PeCDF S.38 5.00 13C-1,2,3,4,7,8-PeCDF S.473 5.00 13C-1,2,3,4,7,8-PeCDF S.95 5.00 13C-1,2,3,4,5,8-PeCDF S.95 5.00<!--</td--><td>Sample Data Matrix: Soil Sample Size: Soil Sample Size: Laboratory Data Lab Sample: Id00718-06 Date Received: 7 T4D Matrix: Soil Sample Size: 9.99 g QC Batch: B40030 Date Extracted: 0/14 10:45 % Solids: 94.9 Eabeled Standard % R 10 1.00 IS 13C-12,3,7,8-TCDD 90.6 ND 5.00 13C-12,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,6,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 VD 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 Standard 13C-1,2,3,4,7,8-HxCDD 94.2 100 Standard 13C-1,2,3,4,7,8-HxCDD 94.2 100 Standard 13C-1,2,3,4,7,8-HxCDF 85.8 100 Standard 13C-2,3,4,6,7,8-HxCDF 84.3 100 Standard 13C-2,3,4,7,8-PeCDF</td><td>Sample Data Matrix: Soil Laboratory Data alinowski, Inc Matrix: Soil Soil QC Batch: B40030 Date Received: 0.2-Oct-2014 YT4D Sample Size: 9.99 g QC Batch: B4J0030 Date Extracted: 0.7-Oct-2014 Y14 10:45 W Qualifiers LabeCandaryzed: 11-Oct-14 10:33 Column: DB-225 Analyst: ANP (pg/g) RL Qualifiers Labeded Standard % R LCL-UCL ND 1.00 IS 13C-2,3,7,8-TCDD 90.6 25 - 164 ND 5.00 IS 13C-1,2,3,4,7.8-HxCDD 94.2 32 - 141 ND 5.00 I3C-1,2,3,7,8-HxCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDF 97.5 23 - 141 22.7 5.00 I3C-2,3,7,8-PCDF 94.1 24 - 185 S.18 <t< td=""></t<></td></td></t<></td></tr<>	Sample Data alinowski, Inc 7 T4D 014 10:45 MD ND 1.00 ND 1.00 ND 5.00 Sample Data Matrix: Solids: 94.9 ''Solids: 94.9 'Solids: 94.9	Sample Data alinowski, Inc 7 T4D 914 10:45 Matrix: Solids: 9.99 g % Solids: 94.9 (pg/g) RL Qualifiers VD 1.00 VD 5.00 Sample Data Matrix: Solids: 94.9 VD 5.00 VD 5.00 VD 5.00 S11 10.0 S18 1.00 VD 5.00 S23 5.00 S38 5.00 S40 5.00 S73 5.00 S00 37.8 S00 20.6 VD 5.00 S00 20.6	Sample Data Lal alinowski, Inc Matrix: Soil Lal Sample Size: 9.99 g QC 9% Solids: 94.9 Dat VD 1.00 IS VD 5.00 IS Sass 5.00 IS Sass <t< td=""><td>Sample Data Laboratory Data alinowski, Inc 7 T4D Matrix: Soil Lab Sample: QC Batch: 014 10:45 9.99 g % Solids: 94.9 Date Analyzed : Date Analyzed : (pg/g) RL Qualifiers Labeled Stand ND 1.00 18 13C-1,2,3,7,8-TC ND 5.00 13C-1,2,3,4,7,8 Sys5</td><td>Sample Data Matrix: Soil Sample Size: Soil Sample Size: Laboratory Data Lab Sample: Laboratory Data Lab Sample: Lab Sample: 1400718-06 QC Batch: 114 10:45 Sample Size: 9.99 g Date Analyzed : 11-Oct-14 10:3; 13-Oct-14 15:0 (pg/g) RL Qualifiers Labeled Standard VD 1.00 IS 13C-1,2,3,7,8-TCDD VD 5.00 13C-1,2,3,6,7,8-HxCDD VD 5.00 13C-1,2,3,6,7,8-HxCDD VD 5.00 13C-1,2,3,7,8-PCDD VD 5.00 13C-1,2,3,7,8-PCDD VD 5.00 13C-1,2,3,6,7,8-HxCDD VD 5.00 13C-1,2,3,7,8-PCDF VD 5.00 13C-1,2,3,7,8-PCDF VD 5.00 13C-2,3,7,8-PCDF S.18 1.00 13C-2,3,7,8-PCDF S.38 5.00 13C-1,2,3,4,7,8-PeCDF S.38 5.00 13C-1,2,3,4,7,8-PeCDF S.473 5.00 13C-1,2,3,4,7,8-PeCDF S.95 5.00 13C-1,2,3,4,5,8-PeCDF S.95 5.00<!--</td--><td>Sample Data Matrix: Soil Sample Size: Soil Sample Size: Laboratory Data Lab Sample: Id00718-06 Date Received: 7 T4D Matrix: Soil Sample Size: 9.99 g QC Batch: B40030 Date Extracted: 0/14 10:45 % Solids: 94.9 Eabeled Standard % R 10 1.00 IS 13C-12,3,7,8-TCDD 90.6 ND 5.00 13C-12,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,6,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 VD 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 Standard 13C-1,2,3,4,7,8-HxCDD 94.2 100 Standard 13C-1,2,3,4,7,8-HxCDD 94.2 100 Standard 13C-1,2,3,4,7,8-HxCDF 85.8 100 Standard 13C-2,3,4,6,7,8-HxCDF 84.3 100 Standard 13C-2,3,4,7,8-PeCDF</td><td>Sample Data Matrix: Soil Laboratory Data alinowski, Inc Matrix: Soil Soil QC Batch: B40030 Date Received: 0.2-Oct-2014 YT4D Sample Size: 9.99 g QC Batch: B4J0030 Date Extracted: 0.7-Oct-2014 Y14 10:45 W Qualifiers LabeCandaryzed: 11-Oct-14 10:33 Column: DB-225 Analyst: ANP (pg/g) RL Qualifiers Labeded Standard % R LCL-UCL ND 1.00 IS 13C-2,3,7,8-TCDD 90.6 25 - 164 ND 5.00 IS 13C-1,2,3,4,7.8-HxCDD 94.2 32 - 141 ND 5.00 I3C-1,2,3,7,8-HxCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDF 97.5 23 - 141 22.7 5.00 I3C-2,3,7,8-PCDF 94.1 24 - 185 S.18 <t< td=""></t<></td></td></t<>	Sample Data Laboratory Data alinowski, Inc 7 T4D Matrix: Soil Lab Sample: QC Batch: 014 10:45 9.99 g % Solids: 94.9 Date Analyzed : Date Analyzed : (pg/g) RL Qualifiers Labeled Stand ND 1.00 18 13C-1,2,3,7,8-TC ND 5.00 13C-1,2,3,4,7,8 Sys5	Sample Data Matrix: Soil Sample Size: Soil Sample Size: Laboratory Data Lab Sample: Laboratory Data Lab Sample: Lab Sample: 1400718-06 QC Batch: 114 10:45 Sample Size: 9.99 g Date Analyzed : 11-Oct-14 10:3; 13-Oct-14 15:0 (pg/g) RL Qualifiers Labeled Standard VD 1.00 IS 13C-1,2,3,7,8-TCDD VD 5.00 13C-1,2,3,6,7,8-HxCDD VD 5.00 13C-1,2,3,6,7,8-HxCDD VD 5.00 13C-1,2,3,7,8-PCDD VD 5.00 13C-1,2,3,7,8-PCDD VD 5.00 13C-1,2,3,6,7,8-HxCDD VD 5.00 13C-1,2,3,7,8-PCDF VD 5.00 13C-1,2,3,7,8-PCDF VD 5.00 13C-2,3,7,8-PCDF S.18 1.00 13C-2,3,7,8-PCDF S.38 5.00 13C-1,2,3,4,7,8-PeCDF S.38 5.00 13C-1,2,3,4,7,8-PeCDF S.473 5.00 13C-1,2,3,4,7,8-PeCDF S.95 5.00 13C-1,2,3,4,5,8-PeCDF S.95 5.00 </td <td>Sample Data Matrix: Soil Sample Size: Soil Sample Size: Laboratory Data Lab Sample: Id00718-06 Date Received: 7 T4D Matrix: Soil Sample Size: 9.99 g QC Batch: B40030 Date Extracted: 0/14 10:45 % Solids: 94.9 Eabeled Standard % R 10 1.00 IS 13C-12,3,7,8-TCDD 90.6 ND 5.00 13C-12,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,6,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 VD 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 Standard 13C-1,2,3,4,7,8-HxCDD 94.2 100 Standard 13C-1,2,3,4,7,8-HxCDD 94.2 100 Standard 13C-1,2,3,4,7,8-HxCDF 85.8 100 Standard 13C-2,3,4,6,7,8-HxCDF 84.3 100 Standard 13C-2,3,4,7,8-PeCDF</td> <td>Sample Data Matrix: Soil Laboratory Data alinowski, Inc Matrix: Soil Soil QC Batch: B40030 Date Received: 0.2-Oct-2014 YT4D Sample Size: 9.99 g QC Batch: B4J0030 Date Extracted: 0.7-Oct-2014 Y14 10:45 W Qualifiers LabeCandaryzed: 11-Oct-14 10:33 Column: DB-225 Analyst: ANP (pg/g) RL Qualifiers Labeded Standard % R LCL-UCL ND 1.00 IS 13C-2,3,7,8-TCDD 90.6 25 - 164 ND 5.00 IS 13C-1,2,3,4,7.8-HxCDD 94.2 32 - 141 ND 5.00 I3C-1,2,3,7,8-HxCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDF 97.5 23 - 141 22.7 5.00 I3C-2,3,7,8-PCDF 94.1 24 - 185 S.18 <t< td=""></t<></td>	Sample Data Matrix: Soil Sample Size: Soil Sample Size: Laboratory Data Lab Sample: Id00718-06 Date Received: 7 T4D Matrix: Soil Sample Size: 9.99 g QC Batch: B40030 Date Extracted: 0/14 10:45 % Solids: 94.9 Eabeled Standard % R 10 1.00 IS 13C-12,3,7,8-TCDD 90.6 ND 5.00 13C-12,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,6,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 ND 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 VD 5.00 13C-1,2,3,4,7,8-HxCDD 94.2 Standard 13C-1,2,3,4,7,8-HxCDD 94.2 100 Standard 13C-1,2,3,4,7,8-HxCDD 94.2 100 Standard 13C-1,2,3,4,7,8-HxCDF 85.8 100 Standard 13C-2,3,4,6,7,8-HxCDF 84.3 100 Standard 13C-2,3,4,7,8-PeCDF	Sample Data Matrix: Soil Laboratory Data alinowski, Inc Matrix: Soil Soil QC Batch: B40030 Date Received: 0.2-Oct-2014 YT4D Sample Size: 9.99 g QC Batch: B4J0030 Date Extracted: 0.7-Oct-2014 Y14 10:45 W Qualifiers LabeCandaryzed: 11-Oct-14 10:33 Column: DB-225 Analyst: ANP (pg/g) RL Qualifiers Labeded Standard % R LCL-UCL ND 1.00 IS 13C-2,3,7,8-TCDD 90.6 25 - 164 ND 5.00 IS 13C-1,2,3,4,7.8-HxCDD 94.2 32 - 141 ND 5.00 I3C-1,2,3,7,8-HxCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDD 97.0 28 - 130 ND 5.00 I3C-1,2,3,7,8-PCDF 97.5 23 - 141 22.7 5.00 I3C-2,3,7,8-PCDF 94.1 24 - 185 S.18 <t< td=""></t<>

LCL-UCL- Lower control limit - upper control limit The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: 127	9TPF0-1[1.5]D									EPA Me	thod 1613B
Client Data Name: H Project: H Date Collected: 2	Erler & Kalinowski, Inc B00025.07 T4D 24-Sep-2014 13:25		Sample Data Matrix: Sample Size: % Solids:	Soil 10.0 g 95.9		Lal Lab QC Dat	Doratory Data Sample: Batch: e Analyzed :	1400718-07 B4J0030 11-Oct-14 11:2 13-Oct-14 14:3	Date Received: Date Extracted: 1 Column: ZB-5MS 0 Column: DB-225	02-Oct-2014 07-Oct-2014 Analyst: MAS Analyst: ANP	9:02 8:30
Analyte	Conc. (pg/g)	RL			Qualifiers		Labeled Stand	lard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	1.05	1.00				IS	13C-2,3,7,8-T0	CDD	97.4	25 - 164	
1,2,3,7,8-PeCDD	ND	5.00					13C-1,2,3,7,8-	PeCDD	108	25 - 181	
1,2,3,4,7,8-HxCDD) ND	5.00					13C-1,2,3,4,7,8	8-HxCDD	101	32 - 141	
1,2,3,6,7,8-HxCDD) ND	5.00					13C-1,2,3,6,7,8	8-HxCDD	103	28 - 130	
1,2,3,7,8,9-HxCDD) ND	5.00					13C-1,2,3,7,8,9	9-HxCDD	104	32 - 141	
1,2,3,4,6,7,8-HpCE	DD 14.2	5.00					13C-1,2,3,4,6,7	7,8-HpCDD	99.2	23 - 140	
OCDD	34.8	10.0					13C-OCDD		105	17 - 157	
2,3,7,8-TCDF	15.5	1.00					13C-2,3,7,8-TC	CDF	96.2	24 - 169	
1,2,3,7,8-PeCDF	9.50	5.00					13C-1,2,3,7,8-	PeCDF	108	24 - 185	
2,3,4,7,8-PeCDF	17.8	5.00					13C-2,3,4,7,8-	PeCDF	105	21 - 178	
1,2,3,4,7,8-HxCDF	10.2	5.00					13C-1,2,3,4,7,8	8-HxCDF	102	26 - 152	
1,2,3,6,7,8-HxCDF	9.54	5.00					13C-1,2,3,6,7,8	8-HxCDF	87.8	26 - 123	
2,3,4,6,7,8-HxCDF	12.3	5.00					13C-2,3,4,6,7,8	8-HxCDF	95.5	28 - 136	
1,2,3,7,8,9-HxCDF	ND	5.00					13C-1,2,3,7,8,9	9-HxCDF	102	29 - 147	
1,2,3,4,6,7,8-HpCD	DF 50.1	5.00					13C-1,2,3,4,6,7	7,8-HpCDF	101	28 - 143	
1,2,3,4,7,8,9-HpCE	DF ND	5.00					13C-1,2,3,4,7,8	8,9-HpCDF	108	26 - 138	
OCDF	17.3	10.0					13C-OCDF		102	17 - 157	
						CRS	37Cl-2,3,7,8-T	CDD	97.3	35 - 197	
							Toxic Equival	ent Quotient (TE	CQ) Data		
							TEQMinWHO	2005Dioxin	15.7		
						LCL UC	I Lawar agentral lim	it unmar control line			

LCL-UCL- Lower control limit - upper control limit The results are reported in dry weight. The sample size is reported in wet weight.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Н	Recovery was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	Method Detection Limit as determined by 40 CFR 136, Appendix B.
EMPC	Estimated Maximum Possible Concentration
Μ	Estimated Maximum Possible Concentration (CA Region 2)
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alabama Department of Environmental Management	41610
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2014022
Michigan Department of Natural Resources	9932
Nevada Division of Environmental Protection	CA004132015-1
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
North Carolina Department of Health & Human Services	06700
Oregon Laboratory Accreditation Program	4042-002
Pennsylvania Department of Environmental Protection	011
South Carolina Department of Health	87002001
Tennessee Department of Environment & Conservation	TN02996
Texas Commission on Environmental Quality	T104704189-14-5
Virginia Department of General Services	3138
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

1400718 4.6°C

Erler & Kalinowski, Inc. CHAIN O

CHAIN OF CUSTODY RECORD

		ooiziiiio		lolo ogu	en Brive, Burninguine, v	0/1010			Fax: (6	(000) 2 50) 552	-9012	0			
Project Name:		Project N	lo.:					ANAI	YSES	REQL	JESTE	D		EKI	COC No.
Presidio - Lendri	um Ct.	B00025.0	7 T4D	Viste Analy	tical Laboratory										
Project Location:		Laborato	ry:	1104 Wind	field Wav	513)	1								
Presidio of San Francis	sco, CA			El Dorado I (916) 673-1	Hills, CA 95762 1520	EPA 16								GNND	
Report Results to:		Sampled	By:) su								SNAF	
John DeWitt, Daniel Co	orreia	26	2007	Daniel Co	orreia	Fura								D L	
Field Sample	Lab	Date	Time	Type of	No. of	xins & 7, 8s o					σ			ECTED	
Identification	Sample No.			Sample	Containers	Dio; 2,3,					P			EXP	Remarks
1279TP305-D[3.5]		9/22/2014	1152	soil	2 jars	x								21 d	
1279TP304-D[3.5]		9/22/2014	1515	soil	2 jars	x								21 d	
1279TPA1-2[2.0]D		9/23/2014	0920	soil	2 jars	x								21 d	
1279TPF2-1[0.0-1.0]D		9/24/2014	0945	soil	2 jars	x								21 d	
1279TPF2-1[DUP]		9/24/2014	0945	soil	2 jars	x								21 d	
1279TPG1-2[0.5-1.5]D		9/24/2014	1045	soil	2 jars	x								21 d	
1279TPF0-1[1.5]D		9/24/2014	1325	soil	2 jars	x								21 d	
Special Instructions: All results to be reported	ed in dry weig	ght.													
Email laboratory confirmed incremental sampling r	mation, EDF: method pren	s, and pdfs	s of lab sh ly been ci	eets to jde	witt@ekiconsult.com wi v Curtis & Tompkins\/"(th cc to dc	orreia@e noles be	ekicon ina se	sult.con	n and la fly from	obs@ek	iconsult.c See Vista	om on a Ouotati	II corre	spondence.
Relinquished by: (Sign	ature)		.,	Date:	Time:	Receive	d/By:	1h	111	dit	L	10/021	14		Time: (931
Relinquished by: (Signa	ature)		1. <u>1</u> . 1. 1.	Dáte:	Time:	Receive	d By: /	100	- proces					_	Time:
Relinquished by: (Signa	ature)			Date:	Time:	Receive	d By:								Time:

~

	SAMP	LE LO	G-IN C	HECK	LIST
--	------	-------	--------	------	------

	SA	MPLE LO	G-IN CHE	CKLIST	г	V		
Vista Project #:	1400	57/8	,		TAT_	St	d	
,	Date/Time		Initials:		Locatio	οn: ω,	K-2	
Samples Arrival:	10/02/14	0902	Bo	B	Shelf/R	ack:	NA	
	Date/Time		Initials:	14	Locatio	on: U	UR-	r
Logged In:	10/02/14	1225	B	B	Shelf/R	ack:	F6	
Delivered By:	FedEx	UPS	On Trac	DHL	- De	land livered	Otl	ner
Preservation:	lce	Blu	lce	Dr	ry Ice		None	
Temp °C: 4 . 6	(uncorrected)	Time:	120		Thermo	ometer I	D: IR-	1
Temp °C:	(corrected)	C	1930					
						YES	NO	NΔ
Adequate Sample	/olume Receive	d? Å	320	ontai	ners			
Holding Time Acce	otable?					V		
Shipping Container	(s) Intact?					V		
Shipping Custody S	Seals Intact?							
Shipping Documen	tation Present?					V		
Airbill	Trk # 7	713 5	257	1725	5	~		
Sample Container I	ntact?							
Sample Custody Se	eals Intact?							\checkmark
Chain of Custody /	Sample Docume	entation Pre	esent?			~		
COC Anomaly/Sam	ple Acceptance	Form com	oleted?		KARANA MANA			
If Chlorinated or Dri	nking Water Sa	mples, Acc	eptable Pre	servatio	n?			/
Na ₂ S ₂ O ₃ Preservati	on Documented	?NR	COC		Sample Containe	r	None	9
Shipping Container		Vista	Client	Reta	in R	eturn	Disp	ose
^{Comments:} San Sample ID	, written	d in C on c	lear gli ontain	er's	irs cap			

Appendix E

Benzo(a)pyrene Potency Equivalent Concentration Calculations

TABLE E-1 SOIL RESULTS FOR POLYCYCLIC AROMATIC HYDROCARBONS

Lendrum Court Area Presidio of San Francisco, California

										Analyt	ical Result	s (mg/kg)) (a)(b)						
Trench Location	Sample ID	Sample Date	Sample Depth (ft bas)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	ndeno(1,2,3-cd)pyrene	Vaphthalene	Phenanthrene	Pyrene
304	1279TP304-D[3.5]	9/22/2014	3.5	<0.021	<0.021	<0.021	<0.021	<0.021	0.03	<0.021	<0.021	0.024	<0.021	0.035	<0.021	<0.021	<0.021	<0.021	0.031
305	1279TP305-D[3.5]	9/22/2014	3.5	<0.021	<0.021	<0.021	0.045	0.049	0.076	0.028	<0.021	0.06	<0.021	0.076	<0.021	0.023	<0.021	0.032	0.072
A1	1279TPA1-2[2.0]D	9/23/2014	2.0	<0.021	<0.021	<0.021	0.066	0.068	0.10	0.036	0.030	0.085	<0.021	0.15	<0.021	0.031	<0.021	0.11	0.13
F0	1279TPF0-1[1.5]D	9/24/2014	1.5	0.020	0.017	0.059	0.15	0.14	0.18	0.043	0.068	0.17	0.017	0.30	0.031	0.043	0.022	0.25	0.29
F2	1279TPF2-1[0.0-1.0]D	9/24/2014	1.0	<0.011	<0.011	<0.011	0.024	0.031	0.048	0.018	0.015	0.036	<0.011	0.047	<0.011	0.014	<0.011	0.033	0.05
12	1279TPF2-1[DUP]	9/24/2014	1.0	<0.010	0.013	<0.010	0.076	0.071	0.12	0.025	0.040	0.099	<0.010	0.11	<0.010	0.023	0.011	0.075	0.12
G1	1279TPG1-2[0.5-1.5]D	9/24/2014	1.5	<0.010	<0.010	<0.010	0.015	0.016	0.027	<0.010	<0.010	0.020	<0.010	0.023	<0.010	<0.010	<0.010	0.013	0.024
12	1279TPI2-1[1.5]D	9/26/2014	1.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Abbreviations:

<0.50 or ND - Compound not detected at or above indicated laboratory reporting limit

DUP - Duplicate Sample

ft bgs - feet below ground surface mg/kg - milligrams per kilogram

Notes:

(a) Samples were analyzed by Curtis & Tompkins, Ltd, of Berkeley, California using EPA Method 8270C-SIM for polycyclic aromatic hydrocarbons. Results are reported to two significant figures. (b) This table presents sample results for calculating benzo(a)pyrene equivalents.

Erler & Kalinowski, Inc.

TABLE E-2 POLYCYCLIC AROMATIC HYDROCARBON CONCENTRATIONS FOR CALCULATING THE BENZO(A)PYRENE EQUIVALENT

Lendrum Court Area Presidio of San Francisco, California

				Analyt	ical Results (r	ng/kg)		
Trench Location	Sample ID	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene
304	1279TP304-D[3.5]	-0.011	-0.011	0.03	-0.011	0.024	-0.011	-0.011
305	1279TP305-D[3.5]	0.045	0.049	0.076	-0.011	0.06	-0.011	0.023
A1	1279TPA1-2[2.0]D	0.066	0.068	0.10	0.03	0.085	-0.011	0.031
F0	1279TPF0-1[1.5]D	0.15	0.14	0.18	0.068	0.17	0.017	0.043
F2	1279TPF2-1[0.0-1.0]D	0.024	0.031	0.048	0.015	0.036	-0.006	0.014
F2	1279TPF2-1[DUP]	0.076	0.071	0.12	0.04	0.099	-0.005	0.023
G1	1279TPG1-2[0.5-1.5]D	0.015	0.016	0.027	-0.005	0.02	-0.005	-0.005
12	1279TPI2-1[1.5]D	ND	ND	ND	ND	ND	ND	ND

Abbreviations:

mg/kg - milligrams per kilogram ND - Not Detected

Notes:

(a) To account for uncertainty relating to non-detected values, one-half the detection limits were used. The non-detect samples are identified with a negative number.

(b) Polycyclic aromatic hydrocarbons not used in benzo(a)pyrene equivalent calculation have been removed from this table.

(c) No carcinogenic polycyclic aromatic hydrocarbons were detected at trench location I2; therefore, a benzo(a)pyrene equivalent value will not be calculated.

TABLE E-3 BENZO(A)PYRENE EQUIVALENTS

Lendrum Court Area

Presidio of San Francisco, California

					Analytical Re	sults (mg/kg)			
Trench Location	Sample ID	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	B(a)P Equivalents
	TEF (b)	0.1	1	0.1	0.01	0.001	1	0.1	
Multiply Analy	tical Results by TEF Values								
304	1279TP304-D[3.5]	0.001	0.011	0.003	0.0001	0.00002	0.011	0.001	0.026
305	1279TP305-D[3.5]	0.005	0.049	0.008	0.0001	0.0001	0.011	0.002	0.074
A1	1279TPA1-2[2.0]D	0.007	0.068	0.010	0.0003	0.0001	0.011	0.003	0.099
F0	1279TPF0-1[1.5]D	0.015	0.140	0.018	0.001	0.0002	0.017	0.004	0.195
F2	1279TPF2-1[0.0-1.0]D	0.002	0.031	0.005	0.0002	0.0000	0.006	0.001	0.045
F2	1279TPF2-1[DUP]	0.008	0.071	0.012	0.0004	0.0001	0.005	0.002	0.098
G1	1279TPG1-2[0.5-1.5]D	0.002	0.016	0.003	0.0001	0.00002	0.005	0.001	0.026
12	1279TPI2-1[1.5]D	NC	NC	NC	NC	NC	NC	NC	ND

Abbreviations:

B(a)P - Benzo(a)Pyrene

DTSC - Department of Toxic Substances Control DUP - Duplicate Sample

mg/kg - milligrams per kilogram

NC - Not Calculated

ND - Not Detected

TEF - Toxicity Equivalent Factor

TABLE E-3BENZO(A)PYRENE EQUIVALENTSLendrum Court AreaPresidio of San Francisco, California

Notes:

- (a) The B(a)P equivalents for each compound were calculated by multiplying the absolute value from Table E-2 by the TEF, and then summing the individual products for each compound.
- (b) Toxicity equivalency factors for carcinogenic polycyclic aromatic hydrocarbons are from EPA Region 9 Regional Screening Levels User's Guide, November 2013. For polycyclic aromatic hydrocarbons not included in the November 2013 User's Guide, values from the June 2011 HHRA Note Number 4 were used, as requested by DTSC.
- (c) All carcinogenic polycyclic aromatic hydrocarbons were ND for sample 1279 TPI2-1[1.5]D; therefore, a B(a)P equivalent value was not calculated for this sample and the values is assigned ND.

Appendix F

ProUCL Version 5.0.00 Output

	А	В	С	D	E	F	G	Н		J	K		L
1					UCL Statis	tics for Data	Sets with N	on-Detects					
2				T									
3		User Sele	cted Options										
4	Da	te/Time of C	omputation	2/14/2015 1 ⁻	1:16:38 AM								
5			From File	inside input	file.xls								
6		Fu	II Precision	OFF									
7		Confidence	Coefficient	95%									
8	Number	of Bootstrap	Operations	2000									
9													
10													
11	As_0-2.5												
12							<u></u>						
13				<u></u>		General	Statistics			() : : : : : : :			
14			l otal	Number of O	bservations	29			Numbe	r of Distinct C	Observations	2	1
15						0.4			Number	r of Missing C	Observations	0	1
16					Minimum	3.4					Mean	5	.807
17					Maximum	10					Median	5)./
18				0 11 1	SD	1.498				Std. E	rror of Mean	0	1.278
19				Coefficient	of Variation	0.258					Skewness	0	1.856
20						Nerrosel							
21									Ohanina W				
22			5		ritical Value	0.940		Doto onno	Snapiro wi	t EV Signific			
23			5% 51			0.920							
24			F		ritical Value	0.10		Data ann		t 5% Signific			
25			J	10 LIIIIEIOIS C	Data anno	o. 105	5% Signific			t 5 % Signine			
26													
27					As	sumina Nor	mal Distributi	on					
28			95% No	ormal UCL	7.0	ouning item		95%	UCLs (Adiu	sted for Ske	wness)		
29				95% Stuc	lent's-t UCL	6.28			95% Adjuste	d-CLT UCL	(Chen-1995)	6	5.312
30									95% Modifie	ed-t UCL (Jo	hnson-1978)	6	5.287
31										,	,		
32 33						Gamma	GOF Test						
33				A-D T	est Statistic	0.27		Ander	son-Darling	Gamma GO	F Test		
34				5% A-D C	ritical Value	0.745	Detected	l data appea	ar Gamma Di	stributed at 5	5% Significar	ice Le	evel
36				K-S T	est Statistic	0.133		Kolmog	grov-Smirno	ff Gamma G	OF Test		
37				5% K-S C	ritical Value	0.162	Detected	l data appea	ar Gamma Di	stributed at 5	5% Significar	ice Le	evel
38				Detected	data appea	[.] Gamma Di	stributed at 5	% Significa	nce Level				
39													
40						Gamma	Statistics						
41					k hat (MLE)	16.35			k	star (bias cor	rected MLE)	14	4.68
42				Thet	a hat (MLE)	0.355			Theta	star (bias cor	rected MLE)	0).395
43				n	u hat (MLE)	948.4				nu star (bia	as corrected)	85	1.6
44			M	E Mean (bia	s corrected)	5.807				MLE Sd (bia	as corrected)	1	.515
45									Approximate	Chi Square	Value (0.05)	784	4.9
46			Adjus	sted Level of S	Significance	0.0407			Ad	djusted Chi S	quare Value	78	1.1
47													
48					As	suming Gan	nma Distribut	ion					
49	(35% Approxir	mate Gamma	UCL (use wh	nen n>=50))	6.301		95% Ad	justed Gamr	na UCL (use	when n<50)	6	i.331
50													

	А	В	С	D	E	F	G GOF Test	Н		J	К	L
51			S	haniro Wilk T	est Statistic	0.978	dor rest	Shar	oiro Wilk I d	ognormal GOF	F Test	
52			5% SI	hapiro Wilk C	critical Value	0.926		Data appea	r Loanorma	al at 5% Signif	icance Level	
53				Lilliefors T	est Statistic	0.127		Lil	liefors Log	normal GOF 1	lest .	
54			5	% Lilliefors C	ritical Value	0.165		Data appea	r Lognorma	al at 5% Signif	icance Level	
55					Data appear	Lognormal	at 5% Signif	icance Leve		5		
50						•						
57						Lognorma	I Statistics					
59				Minimum of L	ogged Data	1.224				Mean of	logged Data	1.728
60			Ν	/laximum of L	ogged Data	2.303				SD of	logged Data	0.252
61												
62					Assı	uming Logno	rmal Distrib	ution				
63					95% H-UCL	6.327			90%	6 Chebyshev (MVUE) UCL	6.632
64			95% (Chebyshev (I	MVUE) UCL	7.006			97.5%	6 Chebyshev (MVUE) UCL	7.525
65			99% (Chebyshev (I	MVUE) UCL	8.545						
66												
67					Nonparame	etric Distribut	tion Free UC	CL Statistics				
68				Data appea	r to follow a	Discernible I	Distribution	at 5% Signif	cance Lev	el		
69												
70					Nonpai	ametric Dist	ribution Fre	e UCLs				
71				95	% CLT UCL	6.264				95% Ja	ickknife UCL	6.28
72			95%	Standard Bo	otstrap UCL	6.258				95% Boo	otstrap-t UCL	6.317
73			9	5% Hall's Bo	otstrap UCL	6.396			95%	Percentile Bo	ootstrap UCL	6.272
74			(95% BCA Bo	otstrap UCL	6.328						
75			90% Ch	ebyshev(Mea	an, Sd) UCL	6.641			95% C	Chebyshev(Me	an, Sd) UCL	7.019
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	7.544			99% C	Chebyshev(Me	an, Sd) UCL	8.574
77						0						
78				05% 8+1	dont's tUCL		UCL to Use					
79				<mark>33 /8 Stut</mark>		0.20						
80		Note: Sugge	stions regard	ing the selec	tion of a 95%		ovided to hel	n the user to	select the	most appropri	iate 95% LICI	
81		These rec		ns are hased	upon the res	ults of the si	mulation stur	dies summar	ized in Sin	ah Singh and	1 Jaci (2002)	•
82		11000100	and Singh	and Singh (2	003) Howey	er, simulatio	ns results wi	ill not cover a	all Real Wo	rld data sets		
83			g	For ad	ditional insial	nt the user m	av want to c	onsult a stat	stician.			
84					g.							
00												
87	Pb_0-2.5											
88												
89						General	Statistics					
90			Total	Number of C	bservations	30			Numb	er of Distinct C	Observations	28
91									Numbe	er of Missing (Observations	0
92					Minimum	8.4					Mean	687.5
93					Maximum	2400					Median	400
94					SD	695.9				Std. E	rror of Mean	127.1
95				Coefficient	of Variation	1.012					Skewness	1.068
96												
97						Normal C	GOF Test					
98			S	hapiro Wilk T	est Statistic	0.835			Shapiro V	Vilk GOF Test	<u>ــــــــــــــــــــــــــــــــــــ</u>	
99			5% SI	hapiro Wilk C	critical Value	0.927		Data No	t Normal at	t 5% Significar	nce Level	
100				Lilliefors T	est Statistic	0.212			Lilliefor	s GOF Test		

	А		В	С	D	Е	F	G	Н		J	K	L
101				Ę	5% Lilliefors C	ritical Value	0.162		Data No	t Normal at 5	5% Significand	e Level	
102						Data Not	Normal at 5	% Significan	ce Level				
103													
104						As	suming Norr	nal Distributi	on				
105				95% N	ormal UCL				95%	UCLs (Adju	sted for Skew	/ness)	
106					95% Stud	lent's-t UCL	903.4			95% Adjuste	d-CLT UCL (C	Chen-1995)	923
107										95% Modifie	ed-t UCL (Johi	nson-1978)	907.5
108													
109							Gamma	GOF Test					
110					A-D T	est Statistic	0.403		Ander	son-Darling	Gamma GOF	[:] Test	
111					5% A-D C	ritical Value	0.783	Detected	l data appea	ar Gamma Di	stributed at 59	% Significan	ce Level
112					K-S T	est Statistic	0.118		Kolmoç	grov-Smirnof	f Gamma GO	F Test	
113					5% K-S C	ritical Value	0.166	Detected	l data appea	ar Gamma Di	stributed at 5%	% Significan	ce Level
114					Detected	data appea	r Gamma Di	stributed at 5	% Significa	nce Level			
115													
116							Gamma	Statistics					
117						k hat (MLE)	0.85			ks	star (bias corre	ected MLE)	0.788
118					Thet	a hat (MLE)	808.4			Theta s	star (bias corre	ected MLE)	872.9
119					n	u hat (MLE)	51.03				nu star (bias	corrected)	47.26
120				N	ILE Mean (bia	s corrected)	687.5				MLE Sd (bias	; corrected)	774.7
121										Approximate	Chi Square V	'alue (0.05)	32.48
122				Adju	sted Level of S	Significance	0.041			Ac	ljusted Chi Sq	juare Value	31.77
123													
124						As	suming Gam	ima Distribut	ion				
125		95%	Approxi	mate Gamm	na UCL (use w	/hen n>=50)	1000		95% Ad	justed Gamn	na UCL (use v	when n<50)	1023
126													
127							Lognorma	GOF Test		<u> </u>			
128					Shapiro Wilk T	est Statistic	0.916		Shap	biro Wilk Log	normal GOF	Test	
129				5% 5	shapiro Wilk C	ritical Value	0.927		Data Not	Lognormal at	5% Significal	nce Level	
130						est Statistic	0.0987			liefors Logno		+st	
131				:	5% Lilliefors C	ritical Value	0.162		Data appea	r Lognormal	at 5% Signific	ance Level	
132					Data a	ppear Appro	ximate Logr	iormal at 5%	Significanc	e Levei			
133							1.00000000						
134					Mississon of L		Lognorma	I Statistics			Magazi		E 0.4.1
135						ogged Data	2.128					ogged Data	0.84 I
136							7.765				30 01 10	Jyyeu Dala	1.439
137						٨٥٥	ming Logno	rmal Distribu	ution				
138										0.0%	Chobyshov (N		1802
139				05%	Chobyshov (2202			90%	Chobyshev (N		2768
140				90%	Chebyshev (I		2200			97.5%			2700
141				99 /0	Chebyshev (i	WVUE) UCE	3072						
142						Nonnaramo	trio Dietribu	tion Eroo LIC	L Statistics				
143					Doto oppos				t 5% Signif				
144						to follow a	Discernible		it 5% Signin				
145						Nonna	rametric Dic	tribution From					
146					05				5 0018		05% 100	kknifo LICI	003 1
147				050/	Standard Pa		807				050/ Doot		037 F
148				90%			03/			0E0/ F	90% BUOR		937.3 000 2
149				:			025.0			90% F	ercentile DOC		300.Z
150					30 M RCA R0	oisirap OCL	920.9						

	A	В	С	D	E	F	G	Н		J	K	L
151			90% Ch	ebyshev(Mea	an, Sd) UCL	1069			95% Ch	ebyshev(Mea	an, Sd) UCL	1241
152			97.5% Ch	ebyshev(Mea	an, Sd) UCL	1481			99% Ch	ebyshev(Mea	an, Sd) UCL	1952
153												
154						Suggested	UCL to Use					
155			<mark>.95</mark>	% Adjusted C	amma UCL	<mark>1023</mark>						
156												
157		Note: Sugge	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	iost appropria	ate 95% UCL	
158		These rec	ommendation	ns are based	upon the res	ults of the si	mulation stud	dies summar	ized in Singh	n, Singh, and	laci (2002)	
159			and Singh	and Singh (2	003). Howev	ver, simulatio	ons results wi	ll not cover a	all Real World	d data sets.		
160				For add	ditional insig	ht the user m	nay want to c	onsult a stati	istician.			
161												
162	b(a)p_0-2.	5										
163												
164						General	Statistics					
165			Total	Number of C	bservations	29			Number	of Distinct O	bservations	26
166				Numbe	r of Detects	24				Number of N	Ion-Detects	5
167			N	umber of Dist	inct Detects	22			Numbe	er of Distinct N	Von-Detects	4
169				Mini	mum Detect	0.0061				Minimum	Non-Detect	0.0051
160				Maxi	mum Detect	0.14				Maximum	Non-Detect	0.0054
109				Varia	nce Detects	0.00117				Percent N	Von-Detects	17.24%
170				М	ean Detects	0.0373					SD Detects	0.0343
170				Мес	lian Detects	0.022					CV Detects	0.919
172				Skewn	ess Detects	1.49				Kurto	osis Detects	2.094
173				Mean of Log	aed Detects	-3.67				SD of Loa	aed Detects	0.897
1/4					9							
175					Norm	nal GOF Tes	t on Detects	Only				
170			S	hapiro Wilk T	est Statistic	0.821		•	Shapiro Wi	lk GOF Test		
170			5% S	hapiro Wilk C	ritical Value	0.916	[Detected Dat	ta Not Norma	al at 5% Signi	ficance Leve	
170				Lilliefors T	est Statistic	0.234			Lilliefors	GOF Test		
1/9			5	% Lilliefors C	ritical Value	0.181	[Detected Dat	ta Not Norma	al at 5% Signi	ficance Leve	
101				D	etected Data	a Not Norma	al at 5% Sign	ificance Lev	el			
101												
102			Kaplan-	Meier (KM) S	statistics usi	ng Normal C	ritical Value	s and other	Nonparamet	ric UCLs		
104			•	. ,	Mean	0.0318			•	Standard Er	ror of Mean	0.00623
184					SD	0.0329				95% KM	(BCA) UCL	0.0424
185				95%	KM (t) UCL	0.0424			95% KM (P	ercentile Boo	tstrap) UCL	0.0417
186				95%	KM (z) UCI	0.042				95% KM Boot	tstrap t UCI	0.0452
107			ç	0% KM Chel	oyshev UCL	0.0504			ç	5% KM Chet	oyshev UCL	0.0589
188			97	.5% KM Chel	ovshev UCI	0.0707			ç	9% KM Chel	ovshev UCI	0.0938
189			57		,						,	
190					amma GOF	Tests on De	etected Obse	ervations On	lv			
191				ם ד ח_۵	est Statistic	0.653		Δ	nderson-Da	rling GOF To	st	
192				5% A-D C	ritical Value	0 762	Detecter	n data annea	r Gamma Di	stributed at 5	 % Significant	celevel
193				K-6 1	est Statistic	0 166	20100101		Kolmogrov-9			
194	5% K-S Critical Value 0.181 Detected data appear Gamma Distributed at 5% Significance											ce l evel
195				Detected	data annea	r Gamma Di	stributed at P	Significa				
196				20100180	and appea							
197					Gamma	Statistics or		ata Only				
198					k hat (MLE)	1 454			k د	star (hias corr	rected MLE	13
199				That		0.0257			Thata a			 דסכח ח
200				iner	a nat (IVILE)	0.0207			i neta s	siai (ulas com	ecieu MLE)	0.0207

	А	В	С	D	E	F	G	Н	l	J K	L
201				r	nu hat (MLE)	69.8				nu star (bias corrected)	62.41
202			MI	_E Mean (bia	is corrected)	0.0373				MLE Sd (bias corrected)	0.0327
203							ļ				
204					Gamm	a Kaplan-M	eier (KM) St	atistics			
205					k hat (KM)	0.934				nu hat (KM)	54.17
206		Арр	proximate Chi	i Square Val	ue (54.17, α)	38.26			Adjusted Ch	i Square Value (54.17, β)	37.46
200	95%	Gamma Ap	proximate KM	/I-UCL (use v	vhen n>=50)	0.045		95% Gamm	a Adjusted k	M-UCL (use when n<50)	0.0459
207											
200				G	amma ROS	Statistics us	sing Imputed	Non-Detec	ts		
209			GROS may	not be used	when data s	et has > 50%	NDs with m	any tied obs	ervations at	multiple DLs	
210				GROS may	not be used	when kstar o	of detected da	ata is small s	such as < 0.1		
211			For	such situatio	ons. GROS m	ethod tends	to vield infla	ted values of	f UCLs and E	BTVs	
212		For dar	mma distribut	ed detected	data. BTVs a	nd UCLs ma	v be comput	ed using gar	nma distribu	tion on KM estimates	
213		- 3-			Minimum	0.0061	, p.	33		Mean	0.0326
214					Maximum	0.14				Median	0.017
215					SD	0.0328				CV	1 006
216					k hat (MLE)	1 368			k	star (bias corrected MLE)	1.000
217				The	ta bat (MLE)	0.0238			Theta	star (bias corrected MLE)	0.0261
218						79.36			Theta	nu star (bias corrected)	72 / 9
219			MI	E Moon (bir		0.0326				MLE Sd (bias corrected)	0.0202
220			IVIL		is conected)	0.0520			Adjustos		0.0232
221		٨٥٩	rovimoto Chi		(72.40 a)	E2 99			Adjusted Ch	i Squara Valua (72.40.4)	52.02
222					$\frac{10}{12.49, 0}$	0.0420		05% 04			52.92
223		95% Gamma	a Approximate	e UCL (use v	vnen n>=50)	0.0439		95% Ga	amma Adjust	ed UCL (use when h<50)	0.0446
224				<u> </u>					•		
225					ognormal GC		etected Obs	ervations O			
226			S	hapiro Wilk	est Statistic	0.955			Shapiro Wi		
227			5% SI	hapiro Wilk C	Critical Value	0.916	Dete	ected Data a	ppear Logno	rmal at 5% Significance L	evel
228				Lilliefors	Fest Statistic	0.11			Lilliefors	GOF Test	
229			5	% Lilliefors C	Critical Value	0.181	Dete	ected Data a	ppear Logno	rmal at 5% Significance L	evel
230				Dete	cted Data ap	opear Logno	rmal at 5% S	Significance	Level		
231											
232				Lo	gnormal RO	S Statistics	Using Impute	ed Non-Dete	ects		
233				Mean in O	riginal Scale	0.0314				Mean in Log Scale	-4.022
234				SD in O	riginal Scale	0.0337				SD in Log Scale	1.132
235		95% t l	JCL (assume	s normality o	of ROS data)	0.0421			95% I	Percentile Bootstrap UCL	0.0422
236			ę	95% BCA Bo	otstrap UCL	0.0433				95% Bootstrap t UCL	0.0454
237				95% H-UC	L (Log ROS)	0.0597					
238							•				
239		U	CLs using Lo	gnormal Dis	tribution and	KM Estimat	tes when De	tected data	are Lognorm	ally Distributed	
240				KM M	ean (logged)	-3.948				95% H-UCL (KM -Log)	0.051
241				KM	SD (logged)	1.004			95% (Critical H Value (KM-Log)	2.472
242			KM Standar	rd Error of M	ean (logged)	0.19					
243											
244						DL/2 St	tatistics				
245			DL/2	Normal					DL/2 Log-T	ransformed	
246				Mean in O	riginal Scale	0.0313				Mean in Log Scale	-4.062
247				SD in O	riginal Scale	0.0338				SD in Log Scale	1.193
248			95% t L	JCL (Assume	es normality)	0.042				95% H-Stat UCL	0.0647
249			DL/2 i	is not a reco	mmended m	ethod, provid	ded for comp	parisons and	l historical re	asons	
250											
200											

	A	В	С	D	E	F	G	Н		J	K	L
251					Nonparame	etric Distribu	tion Free UC	CL Statistics				
252				Detected	Data appea	r Gamma Di	stributed at	5% Significa	nce Level			
253												
254						Suggested	UCL to Use					
255				95% KM	(BCA) UCL	0.0424			95% GRC	S Adjusted C	Gamma UCL	0.0446
256			<mark>95% A</mark>	djusted Gam	ma KM-UCL	0.0459						
257						L						
258		Note: Sugge	estions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	lp the user to	select the m	nost appropria	ate 95% UCL.	
259			F	Recommenda	tions are bas	sed upon dat	a size, data	distribution, a	and skewnes	SS.		
260		These reco	ommendations	s are based u	pon the resu	Its of the sim	nulation studi	es summariz	zed in Singh,	Maichle, and	J Lee (2006).	
261	Н	owever, sim	ulations result	s will not cov	er all Real V	/orld data se	ts; for additic	onal insight th	ne user may	want to cons	ult a statisticia	an.
262												
263	d(a,h)a_0-	2.5										
264												
265						General	Statistics					
266			Total	Number of C	bservations	29			Numbe	r of Distinct C	bservations	15
267				Numbe	er of Detects	10				Number of	Non-Detects	19
268			N	umber of Dist	inct Detects	10			Numbe	er of Distinct I	Non-Detects	8
269				Mini	mum Detect	0.0052				Minimum	Non-Detect	0.0051
270				Maxi	mum Detect	0.056				Maximum	Non-Detect	0.021
271				Varia	nce Detects	2.3669E-4				Percent	Non-Detects	65.52%
272				М	ean Detects	0.0164					SD Detects	0.0154
273				Me	dian Detects	0.012					CV Detects	0.94
274				Skewr	ess Detects	2.214				Kurt	osis Detects	5.5
275				Mean of Log	ged Detects	-4.409				SD of Log	ged Detects	0.773
276						1	L				I	
277					Norn	nal GOF Tes	t on Detects	Only				
278			S	hapiro Wilk T	est Statistic	0.734			Shapiro Wi	lk GOF Test		
279			5% S	hapiro Wilk C	ritical Value	0.842	I	Detected Da	ta Not Norma	al at 5% Sign	ificance Level	
280				Lilliefors 7	est Statistic	0.258			Lilliefors	GOF Test		
281			5	% Lilliefors C	ritical Value	0.28	De	etected Data	appear Norr	nal at 5% Sig	inificance Lev	el
282				Detected	Data appear	· Approximat	e Normal at	5% Significa	ance Level			
283												
284			Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	critical Value	s and other	Nonparamet	tric UCLs		
285					Mean	0.00907				Standard E	rror of Mean	0.00198
286					SD	0.0101				95% KM	I (BCA) UCL	0.0131
287				95%	KM (t) UCL	0.0124			95% KM (F	Percentile Boo	otstrap) UCL	0.0125
288				95%	KM (z) UCL	0.0123				95% KM Boo	tstrap t UCL	0.0165
289			ę	90% KM Che	byshev UCL	0.015			Q	95% KM Che	byshev UCL	0.0177
290			97	.5% KM Che	byshev UCL	0.0215			ę	99% KM Che	byshev UCL	0.0288
291												
292				G	iamma GOF	Tests on De	etected Obse	ervations Or	ly			
293				A-D 1	est Statistic	0.447		A	nderson-Da	rling GOF Te	st	
294				5% A-D C	ritical Value	0.737	Detecte	d data appea	ar Gamma Di	istributed at 5	% Significant	e Level
295				K-S 1	est Statistic	0.153			Kolmogrov-	Smirnoff GOI	=	
296				5% K-S C	ritical Value	0.27	Detecte	d data appea	ar Gamma Di	istributed at 5	% Significant	e Level
297				Detected	data appea	r Gamma Di	stributed at !	5% Significa	nce Level			
298								-				
299					Gamma	Statistics or	n Detected D	ata Only			<u>_</u>	
300					k hat (MLE)	1.836			k	star (bias cor	rected MLE)	1.352

	А	В	С	D	E	F	G	Н		J	K	L
301				The	ta hat (MLE)	0.00891			Theta s	star (bias corr	ected MLE)	0.0121
302				r	u hat (MLE)	36.72				nu star (bias	s corrected)	27.04
303			Μ	LE Mean (bia	s corrected)	0.0164				MLE Sd (bias	s corrected)	0.0141
304												
305					Gamm	a Kaplan-M	eier (KM) Sta	atistics				
306					k hat (KM)	0.807					nu hat (KM)	46.83
307		App	proximate Ch	i Square Valu	ue (46.83, α)	32.13			Adjusted Ch	Square Valu	e (46.83, β)	31.4
308	95%	Gamma Ap	proximate KM	И-UCL (use v	vhen n>=50)	0.0132		95% Gamm	na Adjusted K	M-UCL (use	when n<50)	0.0135
309												
310				G	iamma ROS	Statistics us	sing Imputed	Non-Detec	cts			
311			GROS may	not be used	when data s	et has > 50%	6 NDs with m	any tied obs	servations at	multiple DLs		
312				GROS may	not be used	when kstar c	of detected da	ata is small s	such as < 0.1			
313			For	such situatio	ns, GROS m	nethod tends	to yield inflat	ted values o	f UCLs and E	STVs		
314		For gar	mma distribut	ted detected	data, BTVs a	nd UCLs ma	y be comput	ed using ga	mma distribu	ion on KM es	timates	
315					Minimum	0.0052					Mean	0.0122
316					Maximum	0.056					Median	0.01
317					SD	0.00925					CV	0.759
318					k hat (MLE)	3.983			k s	star (bias corr	ected MLE)	3.594
319				The	ta hat (MLE)	0.00306			Theta s	star (bias corr	ected MLE)	0.00339
320				r	u hat (MLE)	231				nu star (bias	s corrected)	208.5
321			Μ	LE Mean (bia	s corrected)	0.0122				MLE Sd (bias	s corrected)	0.00643
322									Adjusted	Level of Sigr	ificance (β)	0.0407
323		Appr	oximate Chi	Square Value	e (208.47, α)	176.1		A	Adjusted Chi	Square Value	(208.47, β)	174.3
324	ç	95% Gamma	a Approximat	e UCL (use v	/hen n>=50)	0.0144		95% Ga	amma Adjust	ed UCL (use	when n<50)	0.0146
325												
326				Lo	gnormal GC	F Test on D	etected Obs	ervations O	nly			
327			S	hapiro Wilk T	est Statistic	0.926			Shapiro Wi	k GOF Test		
328			5% S	hapiro Wilk C	critical Value	0.842	Dete	ected Data a	ppear Logno	rmal at 5% Si	gnificance L	evel
329				Lilliefors T	est Statistic	0.142			Lilliefors	GOF Test		
330			5	% Lilliefors C	ritical Value	0.28	Dete	ected Data a	ppear Logno	rmal at 5% Si	gnificance L	evel
331				Dete	cted Data ap	opear Logno	rmal at 5% S	Significance	Level			
332												
333				Lo	gnormal RO	S Statistics	Using Impute	ed Non-Dete	ects			
334				Mean in O	riginal Scale	0.0069				Mean ii	n Log Scale	-5.723
335				SD in O	riginal Scale	0.0112				SD ii	n Log Scale	1.167
336		95% t l	JCL (assume	es normality o	of ROS data)	0.0104			95% H	Percentile Boo	otstrap UCL	0.0106
337				95% BCA Bo	otstrap UCL	0.0121				95% Boot	strap t UCL	0.0136
338				95% H-UCI	(Log ROS)	0.0117						
339			<u></u>									
340		U	CLS USING LC	gnormal Dis			tes when De	tected data	are Lognorm			
341				KIVI IVI	ean (logged)	-4.966			050/ 0	95% H-UC	L (KM -Log)	0.0105
342				KM	SD (logged)	0.597			95% (Critical H Valu	ie (KM-Log)	2.03
343			Kivi Standa	ru Error of Me	ean (logged)	0.118						
344												
345				Normal		DL/2 S	laustics			ronofoursed		
346			DL/2		riginal O I	0.00700			DL/2 LOG-1			E 07
347						0.00/99						-5.27
348			050/ 21			0.0114				SDI		0.0104
349			95% t l		es normality)	0.0114	dod for com	ouloons	l biotoria - L	95%	n-อเลข UCL	0.0104
350			DL/2	is not a recol	mmended m	etnod, provi	aea tor comp	parisons and	a nistorical re	asons		

	Α		В	С	D	E	F	G	Н		J	K	L	
351														
352						Nonparame	etric Distribu	tion Free UC	L Statistics					
353				De	etected Data	appear Appr	oximate Nor	mal Distribut	ted at 5% Sig	gnificance L	evel			
354														
355							Suggested	UCL to Use						
356					<mark>.95%</mark>	KM (t) UCL	0.0124			95% KM (F	ercentile Boo	otstrap) UCL	0.0125	
357														
358		N	lote: Sugge	stions regar	ding the seled	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UCL		
359					Recommenda	ations are bas	sed upon dat	a size, data o	distribution, a	and skewnes	S.			
360		-	These reco	mmendation	s are based ι	ipon the resu	Its of the sin	ulation studi	es summariz	ed in Singh,	Maichle, and	d Lee (2006).		
361		Hov	wever, simu	lations resu	ts will not cov	ver all Real W	/orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistici	an.	
362														
363														
364	As													
365														
366							General	Statistics						
367				Tota	I Number of C	Observations	38			Numbe	r of Distinct C	Observations	26	
368										Number	r of Missing C	Observations	0	
369						Minimum	3.4					Mean	5.563	
370						Maximum	10					Median	5.55	
371						SD	1.494				Std. E	rror of Mean	0.242	
372		Coefficient of Variation 0.269 Skewness												
373		Normal COE Test												
374							Normal (GOF Test						
375					Shapiro Wilk	Fest Statistic	0.946			Shapiro Wi	Ik GOF Test	<u> </u>		
376				5% 5	Shapiro Wilk C	Critical Value	0.938		Data appe	ear Normal a	t 5% Significa	ance Level		
377					Lilliefors	lest Statistic	0.112			Lilliefors	GOF Test			
378				ļ	5% Lilliefors C	Critical Value	0.144		Data appe	ear Normal a	t 5% Significa	ance Level		
379						Data appe	ar Normal a	t 5% Signific	ance Level					
380						A -		u al Diatrikut						
381				050/ N		As	suming Nor	nai Distridut			ate d fen Olea			
382				95% N			E 070		95%			WNESS)	E 007	
383					95% Stu	dents-t UCL	5.972					(Chen-1995)	5.997	
384										95% MOdifie	ea-t UCL (Joi	nnson-1978)	5.978	
385	-						Commo							
386					<u>م ۸</u>	Foot Statistic	0 220		Andor	son Darling	Gamma GO	E Toet		
387					5% A D (0.229	Dotoctor			Gamma GO	Significan		
388					3% A-D C	Feet Statistic	0.747	Delected			ff Gamma G			
389					5% K-S (ritical Value	0.0302	Detector		r Gamma Di	istributed at F	Significan		
390						I data annea	r Gamma Di	etributed at F	5% Significa					
391					Delected	i uala appea								
392							Gamma	Statistics						
393						k hat (MI E)	15				star (hias cor		12.82	
394					The	ta hat (MLE)	0 371			Theta	star (bias cor	rected MLE)	0.402	
395							1140			i ileid i	nu star (bia		1051	
396				N/	II F Mean (his		5 563				MI F Sd (bia	s corrected)	1 496	
397				IV			0.000			Annroximate			976 7	
398				Adiu	sted I evel of	Significance	0.0434			Δι	diusted Chi S	duare Value	973.8	
399				Auju		Significance	0.0404						0,0.0	
400														

	А	В	С	D	E	F	G	Н	I	J	K	L
401					As	suming Gar	ma Distributi	on				
402		95% Approxi	mate Gamma	a UCL (use w	hen n>=50))	5.986		95% Ad	ljusted Gamr	na UCL (use	when n<50)	6.004
403												
404						Lognorma	GOF Test				·	
405			5	hapiro Wilk I	est Statistic	0.974		Snap		normal GOF		
406			5% 5			0.938		Data appea				
407			F		est Statistic	0.0801				ot E% Signif		
408			5	% Lillieiors C			ot 5% Signifi			at 5% Signin		
409					Data appear	Lognormai	at 5 % Signin		1			
410						Lognorma	Statistics					
411				Minimum of I	orged Data	1 224				Mean of	logged Data	1 682
412			Ν	Maximum of L	ogged Data	2.303				SD of	logged Data	0.262
413			· · ·			2.000					loggou Dulu	0.202
414					Assı	umina Loana	rmal Distribu	tion				
415					95% H-UCL	6.008			90%	Chebyshev (MVUE) UCL	6.281
410			95%	Chebyshev (I	MVUE) UCL	6.607			97.5%	Chebyshev (, MVUE) UCL	7.06
417			99%	Chebyshev (I	MVUE) UCL	7.949						
410				· · ·								
419					Nonparame	etric Distribu	tion Free UC	L Statistics				
420				Data appea	r to follow a	Discernible	Distribution a	t 5% Signifi	icance Level			
422												
423					Nonpai	rametric Dis	tribution Free	UCLs				
424				95	% CLT UCL	5.962				95% Ja	ckknife UCL	5.972
425			95%	Standard Bo	otstrap UCL	5.967				95% Boo	otstrap-t UCL	6.016
426			9	5% Hall's Bo	otstrap UCL	6.015			95% F	Percentile Bc	ootstrap UCL	5.955
427				95% BCA Bo	otstrap UCL	5.979						
428			90% Ch	ebyshev(Mea	an, Sd) UCL	6.29			95% Ch	ebyshev(Me	an, Sd) UCL	6.62
429			97.5% Ch	ebyshev(Mea	an, Sd) UCL	7.077			99% Ch	ebyshev(Me	an, Sd) UCL	7.975
430												
431						Suggested	UCL to Use					
432				95% Stud	dent's-t UCL	<mark>5.972</mark>			1			
433												
434		Note: Sugge	estions regard	ling the selec	tion of a 95%	UCL are pr	ovided to help	the user to	select the m	lost appropri	ate 95% UCL	•
435		These rec	commendation	ns are based	upon the res	ults of the si	mulation stud	ies summar	ized in Singh	h, Singh, and	l laci (2002)	
436			and Singh	and Singh (2		ht the uper m		not cover a		u data sets.		
437				FUI au								
438												
439	Ph											
440												
441						General	Statistics					
442			Total	Number of C	bservations	39			Number	r of Distinct C	Observations	36
443									Number	of Missing C	Observations	0
444					Minimum	8.4					Mean	607.7
445			Median	340								
447					SD	644.4				Std. E	rror of Mean	103.2
448				Coefficient	of Variation	1.06					Skewness	1.286
449												
450						Normal (GOF Test					
400												

	А	В	С	D	E	F	G	Н		J	K	L
451			S	shapiro Wilk ⊺	Test Statistic	0.823			Shapiro W	ilk GOF Tes	t	
452			5% S	hapiro Wilk C	Critical Value	0.939		Data No	ot Normal at	5% Significa	nce Level	
453				Lilliefors 7	Test Statistic	0.202			Lilliefors	GOF Test		
454			5	% Lilliefors C	Critical Value	0.142		Data No	ot Normal at	5% Significa	nce Level	
455					Data Not	Normal at 5	5% Significa	nce Level				
456												
457					As	suming Nor	mal Distribut	tion				
458			95% No	ormal UCL				95%	UCLs (Adju	usted for Ske	wness)	
459				95% Stu	dent's-t UCL	781.7			95% Adjuste	ed-CLT UCL	(Chen-1995)	800.2
460									95% Modifi	ed-t UCL (Jo	hnson-1978)	785.2
461												
462						Gamma	GOF Test					
463				A-D	Test Statistic	0.221		Ande	rson-Darling	Gamma GC	OF Test	
403				5% A-D (Critical Value	0.786	Detecte	d data appea	ar Gamma D	istributed at	5% Significan	ce Level
465				K-S	Test Statistic	0.0715		Kolmo	grov-Smirno	ff Gamma G	iOF Test	
400				5% K-S (Critical Value	0.147	Detecte	d data appea	ar Gamma D	istributed at	5% Significan	ce Level
467				Detected	I data appea	r Gamma Di	stributed at {	5% Significa	nce Level			
467												
469						Gamma	Statistics					
470					k hat (MLE)	0.812			k	star (bias co	rrected MLE)	0.767
471				The	ta hat (MLE)	748.2			Theta	star (bias co	rrected MLE)	792.5
472				1	nu hat (MLE)	63.35				nu star (bi	as corrected)	59.81
473			M	LE Mean (bia	as corrected)	607.7				MLE Sd (bi	as corrected)	694
470									Approximate	e Chi Square	Value (0.05)	43.03
475			Adjus	sted Level of	Significance	0.0437			A	djusted Chi S	Square Value	42.46
476												
477					As	suming Gam	nma Distribu	tion				
478		95% Approx	imate Gamm	a UCL (use v	when n>=50)	844.7		95% Ac	ljusted Gam	ma UCL (use	e when n<50)	855.9
479												
480						Lognorma	I GOF Test					
481			S	Shapiro Wilk ⊺	Test Statistic	0.944		Sha	piro Wilk Log	gnormal GO	F Test	
482			5% S	hapiro Wilk C	Critical Value	0.939		Data appea	ar Lognormal	at 5% Signi	ficance Level	
483				Lilliefors 7	Test Statistic	0.0952		Lil	lliefors Logn	ormal GOF	Test	
484			5	% Lilliefors C	Critical Value	0.142		Data appea	ar Lognormal	at 5% Signi	ficance Level	
485					Data appear	Lognormal	at 5% Signif	icance Leve	el de la companya de			
486												
487						Lognorma	I Statistics					
488				Minimum of I	Logged Data	2.128				Mean of	f logged Data	5.68
489			Ν	Maximum of I	Logged Data	7.783				SD of	f logged Data	1.444
490												
491					Assi	uming Logno	ormal Distrib	ution				
492					95% H-UCL	1664			90%	Chebyshev	(MVUE) UCL	1493
493			95%	Chebyshev (MVUE) UCL	1812			97.5%	Chebyshev	(MVUE) UCL	2254
494			99%	Chebyshev (MVUE) UCL	3123						
495												
496					Nonparame	etric Distribu	tion Free UC	CL Statistics				
497				Data appea	r to follow a	Discernible	Distribution	at 5% Signif	icance Leve			
498												
499					Nonpa	rametric Dis	tribution Fre	e UCLs				
500				95	5% CLT UCL	777.4				95% Ja	ackknife UCL	781.7

	А	В	С	D	E	F	G	Н			J	К	L
501			95%	Standard Bo	otstrap UCL	779.5					95% Boot	strap-t UCL	800.2
500			9	5% Hall's Bo	otstrap UCL	800.6			95	5% F	Percentile Boo	otstrap UCL	784.2
502			(5% BCA Bo	ntetran LICI	805.9							
503						000.0			050				4050
504			90% CN	ebysnev(iviea	an, Sa) UCL	917.3			95%	₀ Cn	ebysnev(iviea	in, Sa) UCL	1058
505			97.5% Ch	ebyshev(Mea	an, Sd) UCL	1252			99%	6 Ch	ebyshev(Mea	n, Sd) UCL	1634
506													
507						Suggested	UCL to Use						
507			959	% Adjusted G	amma UCL	855.9							
508													
509		Note: Sugge	stions regard	ing the select	ion of a 95%	LICL are pr	ovided to hel	In the user to	solact th	10 m	ost annronria		
510		The second											
511		These rec	ommendation	is are based	upon the res	suits of the si	mulation stud	ules summai	ized in S	singr	i, Singn, and		
512			and Singh	and Singh (2	003). Howe	ver, simulatio	ns results wi	ill not cover a	all Real V	Vorlo	d data sets.		
513				For add	litional insig	ht the user m	ay want to c	onsult a stat	istician.				
514													
515	b(a)p												
516													
010						General	Statistics						
517			Total	Number of O	hearvations	38			Nur	nhor	of Distinct O	hearvations	20
518			Total	Numbo	r of Dotooto	20			INUI		Number of N	lon Dotooto	0
519						30							0
520			N	imber of Dist	Inct Detects	25			Nu	mbe	r of Distinct N	Ion-Detects	5
521				Minii	num Detect	0.0061					Minimum	Non-Detect	0.0051
522				Maxii	num Detect	0.31					Maximum	Non-Detect	0.021
523				Varia	nce Detects	0.00367					Percent N	Ion-Detects	21.05%
524				M	ean Detects	0.0476						SD Detects	0.0606
524				Мес	lian Detects	0.0235						CV Detects	1.271
525				Skewn	ess Detects	3.121					Kurto	sis Detects	12.03
526				Mean of Log	ned Detects	-3 551					SD of Logo	ned Detects	0.981
527						0.001					00 01 2098		
528					Nom		t on Dotooto	Only					
529					Nom		t on Delects		<u>.</u>				
530			S	napiro wiik I	est Statistic	0.649			Snapiro		K GOF Test	-	
531			5% Sł	napiro Wilk C	ritical Value	0.927	[Detected Da	ta Not No	orma	Il at 5% Signif	ficance Leve	
532				Lilliefors T	est Statistic	0.246			Lillief	fors	GOF Test		
533			5	% Lilliefors C	ritical Value	0.162	[Detected Da	ta Not No	orma	I at 5% Signif	ficance Leve	
534				D	etected Dat	a Not Norma	l at 5% Sign	ificance Lev	vel 🛛				
535													
535			Kaplan-l	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonpara	met	ric UCLs		
536			•	. ,-	Mean	0.0388			•		Standard Fr	ror of Mean	0.00917
537						0.0556					95% KM	(BCA) LICI	0.0565
538				050/		0.0000					orcontilo Par		0.0505
539				95%		0.0543			90% KI	vi (P		isiiap) UCL	0.0540
540				95%	KM (z) UCL	0.0539				ę	95% KM Boot	strap t UCL	0.0663
541			9	0% KM Chet	byshev UCL	0.0663				9	5% KM Cheb	yshev UCL	0.0788
542			97	5% KM Chet	yshev UCL	0.0961				g	9% KM Cheb	yshev UCL	0.13
543													
544				G	amma GOF	Tests on De	etected Obse	ervations Or	ly				
5/5				A-D T	est Statistic	0.922		A	nderson	-Dar	ling GOF Te	st	
545				5% A-D C	ritical Value	0.772	Detect	ed Data Not	Gamma	Dist	ributed at 5%	Significance	Level
546				K-S T	est Statistic	0.166			Kolmoor	ov9	Smirnoff GOF		
547				5% K 90	ritical Value	0.164	Dotoct	ed Data Not	Gammo	Diet	ributed at 5%	Significance	
548				Dete		0.104				ואיט	nouteu di 0 %	Significance	LEVEI
549				Detecte	u Data Not	Jamma Dist	nduted at 5%	n Significan	ce Level				
550													

	А	В	С	D	E	F Statistics or	G	H H	I	J	K	L
551								Data Uniy		ter (bies serve		1 022
552				The		1.123			Thete			1.033
553				Ine		0.0424			Thetas			0.0461
554						07.37					corrected)	01.90
555			IVII	_E iviean (bia	s corrected)	0.0476				MLE SO (DIAS	corrected)	0.0469
556					Comm	o Konlon M		otiotioo				
557						0 497		ausucs			u bot (KM)	27.02
558		An	provimate Ch	Square Valu		2/ 1			Adjusted Ch	i Square Value		23.67
559	95%		nrovimate KN		$\frac{10}{(57.05, 0)}$	0.0596		95% Gamm			(57.05, p)	0.0607
560	5570	Gamma Ap				0.0000					men n soo)	0.0007
561				G	amma ROS	Statistics us	sina Imputed	l Non-Deter	rts			
562			GROS may	not be used	when data s	et has > 50%	NDs with m	nany tied obs	servations at	multiple DLs		
563			,	GROS may	not be used	when kstar c	of detected d	ata is small s	such as < 0.1			
564			For	such situatio	ns. GROS m	ethod tends	to vield infla	ted values o	f UCLs and E	BTVs		
505		For ga	mma distribut	ed detected	data, BTVs a	nd UCLs ma	y be comput	ted using ga	mma distribu	tion on KM est	imates	
567		-			Minimum	0.0061					Mean	0.0397
569					Maximum	0.31					Median	0.017
560					SD	0.0558					CV	1.405
570					k hat (MLE)	1.049			ks	star (bias corre	ected MLE)	0.984
571				The	ta hat (MLE)	0.0379			Theta s	star (bias corre	ected MLE)	0.0404
572				n	u hat (MLE)	79.71				nu star (bias	corrected)	74.75
573			MI	E Mean (bia	s corrected)	0.0397				MLE Sd (bias	corrected)	0.04
574									Adjusted	Level of Signi	ficance (β)	0.0434
575		Ap	proximate Ch	Square Valu	ue (74.75, α)	55.84			Adjusted Ch	i Square Value	e (74.75, β)	55.16
576	ę	95% Gamma	a Approximat	e UCL (use w	vhen n>=50)	0.0532		95% Ga	amma Adjust	ed UCL (use w	vhen n<50)	0.0538
577												
578				Lo	gnormal GC	F Test on D	etected Obs	servations O	nly			
579			S	hapiro Wilk T	est Statistic	0.961			Shapiro Wi	lk GOF Test		
580			5% SI	napiro Wilk C	critical Value	0.927	Det	ected Data a	ppear Logno	rmal at 5% Sig	gnificance L	evel
581				Lilliefors T	est Statistic	0.107			Lilliefors	GOF Test		
582			5	% Lilliefors C	ritical Value	0.162	Dete	ected Data a	ippear Logno	rmal at 5% Sig	gnificance L	evel
583				Dete	cted Data ap	opear Logno	rmal at 5% S	Significance	Level			
584												
585				Log	gnormal RO	S Statistics	Using Impute	ed Non-Dete	ects			
586				Mean in Or	riginal Scale	0.0384				Mean in	Log Scale	-3.993
587		050/		SD in O	riginal Scale	0.0566			050/	SD in	Log Scale	1.242
588		95% t l	JCL (assume	s normality o	ot RUS data)	0.0539			95% F	-ercentile Boo	tstrap UCL	0.0547
589				95% BCA B0	otstrap UCL	0.0606				95% Boots	strap t UCL	0.0648
590				95% H-UCI	L (LOG RUS)	0.069						
591				anormal Dis	tribution and	KM Estimo	los whon Do	tootod data	ara Lognarm	olly Distribute	vd.	
592		0	CLS USING LO						are Lognom		(KM Log)	0.0581
593						1 007			05% (ritical H Value		2 500
594			KM Standa			ed) 1.097 95% Childain Value (Nivi-Log,						2.003
595	Kivi Standard Error of Mean (logge					0.102						
596						DL/2 Statistics						
597			DL/2 I	Normal		2220			DL/2 Log-T	ransformed		
598			2001	Mean in O	riginal Scale	0.0384				Mean in	Log Scale	-4.018
599				SD in O	riginal Scale	0.0566				SD in	Log Scale	1.28
600					5						5	-

	А	В	С	D	E	F	G	Н		J	К	L
601			95% t L	JCL (Assume	s normality)	0.0539				95%	H-Stat UCL	0.0726
602			DL/2 i	is not a recor	nmended m	ethod, provi	ded for comp	parisons and	historical r	easons		
603												
604					Nonparame	etric Distribu	tion Free UC	CL Statistics				
605				Detected D	ata appear	Lognormal [Distributed a	t 5% Signific	ance Level			
606												
607						Suggested	UCL to Use					
608				<mark>95% KM</mark>	(BCA) UCL	0.0565						
609												
610		Note: Sugge	stions regard	ling the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the r	most appropria	te 95% UCL.	
611			F	Recommenda	tions are ba	sed upon dat	a size, data (distribution, a	and skewne	SS.		
612		These reco	mmendations	s are based u	pon the resu	Its of the sim	ulation studi	es summariz	ed in Singh	, Maichle, and	Lee (2006).	
613	H	owever, simu	lations result	s will not cov	er all Real V	/orld data se	ts; for additic	onal insight th	ne user may	want to consu	lt a statisticia	an.
614												
615	d(a,h)a											
616												
617						General	Statistics					
618			Total	Number of O	bservations	38			Numbe	er of Distinct O	bservations	17
619				Numbe	r of Detects	12				Number of N	lon-Detects	26
620			N	umber of Dist	inct Detects	12			Numb	er of Distinct N	Ion-Detects	8
621				Minii	num Detect	0.0052				Minimum	Non-Detect	0.0051
622				Maxi	num Detect	0.69				Maximum	Non-Detect	0.021
623				Varia	nce Detects	0.0378				Percent N	Ion-Detects	68.42%
624				M	ean Detects	0.0741					SD Detects	0.195
625				Med	lian Detects	0.015					CV Detects	2.624
626				Skewn	ess Detects	3.428				Kurto	sis Detects	11.81
627				Mean of Log	ged Detects	-3.982				SD of Logg	jed Detects	1.371
628												
629					Norn	nal GOF Tes	t on Detects	Only				
630			S	hapiro Wilk T	est Statistic	0.389			Shapiro W	ilk GOF Test		
631			5% SI	hapiro Wilk C	ritical Value	0.859	[Detected Dat	a Not Norm	al at 5% Signif	icance Level	
632				Lilliefors T	est Statistic	0.454			Lilliefors	GOF Test		
633			5	% Lilliefors C	ritical Value	0.256	I	Detected Dat	a Not Norm	al at 5% Signif	icance Level	
634				D	etected Dat	a Not Norma	l at 5% Sign	ificance Lev	el			
635												
636			Kaplan-	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonparame	etric UCLs		
637					Mean	0.027				Standard Er	ror of Mean	0.0185
638					SD	0.109				95% KM	(BCA) UCL	0.0633
639				95%	KM (t) UCL	0.0583			95% KM (I	Percentile Boo	tstrap) UCL	0.0623
640				95%	KM (z) UCL	0.0575				95% KM Boot	strap t UCL	0.383
641			ç	90% KM Chel	byshev UCL	0.0827				95% KM Cheb	yshev UCL	0.108
642			97	.5% KM Chel	byshev UCL	0.143				99% KM Cheb	yshev UCL	0.212
643												
644				G	amma GOF	Tests on De	etected Obse	ervations On	ly			
645				A-D T	est Statistic	1.829		A	nderson-Da	arling GOF Te	st	
646				5% A-D C	ritical Value	0.792	Detect	ed Data Not	Gamma Dis	stributed at 5%	Significance	Level
647				K-S T	est Statistic	0.306			Kolmogrov-	Smirnoff GOF		
648				5% K-S C	ritical Value	0.26	Detect	ed Data Not	Gamma Dis	stributed at 5%	Significance	Level
649				Detecte	d Data Not	Gamma Dist	ributed at 5%	% Significan	ce Level			
650												

	A	В	С	D	E	F	G	Н		J	K	L	
651					Gamma	Statistics or	Detected D	Data Only					
652					k hat (MLE)	0.465			k s	star (bias cor	rected MLE)	0.405	
653				Ihet	a hat (MLE)	0.159			I heta s	star (bias cor	rected MLE)	0.183	
654				n	u hat (MLE)	11.17				nu star (bia	is corrected)	9.709	
655			M	LE Mean (bia	s corrected)	0.0741				MLE Sd (bia	is corrected)	0.117	
656						a Kanlan M		atiatiaa					
657						0.061	eler (KM) St	atistics			pubot (KM)	4 626	
658			norovimato C	hi Sayara Va		0.001			Adjusted C			4.030	
659	05%				$\frac{100}{400}$	0.900		05% Comm	Adjusted C		when n<50)	0.922	
660					$mm_2 (KM) n$		sed when k h	ot (KM) is <			when h<50)	0.150	
661									0.1				
662				G	amma ROS	Statistics us	sina Imputed	Non-Dete	cts				
663			GROS may	/ not be used	when data s	et has > 50%	NDs with m	any tied obs	servations at	multiple DLs			
664				GROS may	not be used	when kstar c	of detected d	ata is small s	such as < 0.1				
665			For	such situatio	ns. GROS m	ethod tends	to vield infla	ted values o	f UCLs and E	BTVs			
666		For gar	mma distribu	ted detected (data, BTVs a	nd UCLs ma	y be comput	ted using ga	mma distribu	tion on KM e	stimates		
669					Minimum	0.0052					Mean	0.0303	
660					Maximum	0.69					Median	0.01	
670					SD	0.11					CV	3.645	
671					k hat (MLE)	0.668			ks	star (bias cor	rected MLE)	0.633	
672				The	ta hat (MLE)	0.0453			Theta s	star (bias cor	rected MLE)	0.0478	
673				n	u hat (MLE)	50.79				nu star (bia	as corrected)	48.11	
674			M	LE Mean (bia	s corrected)	0.0303				MLE Sd (bia	as corrected)	0.038	
675									Adjusted	Level of Sig	nificance (β)	0.0434	
676		App	proximate Ch	i Square Valı	Je (48.11, α)	33.19			Adjusted Ch	i Square Valu	ue (48.11, β)	32.68	
677		95% Gamma	a Approximat	e UCL (use w	/hen n>=50)	0.0439		95% Ga	amma Adjust	ed UCL (use	when n<50)	0.0445	
678													
679				Lo	gnormal GO	F Test on D	Test on Detected Observations Only						
680			S	hapiro Wilk T	est Statistic	0.83			Shapiro Wi	lk GOF Test			
681			5% S	hapiro Wilk C	ritical Value	0.859	De	etected Data	Not Lognorn	nal at 5% Sig	inificance Lev	/el	
682					est Statistic	0.1//	.		Lilliefors	GOF Test	· · · · · · · · · · · · · · · · · · ·		
683			5	% Lilliefors C	ritical value	0.256	Det	ected Data a	ippear Logno	rmal at 5% S		evel	
684					ata appear A	pproximate	Lognormal	at 5% Signif	Icance Level				
685						S Statistics	leing Imput	od Non Dot	oote				
686				Mean in O		0.024			5013	Mean	in Log Scale	-6.46	
687				SD in O	riginal Scale	0.024				SD	in Log Scale	2 096	
688		95% t l	UCL (assume	s normality o	f ROS data)	0.0545			95% F	Percentile Bo	otstran UCI	0.0598	
689				95% BCA Bo	otstrap UCI	0.0791			00701	95% Boo	otstrap t UCI	0.326	
690		95% BCA Bootstrap											
691													
692		U	CLs using Lo	ognormal Dis	tribution and	KM Estimat	tes when De	tected data	are Lognorm	ally Distribu	ted		
693				KM Me	an (logged)	-4.853				95% H-UC	CL (KM -Log)	0.0177	
695				KM	SD (logged)	0.952			95% (Critical H Val	ue (KM-Log)	2.34	
696			KM Standa	rd Error of Me	an (logged)	0.162							
697							1						
698						DL/2 S	tatistics						
699			DL/2	Normal		DL/2 Log-Transformed							
700				Mean in Or	riginal Scale	0.0261				Mean	in Log Scale	-5.138	

	А	В	С	D E	=	F	G	Н	I		J K	L
701			050/01	SD in Original	Scale	0.111					SD in Log Scale	1.16
702	-		95% t L	JCL (Assumes norn	nality)	0.0565					95% H-Stat UCL	0.0188
703			DL/2	s not a recommend	ded m	ethod, provid	ded for com	parisons and	i histori	cal re	asons	
704				Non		trie Dietrikus	Hon Free LIC					
705			Dete		arame	etric Distribut		L Statistics	Clanifia		aval	
706			Dele	cied Data appear A	чрргох	amate Logno	ormai Distrit		Signific	ance	-evei	
707						Suggested	UCL to Lieo					
708				95% KM (BCA								
709						0.0000			1			
710		Note: Suage	stions regard	ing the selection of	a 95%	UCL are pro	ovided to he	lp the user to	select	the m	ost appropriate 95% UCL	
/11			F	ecommendations a	are bas	sed upon dat	a size, data	distribution.	and ske	wnes	S.	
712		These reco	mmendations	are based upon th	e resu	Its of the sim	ulation studi	ies summariz	zed in S	Singh,	Maichle, and Lee (2006).	
713	He	owever, simu	lations result	s will not cover all F	Real W	orld data set	ts; for additio	onal insight th	ne user	may v	vant to consult a statisticia	an.
714							-					
715												
717	Ba_0-3.5											
718												
719						General	Statistics					
720			Total	Number of Observation	ations	33			Νι	umber	of Distinct Observations	25
721									Nu	Imber	of Missing Observations	0
722				Min	imum	79					Mean	342.3
723				Max	imum	920					Median	210
724					SD	258.5					Std. Error of Mean	44.99
725				Coefficient of Var	riation	0.755					Skewness	0.877
726												
727						Normal C	GOF Test					
728			S	hapiro Wilk Test St	atistic	0.832			Shapi	ro Wil	k GOF Test	
729			5% SI	napiro Wilk Critical	Value	0.931		Data No	ot Norma	al at 5	% Significance Level	
730				Lilliefors Test St	atistic	0.211			Lillie	efors (GOF Test	
731			5	% Lilliefors Critical	Value	0.154		Data No	ot Norma	al at 5	% Significance Level	
732				Da	ita Not	Normal at 5	% Significa	nce Level				
733					•			•				
734			05% N		AS	suming Norr	nai Distribui			/ A all	ted for Okoursee)	
735			95% NC			110 E		95%		(Aajus		102.6
736				95% Students-	UCL	410.5			95% AC	Jusie	d t UCL (Johnson 1078)	423.0
737									90 /0 IV	louine	u-1 OCE (JOHNSON-1978)	415.7
738						Gamma (20F Test					
739				A-D Test St	atistic	1 478		Ande	rson-Da	arlina	Gamma GOF Test	
740				5% A-D Critical	Value	0.76	ח	ata Not Gam	ma Dis	tribute	ed at 5% Significance Lev	el
741				K-S Test St	atistic	0.70		Kolmo	nov-Sn	nirnof	Gamma GOF Test	
742				5% K-S Critical	Value	0.155	ם	ata Not Gar	ima Dis	tribute	ed at 5% Significance Lev	el
743				Data Not	Gam	na Distribute	ed at 5% Sic	inificance Le	evel			
744												
745						Gamma	Statistics					
740				k hat ((MLE)	1.958				ks	tar (bias corrected MLE)	1.8
/4/ 7/0				Theta hat	(MLE)	174.8			Т	heta s	tar (bias corrected MLE)	190.1
740				nu hat ((MLE)	129.2					nu star (bias corrected)	118.8
750			MI	E Mean (bias corre	ected)	342.3					MLE Sd (bias corrected)	255.1
100					•							

	А	В	С	D	E	F	G	Н	I	J	K	L
751									Approximate	e Chi Square '	Value (0.05)	94.65
752			Adjus	ted Level of	Significance	0.0419			A	djusted Chi S	quare Value	93.54
752											I	
755					As	sumina Gam	ma Distribut	tion				
/54		95% Approxir	nate Gamma	UCL (use w	hen n>=50))	429.7		95% Ad	liusted Gam	ma LICL (use	when n<50)	434.8
755				100E (000 W		420.7		00/0/10				404.0
756							005 7					
757						Lognorma	GOF Test					
758			S	hapiro Wilk I	est Statistic	0.9		Sha	oiro Wilk Lo	normal GOF	Test	
759			5% SI	hapiro Wilk C	ritical Value	0.931		Data Not	Lognormal a	t 5% Significa	ance Level	
760				Lilliefors T	est Statistic	0.167		Lil	liefors Logn	ormal GOF T	est	
761			5	% Lilliefors C	ritical Value	0.154		Data Not	Lognormal a	t 5% Significa	ance Level	
762					Data Not L	ognormal at	5% Signific	ance Level				
763												
764						Lognorma	I Statistics					
765				Minimum of L	ogged Data	4.369				Mean of	logged Data	5.559
705			Ν	Aaximum of L	ogged Data	6.824				SD of	logged Data	0.755
700												
/6/					Assi	imina Loano	rmal Distrib	ution				
/68					95% H-UCI	461 2			90%	Chebyshev (I		489 3
769			95%	Chebysbey (I		556.2			97.5%	Chebyshev (I		649
770			00%			001 5			37.570			043
771			99%	Chebysnev (I	WVUE) UCL	831.5						
772												
773					Nonparame	etric Distribu	tion Free UC	CL Statistics				
774				C	Data do not f	ollow a Disc	ernible Distr	ibution (0.08	5)			
775												
776					Nonpa	rametric Dist	tribution Free	e UCLs				
777				95	% CLT UCL	416.3				95% Ja	ckknife UCL	418.5
778			95%	Standard Bo	otstrap UCL	416.5				95% Boo	tstrap-t UCL	429.5
779			9	5% Hall's Bo	otstrap UCL	419.6			95%	Percentile Bo	otstrap UCL	414.4
780			9	95% BCA Bo	otstrap UCL	426.5						
700			90% Ch	ebyshev(Mea	an, Sd) UCL	477.3			95% CI	ebyshev(Mea	an, Sd) UCL	538.4
701			97.5% Ch	ebyshev(Mea	an, Sd) UCL	623.3			99% CI	ebyshev(Mea	an, Sd) UCL	790
782				, (. ,					, (. ,	
/83						Suggested	UCL to Use					
784			95% Ch	abyshay (Mar		538 /						
785						000.4						
786		Nata: Ourra		ing the color	tion of a OE0/							
787					uon of a 95%			p the user to				
788		i hese rec	ommendation	is are based	upon the res	uits of the si	mulation stud	ules summai	izea in Sing	n, Singn, and	iaci (2002)	
789			and Singh	and Singh (2	003). Howev	er, simulatio	ns results wi	ill not cover a	all Real Wor	d data sets.		
790				For add	ditional insigl	ht the user m	ay want to c	onsult a stat	istician.			
791												
792												
793	Cu_0-3.5											
794												
795						General	Statistics					
796			Total	Number of C	bservations	33			Numbe	r of Distinct C	bservations	29
707									Numbe	r of Missing O	bservations	0
700					Minimum	13				-	Mean	106.3
798					Maximum	440					Median	68
/99						104 5				Std F	rror of Mean	18 18
800					50	104.0				Jiu. El		10.10

	А	В	С		D	E	F	G	Н	I	J	K	L
801					Coefficient	of Variation	0.983					Skewness	1.559
802													
803							Normal C	GOF Test					
804				S	hapiro Wilk T	Fest Statistic	0.819			Shapiro Wi	lk GOF Te	est	
805			5	% S	hapiro Wilk C	Critical Value	0.931		Data No	t Normal at §	5% Signific	cance Level	
806					Lilliefors T	est Statistic	0.186			Lilliefors	GOF Test	t	
807				5	% Lilliefors C	ritical Value	0.154		Data No	ot Normal at §	5% Signific	cance Level	
808						Data Not	Normal at 5	% Significar	nce Level				
800													
810						As	suming Norr	nal Distribut	ion				
Q11			95%	% No	ormal UCL				95%	UCLs (Adju	sted for S	kewness)	
011					95% Stu	dent's-t UCL	137.1			95% Adjuste	d-CLT UC	CL (Chen-1995)	141.5
012										95% Modifie	ed-t UCL (Johnson-1978)	137.9
013												· · · ·	
814							Gamma	GOF Test					
815					A-D T	est Statistic	0.728		Ander	rson-Darling	Gamma (GOF Test	
816					5% A-D C	ritical Value	0.772	Detected	d data appea	ar Gamma Di	stributed a	at 5% Significan	ce Level
817					K-S 1	est Statistic	0.138		Kolmo	prov-Smirno	ff Gamma	GOF Test	
818					5% K-S C	critical Value	0.157	Detected	d data appea	ar Gamma Di	stributed a	at 5% Significan	ce Level
819					Detected	data appea	r Gamma Di	stributed at 5	5% Significa	nce Level			
820													
821							Gamma	Statistics					
822						k hat (MLE)	1 185			k	star (hias d	corrected MLE)	1 097
823					The	ta hat (MLE)	89.72			Theta	star (bias o		96.87
824					r		78.2			Theta	nu star (72 42
825				M	F Moon (bia		106.2					(bias corrected)	101.5
826				IVI		is conected)	100.5			Approvimate			52 02
827			•	diur	ted lovel of	Cignificance	0.0410			Approximate	diveted Ch		53.65
828			A	Aajus	sted Level of	Significance	0.0419			AC	ijusted Ch	ii Square value	53
829						A		me Distribut					
830		050/ 4	in the Or			AS:	suming Gam	ima Distribui					145.0
831		95% Appro	ximate Ga	amm	a UCL (use v	vnen n>=50)	143		95% Ad	ijusted Gamr	na UCL (u	ise when h<50)	145.3
832								00FT -					
833							Lognorma	GOF Test				<u></u>	
834				S	hapiro Wilk I	est Statistic	0.938		Shap	biro Wilk Log	normal G	OF Test	
835			5	% S	hapiro Wilk C	Critical Value	0.931		Data appea	r Lognormal	at 5% Sig	nificance Level	
836					Lilliefors I	est Statistic	0.13		Lil	liefors Logno	ormal GOI	FTest	
837				5	% Lilliefors C	Critical Value	0.154		Data appea	r Lognormal	at 5% Sig	nificance Level	
838						Data appear	Lognormal	at 5% Signif	icance Leve				
839							-						
840							Lognorma	I Statistics					
841					Minimum of L	ogged Data	2.565				Mean	of logged Data	4.188
842				Ν	Maximum of L	ogged Data	6.087				SD	of logged Data	1.03
843													
844						Assu	uming Logno	ormal Distrib	ution				
845						95% H-UCL	175.8			90%	Chebyshe	v (MVUE) UCL	177.8
846			9	5%	Chebyshev (MVUE) UCL	208.8			97.5%	Chebyshe	v (MVUE) UCL	251.8
847			9	9%	Chebyshev (I	MVUE) UCL	336.3						
848													
849						Nonparame	etric Distribu	tion Free UC	L Statistics				
850					Data appea	r to follow a	Discernible	Distribution a	at 5% Signif	icance Leve			

	А	В	С	D	E	F	G	Н		J	K	L		
851			·											
852					Nonpar	rametric Dis	tribution Fre	e UCLs						
002				95	% CLT UCL	136.2				95% Jac	kknife UCL	137.1		
000			95%	Standard Bo	otstrap UCL	135.3				95% Boot	strap-t UCL	145.1		
854			9	5% Hall's Bo	otstrap UCI	144_1			95%	Percentile Boo	tstrap UCI	137.2		
855				95% BCA Bo	otstran LICI	140.8						107.2		
856			0.0% Ch			140.0			05% Ch	obychoy/Moo		195.6		
857						010.9			95 % CI			007.0		
858			97.5% Ch	ebysnev(iviea	an, Sd) UCL	219.9			99% Ch	ebysnev(iviea	n, Sa) UCL	287.2		
859														
860						Suggested	UCL to Use							
861			<mark>.95</mark> 9	% Adjusted C	amma UCL	<mark>145.3</mark>								
862														
863		Note: Sugge	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	lost appropria	te 95% UCL			
864		These rec	ommendation	ns are based	upon the res	ults of the si	mulation stud	dies summar	rized in Singl	n, Singh, and I	laci (2002)			
865		·	and Singh	and Singh (2	2003). Howev	ver, simulatio	ons results wi	ill not cover a	all Real Worl	d data sets.	<u> </u>	<u> </u>		
866				For ad	ditional insigl	ht the user m	nay want to c	onsult a stati	istician.					
967														
007														
868	Pb 0-3.5													
869														
870						General	Statistics							
871			Total	Number of C	beenvotione	24	Glausues		Numbo	of Dictingt O	hannotiona	21		
872			TOLA		DServations	34			Number		beenvations			
873									Number	of Missing O	oservations	0		
874					Minimum	8.4					Mean	661.4		
875					Maximum	2400					Median	430		
876					SD	666.1				Std. Er	ror of Mean	114.2		
877				Coefficient	of Variation	1.007					Skewness	1.155		
878							'							
879						Normal (Normal GOF Test							
880			S	hapiro Wilk T	est Statistic	0.837			Shapiro Wi	k GOF Test				
881			5% SI	hapiro Wilk C	critical Value	0.933		Data No	t Normal at §	5% Significand	ce Level			
882				Lilliefors T	Fest Statistic	0.213			Lilliefors	GOF Test				
002			5	% Lilliefors C	Critical Value	0.152		Data No	ot Normal at §	5% Significand	ce Level			
883					Data Not	Normal at 5	5% Significar	nce Level		•				
884														
885					Δς	suming Nor	mal Distribut	ion						
886			05% N/					05%		stad for Skow				
887			95 /0 INC		dant'a t UCL	0517		30 /0			Chan 100E	070 E		
888				95% 5100	Jent S-LOCL	004.7					Jien-1995)	073.3		
889									32% MODIFI	a-i UCL (JOh	nson-1978)	808.5 8		
890						-								
891						Gamma	GOF Test							
892				A-D T	est Statistic	0.284		Ander	rson-Darling	Gamma GOF	- Test			
893				5% A-D C	ritical Value	0.782	782 Detected data appear Gamma Distributed at 5% Significance							
894				K-S T	est Statistic	0.088		Kolmog	grov-Smirno	f Gamma GC	F Test			
895				5% K-S C	ritical Value	Value 0.156 Detected data appear Gamma Distributed at 5% Significant						ce Level		
896				Detected	data appear	pear Gamma Distributed at 5% Significance Level								
897														
808						Gamma	Statistics							
000					k hat (MLE)	0.874	0.874 k star (bias corrected MLE				ected MLE)	0.816		
899				The	ta hat (MI F)	757			Theta	star (bias corr	ected MI F)	810.4		
900	1										· ·····/	•		

	А	В	С	D	E	F	G	Н			J	K	L
901					nu hat (MLE)	59.41					nu star (bia	s corrected)	55.5
902			М	LE Mean (bia	as corrected)	661.4					MLE Sd (bias	s corrected)	732.1
903									Appro	oximate	e Chi Square \	Value (0.05)	39.38
904			Adjus	sted Level of	Significance	0.0422				A	djusted Chi So	quare Value	38.71
905													
900					As	suming Gam	nma Distrit	oution					
007		95% Approx	imate Gamm	a UCL (use v	when n>=50)	932.2		95%	Adjuste	d Gam	ma UCL (use	when n<50)	948.4
009													
908						Lognorma	GOF Tes	st					
010			S	hapiro Wilk	Test Statistic	0.926		S	hapiro W	/ilk Log	gnormal GOF	Test	
011			5% S	hapiro Wilk (Critical Value	0.933		Data N	Not Logno	ormal a	t 5% Significa	nce Level	
912				Lilliefors	Test Statistic	0.0984			Lilliefor	s Logn	ormal GOF To	est	
913			5	% Lilliefors (Critical Value	0.152		Data ap	pear Log	normal	at 5% Signific	cance Level	
914				Data a	ppear Appro	ximate Logr	ormal at 5	5% Significa	ance Lev	el			
915													
916						Lognorma	I Statistics	6					
917				Minimum of	Logged Data	2.128					Mean of I	ogged Data	5.823
918			1	Maximum of	Logged Data	7.783					SD of I	ogged Data	1.409
919													
920					Assi	uming Logno	ormal Distr	ribution					
921					95% H-UCL	1897				90%	Chebyshev (N	VVUE) UCL	1652
922			95%	Chebyshev (MVUE) UCL	2008				97.5%	Chebyshev (N	VVUE) UCL	2504
923			99%	Chebyshev (MVUE) UCL	3477							
924													
925					Nonparame	etric Distribu	tion Free l	UCL Statist	ics				
926				Data appea	r to follow a	Discernible	Distributio	n at 5% Sig	gnificanc	e Leve			
927													
928					Nonpa	rametric Dis	tribution F	ree UCLs					
929				95	5% CLT UCL	849.3					95% Jac	ckknife UCL	854.7
930			95%	Standard Bo	otstrap UCL	845.4					95% Boot	strap-t UCL	882.9
931			ç	95% Hall's Bo	otstrap UCL	875.5				95%	Percentile Boo	otstrap UCL	852.3
932				95% BCA Bo	ootstrap UCL	861.7							
933			90% Cł	ebyshev(Me	an, Sd) UCL	1004				95% Cł	nebyshev(Mea	an, Sd) UCL	1159
934			97.5% Cr	ebyshev(Me	an, Sd) UCL	1375			Ç	99% Cł	nebyshev(Mea	an, Sd) UCL	1798
935						0							
936			05					se					
937			<mark>.90</mark>	% Adjusted (948.4							
938		Note: Sugge	etions regard	ling the selec	tion of a 95%	LICL are pr	ovided to k	oln the use	or to solo	nt tha n	nost appropria		
939		These rec				ults of the si		tudios sum	marized i		h Singh and	laci (2002)	•
940		111030100	and Singh	and Singh (ver simulatio	ns results	will not cov	er all Re	al Worl	Id data sets		
941				Eor ad	ditional insid	ht the user m	av want to		statisticia	n			
942				10100					statisticia				
943													
944	Zn 0-3.5												
945													
946						General	Statistics						
94/			Total	Number of (Observations	33				Numbe	r of Distinct O	bservations	28
040									1	lumbe	r of Missing O	bservations	0
949					Minimum	42				-	U -	Mean	378.5
950													
	А	E	В	С	D	E	F	G	Н		J	K	L
------	---	-------	--------	-----------	-----------------	----------------	-------------	---------------	---------------	----------------	---------------	----------------	----------
951						Maximum	1100					Median	190
952						SD	356.3				Std. E	Frror of Mean	62.03
953					Coefficient	t of Variation	0.942					Skewness	0.767
954													
955							Normal C	3OF Test					
956				S	Shapiro Wilk	Fest Statistic	0.819			Shapiro Wi	Ik GOF Test	t	
957				5% S	hapiro Wilk C	Critical Value	0.931		Data No	ot Normal at 5	5% Significar	nce Level	
958					Lilliefors	Fest Statistic	0.237			Lilliefors	GOF Test		
959				5	3% Lilliefors C	Critical Value	0.154		Data No	ot Normal at 5	5% Significar	nce Level	
960						Data Not	Normal at 5	% Significa	nce Level				
961													
962						As	suming Norr	nal Distribut	tion				
963				95% No	ormal UCL				95%	UCLs (Adju	sted for Ske	wness)	
964					95% Stu	dent's-t UCL	483.5			95% Adjuste	d-CLT UCL	(Chen-1995)	489.3
965										95% Modifie	əd-t UCL (Jo	hnson-1978)	484.9
966													
967							Gamma	GOF Test					
968					A-D	Fest Statistic	1.202		Ander	rson-Darling	Gamma GC)F Test	
969					5% A-D C	Critical Value	0.774	D	ata Not Gam	1ma Distribut	ed at 5% Sig	Inificance Lev	el
970					K-S	Fest Statistic	0.156		Kolmo	grov-Smirnof	if Gamma G	OF Test	
971					5% K-S C	Critical Value	0.157	Detecte	d data appea	ar Gamma Di	stributed at	5% Significan	ce Level
972					Detected da	ata follow Ap	pr. Gamma	Distribution	at 5% Signif	icance Level	l		
973													
974							Gamma	Statistics					
975						k hat (MLE)	1.066			ks	star (bias co	rrected MLE)	0.989
976					The	ta hat (MLE)	355			Theta s	star (bias co	rrected MLE)	382.5
977					r	nu hat (MLE)	70.36				nu star (bia	as corrected)	65.3
978				M	LE Mean (bia	as corrected)	378.5				MLE Sd (bia	as corrected)	380.5
979										Approximate	Chi Square	Value (0.05)	47.71
980				Adjus	sted Level of	Significance	0.0419			Ac	ljusted Chi S	Square Value	46.93
981													
982						As	suming Gam	ıma Distribu	ition				
983		95% A	pproxi	mate Gamm	a UCL (use v	when n>=50)	518		95% Ad	ljusted Gamn	na UCL (use	when n<50)	526.6
984													
985							Lognorma	GOF Test					
986				S	3hapiro Wilk ⊺	Fest Statistic	0.901		Shar	piro Wilk Log	inormal GO	F Test	
987				5% S	hapiro Wilk C	Critical Value	0.931		Data Not	Lognormal at	t 5% Signific	ance Level	
988					Lilliefors 7	Fest Statistic	0.131		Lil	liefors Logno	ormal GOF 1	ſest	
989				5	5% Lilliefors C	Critical Value	0.154		Data appea	ar Lognormal	at 5% Signif	ficance Level	
990					Data a	ppear Appro	ximate Logr	ormal at 5%	6 Significanc	e Level			
991													
992							Lognorma	I Statistics					
993					Minimum of I	_ogged Data	3.738				Mean of	logged Data	5.399
994				1	Maximum of I	_ogged Data	7.003				SD of	logged Data	1.117
995													
996						Assi	uming Logno	ormal Distrib	oution				
997						95% H-UCL	687			90% (Chebyshev ((MVUE) UCL	677.4
998				95%	Chebyshev (MVUE) UCL	802.8			97.5%	Chebyshev ((MVUE) UCL	976.7
999				99%	Chebyshev (MVUE) UCL	1318						
1000												1	

	А	В	С	D	E	F	G	Н		J	K	L
1001					Nonparame	tric Distribu	tion Free UC	L Statistics				
1002				Data appea	r to follow a l	Discernible	Distribution a	at 5% Signif	icance Leve			
1003												
1004					Nonpar	ametric Dis	tribution Fre	e UCLs			<u>_</u>	
1005				95	5% CLT UCL	480.5				95% Ja	ickknife UCL	483.5
1006			95%	Standard Bo	otstrap UCL	478.8				95% Boo	otstrap-t UCL	497.9
1007			9	5% Hall's Bo	otstrap UCL	482.1			95% I	Percentile Bo	otstrap UCL	476.8
1008				95% BCA Bo	otstrap UCL	483.4						
1009			90% Ch	ebyshev(Me	an, Sd) UCL	564.5			95% Ch	ebyshev(Me	an, Sd) UCL	648.8
1010			97.5% Ch	ebyshev(Me	an, Sd) UCL	765.8			99% Ch	ebyshev(Me	an, Sd) UCL	995.7
1011												
1012						Suggested	UCL to Use					
1013			<mark>.95</mark>	% Adjusted C	Gamma UCL	<mark>526.6</mark>			1	1		
1014						-						
1015		Note: Sugge	stions regard	ling the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL.	
1016		These rec	ommendatio	ns are based	upon the res	ults of the si	mulation stud	dies summa	rized in Singl	n, Singh, and	laci (2002)	
1017			and Singh	and Singh (2	2003). Howev	er, simulatio	ns results wi	Il not cover	all Real Work	d data sets.		
1018				For ad	ditional insigh	nt the user m	ay want to c	onsult a stat	istician.			
1019												
1020												
1021	Bapeq(0-2.	.5)										
1022												
1023						General	Statistics					
1024			l otal	Number of C	Observations	27			Number	r of Distinct (Observations	2/
1025						0.000.40			Number	r of Missing C	Observations	2
1026					Minimum	0.00648					Mean	0.0519
1027					Maximum	0.195					Median	0.0289
1028					SD	0.0519				Std. E	rror of Mean	0.00999
1029				Coefficient	t of Variation	1					Skewness	1.486
1030												
1031									Ohanina Wi			
1032			5	napiro Wilk I	est Statistic	0.8		Data Na	Snapiro wi			
1033			5% 5		ritical value	0.923		Data No	t Normal at :	5% Significar		
1034			r		est Statistic	0.228		Data Na	Limetors			
1035			5	% Lilliefors C	Dete Net	U.I/I	0/ Cignifican		ot Normal at :	5% Significar		
1036					Data Not	Normal at a	5% Significar					
1037					A		nal Diatribut					
1038			0E% N/		AS	suming Non		05%		atad for Ska		
1039			95% N		dant'a t UCI	0.0690		9070			(Chap 1005)	0.0712
1040				95% 310	uent s-t UCL	0.0009			95% Aujuste		(Chen-1995)	0.0713
1041									95 % WOULIN	eu-l OCL (JO	1115011-1976)	0.0094
1042						Gamme						
1043				د م ۸	Foot Statiatia			Anda	reon Dorling	Gamma CC		
1044				A-D I		0.005	Detector			Gamma GC		
1045				5% A-D C	Foot Statistic	0.709	Delected			ff Commo C		
1046				50/V00		0.120	Dotooto			istributed et /	OF IESL	
1047				Dotootod		0.172				istributed at t	J /o Significand	Le revel
1048				Derected	uata appear	Gamma Di		n o orginitica	IIICE LEVEI			
1049						0	Otatiat!					
1050						Gamma	Statistics					

	A	В	С	D	E	F	G	Н	I	J	K	L
1051					k hat (MLE)	1.214			k	star (bias cor	rected MLE)	1.104
1052				The	ta hat (MLE)	0.0427			Theta	star (bias cor	rected MLE)	0.047
1053				ı	nu hat (MLE)	65.54				nu star (bia	is corrected)	59.59
1054			MI	LE Mean (bia	is corrected)	0.0519				MLE Sd (bia	is corrected)	0.0494
1055									Approximate	e Chi Square	Value (0.05)	42.84
1056			Adjus	sted Level of	Significance	0.0401			A	djusted Chi S	quare Value	41.94
1057							1					
1058					As	suming Garr	nma Distribu	tion				
1059		95% Approx	imate Gamma	a UCL (use v	vhen n>=50)	0.0722		95% Ac	ljusted Gam	na UCL (use	when n<50)	0.0737
1060							I				4	
1061						Lognorma	GOF Test					
1062			S	hapiro Wilk	Fest Statistic	0.959		Sha	piro Wilk Log	normal GOF	Test	
1063			5% SI	hapiro Wilk C	Critical Value	0.923		Data appea	ar Lognormal	at 5% Signifi	icance Level	
1064				Lilliefors	Fest Statistic	0.0981		Lil	liefors Logn	ormal GOF T	est	
1065			5	% Lilliefors C	Critical Value	0.171		Data appea	ar Lognormal	at 5% Signifi	icance Level	
1066					Data appear	Lognormal	at 5% Signif	ficance Leve				
1067												
1068						Lognorma	I Statistics					
1069				Minimum of I	ogged Data	-5.039				Mean of	logged Data	-3.424
1070			Ν	Maximum of I	_ogged Data	-1.634				SD of	logged Data	1.004
1071												
1072					Assı	uming Logno	ormal Distrib	ution				
1073					95% H-UCL	0.0887			90%	Chebyshev (MVUE) UCL	0.0873
1074			95%	Chebyshev (MVUE) UCL	0.103			97.5%	Chebyshev (MVUE) UCL	0.125
1075			99%	Chebyshev (MVUE) UCL	0.168						
1076												
1077					Nonparame	etric Distribu	tion Free UC	CL Statistics				
1078				Data appea	r to follow a	Discernible	Distribution	at 5% Signif	icance Leve	I		
1079												
1080					Nonpai	rametric Dis	tribution Fre	e UCLs				
1081				95	5% CLT UCL	0.0683				95% Ja	ckknife UCL	0.0689
1082			95%	Standard Bo	otstrap UCL	0.0673				95% Boo	tstrap-t UCL	0.074
1083			9	5% Hall's Bo	otstrap UCL	0.0736			95%	Percentile Bo	otstrap UCL	0.0687
1084			!	95% BCA Bo	otstrap UCL	0.0708						
1085			90% Ch	ebyshev(Me	an, Sd) UCL	0.0818			95% Cł	nebyshev(Me	an, Sd) UCL	0.0954
1086			97.5% Ch	ebyshev(Me	an, Sd) UCL	0.114			99% Cł	nebyshev(Me	an, Sd) UCL	0.151
1087												
1088						Suggested	UCL to Use					
1089			<mark>.95</mark>	% Adjusted (Gamma UCL	0.0737						
1090												
1091		Note: Sugge	stions regard	ling the seled	tion of a 95%	UCL are pr	ovided to he	Ip the user to	select the n	nost appropria	ate 95% UCL	
1092		These rec	ommendation	ns are based	upon the res	ults of the si	mulation stu	dies summa	rized in Sing	h, Singh, and	laci (2002)	
1093			and Singh	and Singh (2	2003). Howev	er, simulatio	ons results w	ill not cover a	all Real Worl	d data sets.		
1094				For ad	ditional insig	nt the user m	nay want to c	onsult a stat	istician.			
1095												
1096												
<u>10</u> 97	Bapeq(0-6	6.5)										
1098												-
1099						General	Statistics					
1100			Total	Number of C	Observations	35			Numbe	r of Distinct C	Observations	35

	Α	В		С	D	E	F	G	Н		J	K	L
1101										Number	of Missing C	bservations	3
1102						Minimum	0.0064					Mean	0.0831
1103						Maximum	1.112					Median	0.0289
1104						SD	0.187				Std. E	rror of Mean	0.0316
1105					Coefficie	nt of Variation	2.251					Skewness	5.194
1106													
1107							Normal (GOF Test					
1108					Shapiro Wilk	Test Statistic	0.384			Shapiro Wi	Ik GOF Test		
1109	-			5% S	hapiro Wilk	Critical Value	0.934		Data No	ot Normal at s	5% Significan	ice Level	
1110					Lilliefors	Test Statistic	0.341			Lilliefors	GOF Test		
1111				5	5% Lilliefors	Critical Value	0.15		Data No	ot Normal at	5% Significan	ice Level	
1112	-					Data No	t Normal at t	5% Significa	nce Level				
1113									• • •				
1114				050(N		As	suming Nor	mal Distribu	tion				
1115				95% N			0.100		95%	OCLS (Adju		wness)	0.105
1116					95% St	udent's-t UCL	0.136			95% Adjuste		(Cnen-1995)	0.165
1117										95% Modifie	ed-t UCL (Jor	nnson-1978)	0.141
1118							0						
1119						To at Otatiatia	Gamma	GOF Test	A	Dealling	0	F T = = 4	
1120					A-D		1.827			rson-Darling	Gamma GO		
1121					5% A-D	Critical value	0.79		Vata Not Garr		ed at 5% Sigi	DE Test	ei
1122					EV K S	Critical Value	0.193			grov-Smirno			
1123					5% K-5						ed at 5% Sigi	nificance Lev	ei
1124					L	ata Not Gam	ma Distributi	ed at 5% Sig		evel			
1125							Commo	Statiatica					
1126						k bot (MLE)		Statistics			tor (higo ogr	reated MLE)	0.692
1127					ТЬ		0.727			Thoto	star (bias con		0.003
1128					111		50.96			meta	nu ctor (bio		0.122
1129					LE Maan (h		0.0021					is corrected)	47.04
1130				IVI			0.0631			Approvimate			22.06
1131				۸diu	cted Level a	f Significanco	0.0425						22.90
1132				Auju		i Significance	0.0425					quale value	52.50
1133						Δο	suming Car	ma Dietribu	tion				
1134		95% Annro	vim	ate Gamma		when n>=50))	0 121		95% Ar	liusted Gam	na LICL (use	when n<50)	0 123
1135							0.121		0070710			when h (00)	0.120
1136							Lognorma	I GOF Test					
1137				ç	Shapiro Wilk	Test Statistic	0.955		Sha	oiro Wilk Loc	inormal GOF	Test	
1138				5% S	hapiro Wilk	Critical Value	0.934		Data appea	ar Lognormal	at 5% Signifi	cance Level	
1139				0.00	Lilliefors	Test Statistic	0.105		Lil	liefors Loan	ormal GOF T	est	
1140				5	5% Lilliefors	Critical Value	0.15		Data annea	ar Lognormal	at 5% Signifi	cance Level	
1141						Data appea	r I ognormal	at 5% Signi	ficance Leve				
1142							Lognorma						
1143							Loanorma	I Statistics					
1144					Minimum of	Logged Data	-5.052				Mean of	logged Data	-3.316
1145				1	Maximum of	Logged Data	0.106				SD of	logged Data	1.153
1146							0.100					-9904 Data	
1147						Ass	umina Loana	ormal Distrib	oution				
1148						95% H-UCI	0.119			90%	Chebvshev (I	MVUE) LICI	0.117
1149				95%	Chebyshev		0.138			97.5%	Chebyshev (I	MVUF) LICI	0.168
1150				3570	Chebyshev		0.100			57.570			0.100

	А	В	С	D	E	F	G	Н		J	К	L
1151			99%	Chebyshev (N	MVUE) UCL	0.228						
1152												
1153					Nonparame	etric Distribu	tion Free U	CL Statistic	s			
1154				Data appear	to follow a	Discernible	Distribution	at 5% Sign	ificance Leve	el		
1155												
1156					Nonpa	rametric Dis	tribution Fr	ee UCLs				
1157				95	% CLT UCL	0.135				95% J	ackknife UCL	0.136
1158			95%	Standard Bo	otstrap UCL	0.134				95% Bo	otstrap-t UCL	0.256
1159			ę	95% Hall's Bo	otstrap UCL	0.317			95%	Percentile B	ootstrap UCL	0.14
1160				95% BCA Bo	otstrap UCL	0.176						
1161			90% Cł	nebyshev(Mea	an, Sd) UCL	0.178			<mark>95% C</mark>	hebyshev(M	ean, Sd) UCL	<mark>0.221</mark>
1162			97.5% Cł	nebyshev(Mea	an, Sd) UCL	0.28			99% C	hebyshev(M	ean, Sd) UCL	0.397
1163												
1164						Suggested	UCL to Use	e				
1165					95% H-UCL	0.119						
1166												
1167		Note: Sugge	stions regard	ding the select	tion of a 95%	6 UCL are pr	ovided to he	elp the user	to select the	most approp	riate 95% UCL	
1168		These rec	commendatio	ns are based	upon the res	sults of the si	mulation st	udies summ	arized in Sing	ıh, Singh, an	d laci (2002)	
1169			and Singh	and Singh (2	003). Howe	/er, simulatio	ons results v	vill not cove	r all Real Wo	ld data sets.		
1170				For add	ditional insig	ht the user m	nay want to	consult a st	atistician.			
1171												
1172			Pro	UCL compute	es and outpu	uts H-statisti	c based UC	Ls for histo	rical reasons	only.		
1173		H-statistic	c often result	s in unstable	(both high a	and low) valu	ies of UCL	95 as showr	n in examples	in the Tech	nical Guide.	
1174			1	t is therefore	recommend	ed to avoid t	he use of H	I-statistic ba	ased 95% UC	LS.		
1175	U	se of nonpar	ametric met	nods are pret	erred to con	npute UCL9:	D TOF SKEWE	d data sets	which do not	tollow a gar	nma distributio	on.
1176												
1177		0										
1178		~										
11/9						General	Statistics					
1180			Tota	Number of O	bservations	13			Numbe	er of Distinct	Observations	13
1181						-			Numbe	er of Missina	Observations	0
1182					Minimum	0.00332					Mean	7.871
1183					Maximum	17.8					Median	8.04
1184					SD	6.267				Std.	Error of Mean	1.738
1100				Coefficient	of Variation	0.796					Skewness	0.154
1100												
1107						Normal (GOF Test					
1100			S	Shapiro Wilk T	est Statistic	0.916			Shapiro W	ilk GOF Tes	st	
1109			5% S	hapiro Wilk C	ritical Value	0.866		Data ap	pear Normal	at 5% Signifi	cance Level	
1101				Lilliefors T	est Statistic	0.162			Lilliefors	GOF Test		
1102			5	5% Lilliefors C	ritical Value	0.246		Data ap	pear Normal	at 5% Signifi	cance Level	
1102					Data appe	ar Normal at	t 5% Signifi	cance Leve				
110/							-					
1194					As	suming Nor	mal Distribu	ution				
1196			95% N	ormal UCL				95	% UCLs (Adj	usted for Sk	ewness)	
1107				95% Stud	lent's-t UCL	10.97			95% Adjust	ed-CLT UCL	. (Chen-1995)	10.81
1198									95% Modif	ied-t UCL (J	ohnson-1978)	10.98
1199						1	1					
1200						Gamma	GOF Test					
1200												

	А	В	С	D	E	F	G	Н		J	K		L
1201				A-D	est Statistic	0.72		Ande	erson-Darling	Gamma GO	FTest		
1202				5% A-D C	Critical Value	0.777	Detected	d data appe	ar Gamma Di	stributed at 5	% Significar	ice Le	evel
1203				K-S	Fest Statistic	0.205		Kolmo	ogrov-Smirno	ff Gamma GO	OF Test		
1204				5% K-S C	Critical Value	0.247	Detected	d data appe	ar Gamma Di	stributed at 5	% Significar	ice Le	evel
1205				Detected	data appea	r Gamma Di	stributed at 5	5% Significa	ance Level				
1206													
1207						Gamma	Statistics						
1208					k hat (MLE)	0.668			k :	star (bias cori	rected MLE)	0).565
1209				Ihe	ta hat (MLE)	11.78			Iheta	star (bias cori	rected MLE)	1.	3.92
1210				r E Maan (hia		17.37				nu star (bia	s corrected)	14	4.7
1211			IVIL	E Mean (bla	is corrected)	7.871			Approvimete	MLE SO (DIA	s corrected)	-	0.47 7.051
1212			A diua	tod Loval of	Cignificance	0.0201			Approximate	diusted Chi S			2.001
1213			Adjus	ted Level of	Significance	0.0301			A	ajusted Chi S	quare value	0).31
1214					A.		ma Distribut	tion					
1215		05% Approvi	imata Camma		AS:				divisted Com	ma LICL (usa	when n< E()	1	0 22
1216				UCL (USE W	nen n>=50))	10.41		33 % A			when h<50)		0.55
1217						Lognorma	GOF Test						
1218			S	haniro Wilk T	Test Statistic	0 708		Sha	niro Wilk Loc	normal GOF	Test		
1219			5% St	napiro Wilk (Critical Value	0.866		Data Not	l ognormal a	t 5% Significa	ance Level		
1220				Lilliefors	Fest Statistic	0.234		L	illiefors Loan	ormal GOF T	est		
1221			5'	% Lilliefors C	Critical Value	0.246		Data appe	ar Lognormal	at 5% Signifi	cance Level		
1222				Data a	ppear Appro	ximate Logr	ormal at 5%	Significan	ce Level	g			
1223					FF FF			3					
1224						Lognorma	I Statistics						
1220				Minimum of I	_ogged Data	-5.708				Mean of	logged Data	1	1.153
1220			Ν	laximum of l	Logged Data	2.879				SD of	logged Data	2	2.328
1227													
1229					Assi	uming Logno	ormal Distrib	ution					
1230					95% H-UCL	1937			90%	Chebyshev (I	MVUE) UCL	8	6.6
1231			95% (Chebyshev (MVUE) UCL	113.2			97.5%	Chebyshev (I	MVUE) UCL	15	0.1
1232			99% (Chebyshev (MVUE) UCL	222.5							
1233						I	I						
1234					Nonparame	etric Distribu	tion Free UC	CL Statistics	3				
1235				Data appea	r to follow a	Discernible	Distribution a	at 5% Signi	ficance Leve				
1236													
1237					Nonpa	rametric Dis	tribution Free	e UCLs					
1238				95	% CLT UCL	10.73				95% Ja	ckknife UCL	1	0.97
1239			95%	Standard Bo	otstrap UCL	10.6				95% Boo	tstrap-t UCL	10	0.98
1240			9	5% Hall's Bo	otstrap UCL	10.57			95%	Percentile Bo	otstrap UCL	1	0.6
1241				95% BCA Bo	otstrap UCL	10.74						<u> </u>	
1242			90% Ch	ebyshev(Me	an, Sd) UCL	13.09			95% Cr	ebyshev(Mea	an, Sd) UCL	1	5.45
1243			97.5% Ch	ebyshev(Me	an, Sd) UCL	18.73			99% Cł	ebyshev(Mea	an, Sd) UCL	2	5.17
1244						Quanasta 1							
1245				05% 05	dont's t LICL								
1246				30% Stu	uent s-t UCL	10.97						<u> </u>	
1247		Noto: Sugar	etione regard	ing the color	tion of a OF ^{0/}		ovided to be	n the user t	o select the r				
1248		These rea	commendation	ny ule selec		ults of the ci	mulation stur			nosi appropria	laci (2002)		
1249		THESE IEC		and Sinch (iaci (2002)		
1250			and Singh	anu Singh (2	1003). HOWE	ver, simulatio	ITS LESUITS WI	in not cover		u uala sets.			

	А	В	С	D	E	F	G	Н	I	J	K	L
1251				For ad	ditional insig	ht the user m	ay want to c	onsult a stati	stician.			
1252												

	A	В	С	D	E	F	G	Н		J	K	L
1				L	JCL Statis	tics for Data	Sets with No	n-Detects				
2												
3	.	User Sele	cted Options									
4	Date	/Time of Co	omputation	2/14/2015 12:1	16:41 PM							
5					Ie.xis							
6		Fu	Coefficient									
7	Number of	Pootetran	Operations	9070								
8	Number of	Bootstrap	Operations	2000								
9												
10	As 0-25											
11												
12						General	Statistics					
13			Total	Number of Obs	ervations	7			Number	r of Distinct O	bservations	6
14									Number	of Missing O	bservations	0
10					Minimum	2.5					Mean	3.314
17					Maximum	3.9					Median	3.5
18					SD	0.498				Std. Er	ror of Mean	0.188
19				Coefficient of	Variation	0.15					Skewness	-0.764
20												
21			Note: Sam	ple size is sma	ll (e.g., <1	0), if data ar	e collected us	sing ISM ap	proach, you	should use		
22			guidance pr	ovided in ITRC	Tech Reg	Guide on Is	6M (ITRC, 20	12) to com	pute statistic	s of interest.		
23			For	example, you m	nay want t	o use Cheby	shev UCL to	estimate E	PC (ITRC, 2	012).		
24			Chebyshev	UCL can be c	omputed ı	ising the No	nparametric a	and All UCL	Options of	ProUCL 5.0		
25												
26						Normal C	GOF Test					
27			S	hapiro Wilk Tes	st Statistic	0.925			Shapiro Wi	lk GOF Test		
28			5% S	hapiro Wilk Crit	ical Value	0.803		Data appe	ear Normal a	t 5% Significa	ince Level	
29				Lilliefors Tes	st Statistic	0.217			Lilliefors	GOF Test		
30			5	% Lilliefors Crit	ical Value	0.335		Data appe	ear Normal a	t 5% Significa	ance Level	
31				[Data appe	ar Normal at	5% Significa	nce Level				
32												
33			05% N/		AS	suming Norr		05%		stad for Skow	wpocc)	
34			95% N		at's t UCI	3 68		90%			Chop 1005)	3 566
35				33 /8 Olddel	113-1 OCL	5.00			95% Modifie		onson-1978)	3.671
36												0.071
3/						Gamma	GOF Test					
38				A-D Tes	st Statistic	0.407		Ander	son-Darling	Gamma GOI	F Test	
39				5% A-D Crit	ical Value	0.708	Detected	data appea	ir Gamma Di	stributed at 5	% Significan	ce Level
40				K-S Tes	st Statistic	0.238		Kolmog	grov-Smirnot	ff Gamma GC	DF Test	
41				5% K-S Crit	ical Value	0.311	Detected	data appea	ir Gamma Di	stributed at 5	% Significan	ce Level
42				Detected da	ata appear	. Gamma Dis	stributed at 59	% Significa	nce Level			
44												
45						Gamma	Statistics					
46				k	hat (MLE)	48.09			ks	star (bias corr	rected MLE)	27.58
47				Theta	hat (MLE)	0.0689			Theta s	star (bias corr	ected MLE)	0.12
48				nu	hat (MLE)	673.3				nu star (bia	s corrected)	386.1
49			M	E Mean (bias o	corrected)	3.314				MLE Sd (bia	s corrected)	0.631
50									Approximate	Chi Square	Value (0.05)	341.5

	А	В	С	D	E	F	G	Н	I	J K	L
51			Adjus	sted Level of S	Significance	0.0158			A	djusted Chi Square Value	328.8
52											
53					As	suming Gam	ima Distribu	tion			
54	!	95% Approxii	mate Gamma	UCL (use where the second seco	nen n>=50))	3.747		95% Ac	djusted Gami	ma UCL (use when n<50)	3.892
55											
56						Lognorma	GOF Test				
57			S	hapiro Wilk T	est Statistic	0.902		Sha	piro Wilk Log	normal GOF Test	
58			5% S	hapiro Wilk C	ritical Value	0.803		Data appea	ar Lognormal	at 5% Significance Level	
59				Lilliefors T	est Statistic	0.23		Lil	lliefors Logn	ormal GOF Test	
60			5	% Lilliefors C	ritical Value	0.335		Data appea	ar Lognormal	at 5% Significance Level	
61					Data appear	Lognormal	at 5% Signif	icance Leve)		
62	-										
63						Lognorma	I Statistics				
64				Minimum of L	ogged Data	0.916				Mean of logged Data	1.188
65			Ν	/laximum of L	ogged Data	1.361				SD of logged Data	0.159
66											
67					Assi	uming Logno	rmal Distrib	ution			
68					95% H-UCL	3.766			90%	Chebyshev (MVUE) UCL	3.914
69			95%	Chebyshev (N	AVUE) UCL	4.185			97.5%	Chebyshev (MVUE) UCL	4.561
70			99%	Chebyshev (N	AVUE) UCL	5.3					
71											
72					Nonparame	etric Distribu	tion Free UC	CL Statistics			
73				Data appear	to follow a	Discernible I	Distribution a	at 5% Signif	icance Leve		
74											
75					Nonpa	rametric Dist	tribution Fre	e UCLs			
76				95	% CLT UCL	3.624				95% Jackknife UCL	3.68
77			95%	Standard Bo	otstrap UCL	3.592				95% Bootstrap-t UCL	3.632
78			9	5% Hall's Bo	otstrap UCL	3.557			95%	Percentile Bootstrap UCL	3.586
79			1	95% BCA Bo	otstrap UCL	3.543					
80			90% Ch	ebyshev(Mea	an, Sd) UCL	3.879			95% Cł	nebyshev(Mean, Sd) UCL	4.135
81			97.5% Ch	ebyshev(Mea	an, Sd) UCL	4.49			99% Cł	nebyshev(Mean, Sd) UCL	5.187
82											
83						Suggested	UCL to Use				
84				95% Stuc	lent's-t UCL	<mark>3.68</mark>					
85											
86		Note: Sugge	estions regard	ing the select	tion of a 95%	UCL are pro	ovided to hel	p the user to	select the n	nost appropriate 95% UCL	
87		These rec	commendation	ns are based	upon the res	ults of the si	mulation stud	dies summa	rized in Singl	h, Singh, and laci (2002)	
88			and Singh	and Singh (2	003). Howev	ver, simulatio	ns results wi	ill not cover a	all Real Worl	d data sets.	
89				For add	ditional insig	ht the user m	ay want to c	onsult a stat	istician.		
90											
91		Note: For	highly negat	ively-skewed	l data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma) may not be	
92			reliable.	Chen's and J	ohnson's me	ethods provi	de adjustme	nts for posit	vely skewed	data sets.	
93											
94											
95	Pb_0-2.5										
96											
97						General	Statistics				
98			Total	Number of O	bservations	43			Numbe	r of Distinct Observations	34
99									Numbe	r of Missing Observations	0
100					Minimum	7				Mean	101
	1						1				

	А	В	С	D	E	F	G	Н		J	K	L
101					Maximum	490					Median	62
102					SD	103.5				Std. E	Error of Mean	15.79
103				Coefficient	t of Variation	1.025					Skewness	2.126
104												
105						Normal	GOF Test					
106			S	Shapiro Wilk	Fest Statistic	0.728			Shapiro Wi	lk GOF Test	t	
107			5% S	hapiro Wilk C	Critical Value	0.943		Data No	ot Normal at §	5% Significa	nce Level	
108				Lilliefors	Fest Statistic	0.256			Lilliefors	GOF Test		
109			5	5% Lilliefors C	Critical Value	0.135		Data No	ot Normal at 5	5% Significa	nce Level	
110					Data Not	t Normal at §	5% Significa	nce Level				
111												
112					As	suming Nor	mal Distribut	tion				
113			95% N	ormal UCL				95%	o UCLs (Adju	sted for Ske	wness)	
114				95% Stu	dent's-t UCL	127.6			95% Adjuste	d-CLT UCL	(Chen-1995)	132.4
115									95% Modifie	ed-t UCL (Jo	hnson-1978)	128.4
116												
117						Gamma	GOF Test					
118				A-D	Fest Statistic	1.399		Ander	rson-Darling	Gamma GC)F Test	
119				5% A-D C	Critical Value	0.768	D	ata Not Garr	nma Distribut	ed at 5% Sig	Inificance Lev	/el
120				K-S	Fest Statistic	0.173	_	Kolmo	grov-Smirno	ff Gamma G	OF Test	
121				5% K-S C	Critical Value	0.137	D	ata Not Gar	nma Distribut	ed at 5% Sig	Jnificance Lev	/el
122				Da	ata Not Gami	ma Distribut	ed at 5% Sig	gnificance Le	evel			
123							<u></u>					
124						Gamma	Statistics					1 050
125					k hat (MLE)	1.443			K :	star (bias co	rrected MLE)	1.358
126				I he	ta hat (MLE)	/0			I heta s	star (bias co	rrected MLE)	/4.39
127				r 	nu hat (MLE)	124.1				nu star (bia	as corrected)	116.8
128			IVI	LE Mean (bla	is corrected)	101			Ammunineste	MLE SO (DI	as corrected)	80.08
129			A diu	ated Lovel of	Cignificance	0.0444			Approximate	diugtod Chi S		92.81
130			Aujus		Significance	0.0444			A			92.07
131					٨٥	suming Con	ama Distribu	tion				
132		05% Approvi	mata Cammi		Hon n>=50))				liveted Com		when n <f(1)< td=""><td>120 1</td></f(1)<>	120 1
133		95% Approxi			nen n~-50))	127.1		95 % AU			; when h<50)	120.1
134						Lognorma	COE Test					
135			c	Shaniro Wilk	Lest Statistic			Shar	niro Wilk Log	inormal GOI	F Test	
136			5% S	shapiro Wilk (ritical Value	0.970		Data annea	ar Lognormal	at 5% Signif	ficance Level	
137				L illiefors	Test Statistic	0.343				ormal GOF		
138			F	5% Lilliefors (Critical Value	0.135		Data annea	ar Lognormal	at 5% Signif	ficance Level	
139					Data appear	r Lognormal	at 5% Signif	ficance Leve				
140												
141						Loanorma	al Statistics					
142				Minimum of I	odded Data	1.946				Mean of	logged Data	4.23
143			I	Maximum of I	Logged Data	6.194				SD of	logged Data	0.872
144										52 01		
145					Ass	umina Loana	ormal Distrib	oution				
146					95% H-UCL	135.7			90%	Chebyshev ((MVUE) UCL	144.3
14/			95%	Chebyshev (MVUE) UCL	164.7			97.5%	Chebyshev ((MVUE) UCL	193
148			99%	Chebyshev (MVUE) UCL	248.5				- , ,	, ,	-
149				, - (,							<u> </u>
100												

	А	В	С	D	E	F biotribu	G	H			J	K		L
151				Data annoa	r to follow o	Discorpible I		L Statistics	ioonoo l	ovol				
152				Data appea				at 5% Signii		-evei				
153					Nonno	omotrio Dio	ribution Fro							
154				05		127		eucls			05%	lackknifo LICI	10	76
155			95%	Standard Bo	otstran UCL	127					95% B		12	17.0
156			0,00 Q	5% Hall's Bo	otstran UCI	120.0			٩	95% F	Percentile F	Bootstran LICI	12	97.0
157				95% BCA Bo	otstran UCI	131.9			0	0 /0 1				.7.5
158			90% Ch	ebvshev(Me	an. Sd) UCL	148.4			95%	% Ch	ebvshev(N	lean, Sd) UCL	16	9.8
159			97.5% Ch	ebyshev(Me	an, Sd) UCL	199.6			99%	% Ch	ebyshev(N	lean, Sd) UCL	25	58.1
160				, , ,	. ,						, ,	. ,		
162						Suggested	UCL to Use							
163					95% H-UCL	135.7								
164														
165		Note: Sugge	stions regard	ling the selec	tion of a 95%	UCL are pro	ovided to hel	p the user to	select t	the m	lost approp	riate 95% UCL		
166		These rec	ommendatior	ns are based	upon the res	ults of the si	mulation stud	dies summai	rized in S	Singh	n, Singh, ar	nd laci (2002)		
167			and Singh	and Singh (2	2003). Howev	er, simulatio	ns results wi	Il not cover a	all Real \	World	d data sets			
168				For ad	ditional insigl	nt the user m	ay want to c	onsult a stat	istician.					
169														
170			Prol	UCL compute	es and outpu	its H-statistic	c based UCL	s for histori	cal reas	ions o	only.			
171		H-statistic	coften results	s in unstable	(both high a	<mark>nd low) valu</mark>	es of UCL95	<mark>as shown i</mark>	<mark>n exam</mark> p	p <mark>les i</mark>	n the Tech	nical Guide.		
172			(lt	is therefore	recommende	ed to avoid t	he use of H-	statistic bas	ed 95%	UCL	. <mark>S.</mark>			
173	<mark>ป</mark> ะ	se of nonpara	ametric meth	nods are pref	erred to com	pute UCL95	for skewed	data sets w	hich do I	not fo	ollow a gar	nma distributi	<mark>on</mark> .	
174	h(-) 0.0 F	-												
175	b(a)p_0-2.5)												
176						General	Statistics							
177			Total	Number of C	bservations	7			Nu	mber	of Distinct	Observations	-	7
178				Numbe	er of Detects	5					Number o	f Non-Detects	:	2
1/9			Nu	umber of Dist	tinct Detects	5			Nu	umbe	r of Distinc	t Non-Detects	:	2
181				Mini	mum Detect	0.0054					Minimu	m Non-Detect	0	0.011
182				Maxi	mum Detect	0.014					Maximu	m Non-Detect	(0.1
183				Varia	nce Detects	1.1932E-5					Percen	t Non-Detects	2	8.57%
184				М	ean Detects	0.00862						SD Detects	0.	.00345
185				Med	dian Detects	0.008						CV Detects	(0.401
186				Skewn	ess Detects	1.065					Ku	irtosis Detects	(0.726
187				Mean of Log	ged Detects	-4.814					SD of Lo	ogged Detects	(0.383
188														
189			Note: Sam	ple size is sn	nall (e.g., <1	0), if data ar	e collected u	ising ISM ap	proach,	, you	should us	9		
190			guidance pro	ovided in ITF	RC Tech Reg	Guide on Is	SM (ITRC, 2	012) to com	pute sta	tistic	s of interes	st.		
191			For e	example, you	i may want to	o use Cheby	shev UCL to			RC, 2	012). Decklol 54	•		
192			Chebysnev	UCL can be	e computea l	Ising the No	nparametric	and All UCI		IS OT I	ProUCL 5.	U		
193					Norm		t on Detecto	Only						
194			S	hapiro Wilk T	est Statistic	0.915		Jiny	Shanir	o Wil		st		
195			5% SI	hapiro Wilk C	critical Value	0.762	De	etected Data	appear	Norn	nal at 5% S	 Bignificance l e	vel	
196				Lilliefors T	est Statistic	0.177			Lillie	fors	GOF Test	5		
19/			5	% Lilliefors C	ritical Value	0.396	De	etected Data	appear	Norn	nal at 5% S	ignificance Le	vel	
190				Def	tected Data a	appear Norm	nal at 5% Sig	nificance Lo	evel					
200						-								
200														

	Α		В	С	D	E	F	G	Н		J	K	L
201				Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	ritical Value	s and other	Nonparamet	ric UCLs		1
202						Mean	0.0084				Standard E	rror of Mean	0.00139
203						SD	0.00295				95% KN	1 (BCA) UCL	0.0106
204					95%	5 KM (t) UCL	0.0111			95% KM (F	Percentile Boo	otstrap) UCL	0.0107
205					95%	KM (z) UCL	0.0107				95% KM Boo	otstrap t UCL	0.0134
206					90% KM Che	byshev UCL	0.0126			(95% KM Che	byshev UCL	0.0145
207				97	.5% KM Che	byshev UCL	0.0171			Ç	99% KM Che	byshev UCL	0.0222
208													
209						amma GOF	lests on De		ervations Or	niy			
210					A-D	est Statistic	0.255	.	A	Inderson-Da		est	
211					5% A-D C		0.679	Detecte	d data appea	ar Gamma Di	istributed at 5	5% Significan	ce Level
212					K-S		0.209	Datasta		Kolmogrov-	Smirnon GO		
213					5% K-S C	ritical value	0.358	Detecte	d data appea	ar Gamma Di	istributed at 5	5% Significan	ce Level
214					Detected	data appea	r Gamma Di	stributed at	5% Significa	nce Level			
215						0			ata Oaka				
216								Detected L	Data Only	- Le	ator (hiao aor		2 5 1 4
217					T h -	K nat (MLE)	8.451			Th a ta	star (blas cor		3.514
218					Ine		0.00102			Ineta	star (blas cor		0.00245
219				NA	ا L T. Maan (hia		0.00962					as corrected)	35.14
220				IVI		is corrected)	0.00602					as corrected)	0.0040
221						Gamm	a Kanlan M	oior (KM) St	atistics				
222									ausucs			nu hat (KM)	113.6
223			Appr	ovimato Chi	Squaro Valu	$\frac{11360 a}{11360 a}$	0.114		/	diuctod Chi	Squaro Valu		83.66
224	c	25% (orovimate K		$\frac{113.00, 0}{100}$	0.0106		95% Gamm	Adjusted Chi		e(113.00, p)	0.0114
225		JJ /0 ((nen nº -30)	0.0100		35 % Callin			witer it <50)	0.0114
226						amma ROS	Statistics us	ing Imputed	l Non-Deter	te			
227				GROS may	v not be used	when data s	et has > 50%	NDs with m	any tied obs	ervations at	multiple DLs		
228					GROS may	not be used	when kstar c	of detected d	ata is small s	such as < 0.1			
229				For	such situatio	ons. GROS m	nethod tends	to vield infla	ted values o	f UCLs and E	BTVs		
230			For gar	nma distribu	ted detected	data, BTVs a	ind UCLs ma	y be comput	ted using gai	mma distribu	tion on KM e	stimates	
231						Minimum	0.0054					Mean	0.00901
232						Maximum	0.014					Median	0.0097
233						SD	0.0029					CV	0.322
234						k hat (MLE)	11.18			k	star (bias cor	rected MLE)	6.484
235					The	ta hat (MLE)	8.0628E-4			Theta	star (bias cor	rected MLE)	0.00139
237					r	nu hat (MLE)	156.5				nu star (bia	as corrected)	90.77
238				М	LE Mean (bia	is corrected)	0.00901				MLE Sd (bia	as corrected)	0.00354
239										Adjusted	Level of Sig	jnificance (β)	0.0158
240			Арр	proximate Ch	i Square Valu	ue (90.77, α)	69.8			Adjusted Ch	i Square Val	ue (90.77, β)	64.27
241		9	5% Gamma	Approximat	e UCL (use v	vhen n>=50)	0.0117		95% Ga	amma Adjust	ed UCL (use	when n<50)	0.0127
242							1	I					
243					Lo	ognormal GC	F Test on D	etected Obs	ervations O	nly			
244				S	Shapiro Wilk	Fest Statistic	0.957			Shapiro Wi	lk GOF Test		
245				5% S	hapiro Wilk C	Critical Value	0.762	Det	ected Data a	ppear Logno	ormal at 5% S	Significance L	evel
246					Lilliefors 7	Fest Statistic	0.185			Lilliefors	GOF Test		
247				5	% Lilliefors C	Critical Value	0.396	Det	ected Data a	ppear Logno	ormal at 5% S	Significance L	evel
248					Dete	cted Data ap	opear Logno	rmal at 5% S	Significance	Level			
<u>24</u> 9													
250					Lo	gnormal RO	S Statistics	Jsing Imput	ed Non-Dete	ects			

	А		В	С	D	E	F	G	Н		J	K	L
251					Mean in O	riginal Scale	0.0083				Mean in	Log Scale	-4.837
252					SD in O	riginal Scale	0.00288				SD in	Log Scale	0.316
252			95% t L	JCL (assume	s normality c	f ROS data)	0.0104			95% F	Percentile Boot	tstrap UCL	0.0102
200					95% BCA Bo	otstrap UCL	0.0106				95% Boots	trap t UCL	0.0121
254					95% H-UCI		0.0111						
255					00/011/001	- (LOG 1(00)	0.0111						
256					10								
257			U	JLS USING LO	gnormal Dis	tribution and	KM Estimat	es when De		are Lognorm	ally Distribute	a	
258					KM Me	ean (logged)	-4.837				95% H-UCL	(KM -Log)	0.0114
259					KM	SD (logged)	0.331			95% C	Critical H Value	e (KM-Log)	2.252
260				KM Standar	rd Error of Me	ean (logged)	0.158						
261													
262							DL/2 S	tatistics					
263				DL/2	Normal					DL/2 Log-T	ransformed		
264					Mean in O	riginal Scale	0.0141				Mean in	Log Scale	-4.61
265					SD in O	riginal Scale	0.0161				SD in	Log Scale	0.791
200				95% t L	JCL (Assume	es normality)	0.0259				95% F	I-Stat UCL	0.0374
200				DL/2 i	s not a reco	mmended m	ethod. provid	led for com	parisons and	historical re	asons		
267													
268						Nonnarame	tric Distribu	tion Free LIC	Statistics				
269					Detected	Data annea	r Normal Die	stributed at F		nca Laval			
270					Delected								
271							Ourrestad						
272					05%		Suggested						0.0107
273					<mark>.95%</mark>	KM (t) UCL	0.0111		1	95% KM (P	ercentile Boots	strap) UCL	0.0107
274													
275		Ν	ote: Sugge	stions regard	ing the selec	tion of a 95%	UCL are pro	ovided to hel	p the user to	select the m	ost appropriate	e 95% UCL	•
276				F	Recommenda	tions are bas	ed upon dat	a size, data o	distribution, a	and skewnes	S.		
277			These recor	mmendations	are based u	pon the resu	Its of the sim	ulation studi	es summariz	ed in Singh,	Maichle, and L	_ee (2006).	
278		Hov	vever, simu	lations result	s will not cov	er all Real W	orld data set	ts; for additio	onal insight th	ie user may v	vant to consult	t a statisticia	an.
279													
280													
281	As												
282													
283							General	Statistics					
284				Total	Number of C	bservations	8			Number	of Distinct Ob	servations	7
285										Number	of Missing Ob	servations	0
286						Minimum	2.5					Mean	3.3
200						Maximum	3.9					Median	3.4
207						SD	0.463				Std. Err	or of Mean	0.164
288					Coefficient	of Variation	0.14					Skewness	-0.657
289							-						
290				Note: Sam	ole size is en	nall(ea <1	0), if data ar	e collected i	ising ISM an	proach you	should use		
291				quidance pr	ovided in ITE	C Tech Per				outo etatietic	e of interest		
292				Salaance hi							112)		
293				Chebyete									
294				Chebyshev			iang ule NO	nparametric			-1000L 0.0		
295								0					
296				-			Normal C	JOF Test					
297				S	hapiro Wilk T	est Statistic	0.953			Shapiro Wi	k GOF Test		
298				5% SI	napiro Wilk C	critical Value	0.818		Data appe	ear Normal at	5% Significar	nce Level	
<u>29</u> 9		_			Lilliefors 7	est Statistic	0.167			Lilliefors	GOF Test		
300				5	% Lilliefors C	critical Value	0.313		Data appe	ear Normal at	5% Significar	nce Level	

	А		В	С	D	Е	F	G	Н	I	J	K	L
301						Data appe	ar Normal at	t 5% Significa	nce Level				
302													
303						As	suming Nori	nal Distributio	n				
304				95% No	ormal UCL				95%	UCLs (Adju	sted for Ske	wness)	
305					95% Stu	dent's-t UCL	3.61			95% Adjuste	d-CLT UCL	(Chen-1995)	3.529
306										95% Modifie	ed-t UCL (Jo	hnson-1978)	3.604
307													
308							Gamma	GOF Test	<u> </u>				
309					A-D I	est Statistic	0.315		Ander	son-Darling	Gamma GC		
310					5% A-D C	ritical Value	0.715	Detected	data appea	ar Gamma Di	stributed at 8	5% Significan	ce Level
311					K-S I	est Statistic	0.186	Detected	Kolmog	grov-Smirno	r Gamma G		
312					5% K-S C		0.293	Detected	data appea		stributed at a	5% Significan	ce Level
313					Detected	data appea	r Gamma Di	stributed at 57	% Significa	nce Level			
314							Commo	Statiation					
315						k bot (MLE)	Gamma	Statistics			stor (biog og	reated MLE)	24 17
316					Tho	r hat (MLE)	0.0605			Thota	star (bias cor	rected MLE)	0.0066
317						u hat (MLE)	872.7			THELD	nu etar (bia		546.8
318				М	l E Mean (bia		33					as corrected)	0.565
319				IVI		s concelea)	0.0			Annroximate		Value (0.05)	493.5
320				Adius	sted Level of	Significance	0.0195			Ac	liusted Chi S		480.7
321				7 10 jul			0.0100			7.0			-100.7
322						As	sumina Garr	ma Distributio	on				
323		95% A	Noroxir	nate Gamma	UCL (use w	hen n>=50))	3.656		95% Ad	liusted Gamr	na UCL (use	when n<50)	3.754
324			FF -		(//				,		/	
325							Lognorma	GOF Test					
320				S	hapiro Wilk T	est Statistic	0.93		Shap	oiro Wilk Log	normal GOF	- Test	
327				5% S	hapiro Wilk C	ritical Value	0.818	[Data appea	r Lognormal	at 5% Signif	icance Level	
320					Lilliefors T	est Statistic	0.192		Lil	liefors Logno	ormal GOF 1	ſest	
320				5	% Lilliefors C	ritical Value	0.313	[Data appea	r Lognormal	at 5% Signif	icance Level	
331						Data appear	r Lognormal	at 5% Signific	ance Leve	1			
332													
333							Lognorma	I Statistics					
334					Minimum of L	ogged Data	0.916				Mean of	logged Data	1.185
335				1	Maximum of L	ogged Data	1.361				SD of	logged Data	0.147
336							I	I					
337						Ass	uming Logno	ormal Distribut	tion				
338						95% H-UCL	3.673			90%	Chebyshev (MVUE) UCL	3.818
339				95%	Chebyshev (I	MVUE) UCL	4.052			97.5%	Chebyshev (MVUE) UCL	4.377
340				99%	Chebyshev (I	MVUE) UCL	5.015						
341													
342						Nonparame	etric Distribu	tion Free UCL	. Statistics				
343					Data appea	r to follow a	Discernible	Distribution at	5% Signifi	cance Level			
344													
345						Nonpa	rametric Dis	tribution Free	UCLs				
346					95	% CLT UCL	3.569				95% Ja	ckknife UCL	3.61
347				95%	Standard Bo	otstrap UCL	3.555				95% Boo	otstrap-t UCL	3.577
348				ç	95% Hall's Bo	otstrap UCL	3.527			95% F	Percentile Bo	ootstrap UCL	3.55
349					95% BCA Bo	otstrap UCL	3.513						
350				90% Cł	ebyshev(Me	an, Sd) UCL	3.791			95% Ch	ebyshev(Me	an, Sd) UCL	4.013

	А	В	С	D	E	F	G	Н	I	J	К	L
351			97.5% Ch	ebyshev(Mea	an, Sd) UCL	4.322			99% Ch	ebyshev(Mean,	, Sd) UCL	4.928
352												
353						Suggested	UCL to Use					
354				95% Stuc	lent's-t UCL	<mark>3.61</mark>						
355												
356		Note: Sugges	stions regard	ing the select	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropriate	95% UCL.	
357		These reco	ommendation	ns are based	upon the res	ults of the si	mulation stud	dies summar	ized in Singh	, Singh, and lac	ci (2002)	
358			and Singh	and Singh (2	003). Howev	ver, simulatio	ons results wi	ill not cover a	all Real World	l data sets.		
250				For add	ditional insig	ht the user m	ay want to c	onsult a stati	stician.			
359					-							
360		Note: For	highly negat	ively-skewed	l data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, an	d Gamma) mav	y not be	
301			reliable.	Chen's and J	ohnson's me	ethods provi	de adjustme	nts for posit	vely skewed	data sets.	•	
302						•	•	•	•			
363												
364	Pb											
365												
366						General	Statistics					
367			Total	Number of O	hservations	44			Number	of Distinct Obs	ervations	35
368			10101						Number	of Missing Obs	servations	0
369					Minimum	62			Number		Mean	08.85
370					Maximum	100					Modian	61
371						490				Std Erro		15.57
372				Coofficient	of Variation	1.045						2 124
373				Coenicient		1.045					Skewness	2.134
374						Normal						
375									Oh and ing M/II			
376			5		est Statistic	0.73		D · N	Snapiro wii			
377			5% SI	hapiro Wilk C	ritical Value	0.944		Data No	t Normal at 5	% Significance	Level	
378				Lilliefors I	est Statistic	0.252			Lilliefors			
379			5	% Lilliefors C	ritical Value	0.134		Data No	t Normal at 5	% Significance	Level	
380					Data Not	Normal at 5	5% Significar	nce Level				
381								-				
382					As	suming Nori	mal Distribut	ion				
383			95% No	ormal UCL				95%	UCLs (Adju	sted for Skewn	iess)	
384				95% Stuc	lent's-t UCL	125			95% Adjuste	d-CLT UCL (Ch	nen-1995)	129.8
385									95% Modifie	d-t UCL (Johns	son-1978)	125.9
386												
387						Gamma	GOF Test					
388				A-D T	est Statistic	1.203		Ander	son-Darling	Gamma GOF 1	Test	
389				5% A-D C	ritical Value	0.771	D	ata Not Gam	ma Distribute	ed at 5% Signifi	icance Leve	el
390				K-S T	est Statistic	0.162		Kolmog	grov-Smirnof	f Gamma GOF	Test	
391				5% K-S C	ritical Value	0.136	D	ata Not Gam	ma Distribute	ed at 5% Signifi	icance Leve	el
392				Da	ta Not Gami	na Distribute	ed at 5% Sig	nificance Le	vel			
393												
394						Gamma	Statistics					
395					k hat (MLE)	1.338			k s	tar (bias correc	cted MLE)	1.262
396				Thet	a hat (MLE)	73.87			Theta s	tar (bias correc	cted MLE)	78.32
397				n	u hat (MLE)	117.8				nu star (bias c	corrected)	111.1
305			MI	E Mean (bia	s corrected)	98.85				MLE Sd (bias c	corrected)	87.99
200					,				Approximate	Chi Square Va	lue (0.05)	87.73
399			Adius	ted Level of S	Significance	0.0445			Ad	justed Chi Sau	are Value	87.03
400					3				. 10	,		

	А		В	С		D		Е	F	G	Н	I	J	К	L
401															
402							-	As	suming Gam	ma Distribu	tion				100.1
403		95	% Approxi	mate Gamm	na l	JCL (use w	hen r	า>=50))	125.1		95% Ac	djusted Gan	nma UCL (us	e when n<50)	126.1
404										00FT -					
405					01		F		Lognorma	GOF Test					
406				50/	Sn		l est a	Statistic	0.968		Sna		gnormal GC		
407				5%3	Sha			al Value	0.944		Data appea	ar Lognorma	al at 5% Sign	Trance Level	
408					E 0/	Lilliefors	l est a	Statistic	0.0992				normal GOF	ificance Level	
409					5%		Dete		0.134	ot 5% Signi			ai at 5% Sign	mcance Level	
410							Data	appear	Lognormai	at 5% Signi	licance Leve	1			
411									Lognorma	l Statistics					
412					М	inimum of	000	ad Data	1 825				Mean c	of loaged Data	4 175
413					M	avimum of			6 194				SD c	of logged Data	0.935
414					1410		Loggi		0.134				000	l logged Data	0.000
415								Ass	umina Loanc	rmal Distrib	ution				
416							95%	H-UCI	139.8			90%	6 Chebyshev	(MVUF) UCI	147.8
41/				95%	6 C	hebvshev (MVU	E) UCL	169.8			97.5%	6 Chebyshev	(MVUE) UCL	200.2
418				99%	6 C	hebyshev (MVU	E) UCL	260				·	(
419								,							
420							Nor	parame	etric Distribu	tion Free U	CL Statistics	;			
421					[Data appea	r to f	ollow a	Discernible	Distribution	at 5% Signif	icance Lev	el		
422															
423		Nonparametric Distribution Free UCLs													
425						95	5% CI	LT UCL	124.5				95% J	ackknife UCL	125
426				959	% S	tandard Bo	otstra	ap UCL	124.5				95% Bo	otstrap-t UCL	132.9
427					95	% Hall's Bo	otstra	ap UCL	132.4			95%	Percentile E	ootstrap UCL	125.8
428					95	5% BCA Bo	otstra	ap UCL	129.8						
429				90% C	he	byshev(Me	an, S	d) UCL	145.6			<mark>95% C</mark>	Chebyshev(M	ean, Sd) UCL	<mark>166.7</mark>
430				97.5% C	he	byshev(Me	an, S	d) UCL	196.1			99% C	Chebyshev(M	ean, Sd) UCL	253.8
431															
432									Suggested	UCL to Use	l				
433							95%	H-UCL	139.8						
434															
435		No	ote: Sugge	stions rega	rdir	ng the seled	ction of	of a 95%	6 UCL are pr	ovided to he	Ip the user to	o select the	most approp	riate 95% UCL.	
436			These rec	ommendati	ons	s are based	upor	n the res	sults of the si	mulation stu	dies summa	rized in Sing	gh, Singh, an	d laci (2002)	
437				and Sing	h a	nd Singh (2	2003)	. Howe	/er, simulatio	ns results w	ill not cover	all Real Wo	rld data sets.		
438						For ad	altior	iai insig	nt the user m	ay want to c	consult a stat	listician.			
439				Dr				ad outpu	ita II atatiati	based UC	l o for histori		only		
440						CL comput	es ar	h bigb g			Ls for histori		s only.	nicol Cuido	
441				, oiteir resu	113 + ia	therefore		mmend	ed to avoid t		etatistic bas				
442			of nonnar	ametric me	tho	ds are pre	forro			for skewed	data sots w	which do not	follow a dar	nma distributio	n
443		030											lonow a gai		<u>, , , , , , , , , , , , , , , , , , , </u>
444	b(a)p														
445	~\~/٣														
446									General	Statistics					
44/				Tota	al N	lumber of (Obser	vations	8			Numb	er of Distinct	Observations	8
44ð						Numb	er of I	Detects	5				Number o	f Non-Detects	3
449				1	Nur	mber of Dis	tinct	Detects	5			Num	per of Distinc	t Non-Detects	3
400						-		-					-	_	

	А	В	С	D	E	F	G	Н	I	J	K	L
451				Minii	num Detect	0.0054				Minimum	Non-Detect	0.0055
452				Maxii	num Detect	0.014				Maximum	Non-Detect	0.1
453				Varia	nce Detects	1.1932E-5				Percent N	Ion-Detects	37.5%
454				M	ean Detects	0.00862					SD Detects	0.00345
455				Mec	lian Detects	0.008					CV Detects	0.401
456				Skewn	ess Detects	1.065				Kurto	sis Detects	0.726
457				Mean of Log	ged Detects	-4.814				SD of Logo	ged Detects	0.383
458												
459			Note: Sam	ple size is sm	nall (e.g., <1	0), if data ar	e collected u	using ISM ap	oproach, you	should use		
460			guidance pr	ovided in ITF	C Tech Reg	g Guide on Is	SM (ITRC, 2	012) to com	pute statistic	s of interest.		
461			Fore	example, you	may want t	o use Cheby	shev UCL to	o estimate E	PC (ITRC, 2	012).		
462			Chebyshev	/ UCL can be	computed u	using the No	nparametric	and All UCI	Options of	ProUCL 5.0		
463												
464					Norm	nal GOF Tes	t on Detects	only				
465			S	hapiro Wilk T	est Statistic	0.915			Shapiro Wi	lk GOF Test		
466			5% SI	hapiro Wilk C	ritical Value	0.762	De	etected Data	appear Norr	nal at 5% Sigr	nificance Lev	vel
467				Lilliefors T	est Statistic	0.177			Lilliefors	GOF Test		
468			5	% Lilliefors C	ritical Value	0.396	De	etected Data	appear Norr	nal at 5% Sigr	nificance Lev	vel
469				Det	ected Data	appear Norn	hal at 5% Sig	gnificance L	evel			
470												
471			Kaplan-	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonparamet	ric UCLs		
472					Mean	0.00791				Standard Er	ror of Mean	0.00128
473					SD	0.00294				95% KM	(BCA) UCL	0.00988
474				95%	KM (t) UCL	0.0103			95% KM (P	ercentile Boot	tstrap) UCL	0.00989
475				95%	KM (z) UCL	0.01				95% KM Boot	strap t UCL	0.0116
476			ę	90% KM Chel	oyshev UCL	0.0117			ę	95% KM Cheb	yshev UCL	0.0135
477			97	.5% KM Chel	oyshev UCL	0.0159			ę	9% KM Cheb	yshev UCL	0.0206
478						•						
479				G	amma GOF	Tests on De	etected Obso	ervations Or	nly			
480				A-D T	est Statistic	0.255		A	nderson-Da	ling GOF Tes	st	
481				5% A-D C	ritical Value	0.679	Detecte	d data appea	ar Gamma Di	stributed at 59	% Significan	ce Level
482				K-S T	est Statistic	0.209			Kolmogrov-S	Smirnoff GOF		
483				5% K-S C	ritical Value	0.358	Detecte	d data appea	ar Gamma Di	stributed at 59	% Significan	ce Level
484				Detected	data appea	r Gamma Di	stributed at	5% Significa	nce Level			
485												
486					Gamma	Statistics or	Detected D	Data Only				
487					k hat (MLE)	8.451			ks	star (bias corr	ected MLE)	3.514
488				Thet	a hat (MLE)	0.00102			Theta s	star (bias corre	ected MLE)	0.00245
489				n	u hat (MLE)	84.51				nu star (bias	s corrected)	35.14
490			MI	LE Mean (bia	s corrected)	0.00862				MLE Sd (bias	s corrected)	0.0046
491												
492					Gamm	na Kaplan-M	eier (KM) St	atistics				
493				_	k hat (KM)	7.254				1	nu hat (KM)	116.1
494		Аррі	roximate Chi	Square Value	(116.07, α)	92.19		A	Adjusted Chi	Square Value	(116.07, β)	86.82
495	95%	6 Gamma Ap	proximate KN	/I-UCL (use w	hen n>=50)	0.00996		95% Gamm	ha Adjusted K	M-UCL (use v	when n<50)	0.0106
496							<u> </u>					
497			0000	G	amma ROS	Statistics us	sing Imputed	1 Non-Detec	cts			
498			GROS may	not be used	when data s	et has > 50%	NDs with m	nany tied obs	servations at	multiple DLs		
499				GROS may	not be used	when kstar c	ot detected d	ata is small s	such as < 0.1			
500			For	such situatio	ns, GROS m	nethod tends	to yield infla	ted values of	t UCLs and E	81Vs		

	А		В		С	D		E	F	G		Н		I	J		К	L
501			For gar	mma o	distribut	ed detected	d data,	BTVs a	nd UCLs ma	ay be compi	uted	using gar	nma c	listribu	tion on KN	/l estim	nates	
502							Mi	nimum	0.0054								Mean	0.00914
503							Ma	ximum	0.014								Median	0.00985
504								SD	0.00271								CV	0.296
505							k hat	(MLE)	12.57					k :	star (bias o	correct	ted MLE)	7.937
506						Th	eta hat	(MLE)	7.2720E-4					Theta	star (bias o	correct	ted MLE)	0.00115
507							nu hat	(MLE)	201						nu star (bias c	orrected)	127
508					ML	.E Mean (b	ias corr	rected)	0.00914						MLE Sd (bias c	orrected)	0.00324
509													A	djustec	Level of S	Signific	cance (β)	0.0195
510			Appr	roxima	ate Chi S	Square Val	ue (126	5.99, α)	102			A	Adjuste	ed Chi	Square Va	alue (1	26.99, β)	96.29
511		95	% Gamma	а Аррі	roximate	e UCL (use	when r	ו>=50)	0.0114			95% Ga	amma	Adjust	ed UCL (u	ise wh	en n<50)	0.0121
512							oanori	nal GC	F Test on F	etected Oh	nserv	vations O	nlv					
513					9	naniro Wilk	Tost S	tatistic	0.957		53614		Shar	viro Wi		oet		
514					5% Sł	apiro Wilk	Critical	Value	0.337	De	atacta	ed Data a	nnear		rmal at 5%	% Sign	ificance l	
515					570 01		Tost S	tatistic	0.702	De				liefore		• Olym		ever
516					5		Critical	Value	0.100	De	atacta	ed Data a	nnear		urmal at 5%	sian	ificance l	
517					5		ected I	Data ar	onear Logno	rmal at 5%	Siar	nificance	level	Logne				
518									·p·:g		g.							
519						L	oanorn	nal RO	S Statistics	Usina Impu	uted I	Non-Dete	ects					
520						Mean in	Original	I Scale	0.00775	3F					Меа	an in L	og Scale	-4.914
521						SD in	Original	Scale	0.00295						S	SD in L	og Scale	0.34
522			95% t l	UCL (a	assume	s normality	of ROS	S data)	0.00973					95%	Percentile	Boots	trap UCL	0.00951
523						5% BCA E	lootstra	p UCL	0.0098						95% E	3ootstr	aptUCL	0.0114
525						95% H-U	CL (Log	ROS)	0.0102									
526																		
527			U	CLs u	sing Lo	gnormal D	stributi	ion and	KM Estima	tes when D)etec	ted data	are Lo	gnorm	ally Distri	buted		
528						KM	/lean (lo	ogged)	-4.899						95% H-	UCL (I	KM -Log)	0.0103
529						K	/I SD (lo	ogged)	0.336					95% (Critical H \	Value ((KM-Log)	2.105
530				KM	Standar	d Error of N	/lean (lo	ogged)	0.148									
531										1							I	
532									DL/2 S	tatistics								
533					DL/2	lormal							DL/2	Log-1	ransform	ed		
534						Mean in	Original	l Scale	0.0127						Mea	an in L	og Scale	-4.771
535						SD in	Original	l Scale	0.0155						S	3D in L	og Scale	0.862
536					95% t L	CL (Assun	nes nor	mality)	0.023						9	5% H-\$	Stat UCL	0.0337
537					DL/2 i	s not a rec	ommer	nded m	ethod, provi	ded for con	npari	isons and	l histo	rical re	easons			
538																		
539							Non	parame	etric Distribu	tion Free U	JCL	Statistics						
540						Detecte	d Data	appea	r Normal Di	stributed at	t 5%	Significa	nce Le	evel				
541																		
542									Suggested	UCL to Us	e							
543						<mark>.95</mark>	% KM (t) UCL	0.0103				95%	KM (F	ercentile E	Bootsti	rap) UCL	0.00989
544								=-		L			<u> </u>				050/ 115	
545		No	ote: Sugge	estions	s regard	ng the sele	ection o	t a 95%	OCL are pr	ovided to he	elp th	ne user to	selec	t the m	nost appro	priate	95% UCL	-
546			1		R	ecomment	ations	are bas	sed upon da	ta size, data	a dist	tribution, a	and sk	ewnes	S.		- (0000)	
547		[nese reco	mmer	laations	are based	upon ti	ne resu	its of the sin	nulation stud	dies	summariz	zed in	Singh,	waichle, a	and Le	e (2006).	
548		How	ever, simu	liation	is result	s will not co	over all	Real W	orid data se	ts; for addit	lional	i insight th	ne use	r may	want to co	insult a	a statistici	an
549																		
550																		

	А	В	С	D	E	F	G	Н		J	K	L
551	Ba_0-3.5											
552												
553						General	Statistics					
554			Total	Number of O	bservations	8			Numbe	r of Distinct (Observations	7
555									Number	of Missing C	Observations	0
556					Minimum	89					Mean	98.13
557					Maximum	120					Median	94.5
558					SD	11.23				Std. E	Frror of Mean	3.971
559				Coefficient	of Variation	0.114					Skewness	1.337
560												
561			Note: Sam	ole size is sn	nall (e.g., <1	0), if data ar	e collected u	using ISM ap	proach, you	should use		
562			guidance pr	ovided in ITF	RC Tech Reg	Guide on Is	6M (ITRC, 2	012) to com	pute statistic	s of interest	•	
563			For e	example, you	i may want t	o use Cheby	shev UCL to	o estimate E	PC (ITRC, 2	012).		
564			Chebyshev	UCL can be	computed u	using the No	nparametric	and All UCL	. Options of	ProUCL 5.0		
565												
566						Normal C	GOF Test					
567			S	hapiro Wilk I	est Statistic	0.824			Shapiro Wi	Ik GOF Test		
568			5% SI	hapiro Wilk C	ritical Value	0.818		Data appe	ear Normal a	t 5% Signific	ance Level	
569			F	Lilliefors I	est Statistic	0.254		Data ann	Lillietors			
570			5	% Lillefors C	ritical value	0.313	El/ Cignifia		ear Normal a	t 5% Signific	ance Level	
571					Data appe	ar Normal at	5% Signific	ance Levei				
572					^^	ourning Nor	nol Diotribut	ion				
573			05% No		AS	suming Non		05%		stad for Ska		
574			90% NC		lont's tUCI	105.6		90%			(Chop 1005)	106 7
575				95 % Slut		105.0			95% Modify		(Chen-1995)	100.7
576									35 /8 WOULL	eu-1 OCL (30	1115011-1976)	100
577						Gamma	SOF Test					
578					est Statistic	0.628		Ander	son-Darling	Gamma GC)F Test	
579				5% A-D C	ritical Value	0 715	Detecte	d data annea	r Gamma Di	stributed at !	5% Significan	ce l evel
580				K-S T	est Statistic	0.241	2010010	Kolmo	arov-Smirno	ff Gamma G	OF Test	
581				5% K-S C	ritical Value	0.294	Detecte	d data appea	r Gamma Di	stributed at {	5% Significan	ce Level
582				Detected	data appear	Gamma Di	stributed at {	5% Significa	nce Level		j	
583					••							
584						Gamma	Statistics					
500					k hat (MLE)	93.26			k	star (bias cor	rrected MLE)	58.37
587				Thet	a hat (MLE)	1.052			Theta	star (bias cor	rrected MLE)	1.681
588				n	u hat (MLE)	1492				nu star (bia	as corrected)	933.9
589			MI	E Mean (bia	s corrected)	98.13				MLE Sd (bia	as corrected)	12.84
590									Approximate	Chi Square	Value (0.05)	864
591			Adjus	ted Level of	Significance	0.0195			Ad	djusted Chi S	Square Value	846.9
592												
593					As	suming Gam	ma Distribu	tion				
594	!	95% Approxi	mate Gamma	UCL (use w	hen n>=50))	106.1		95% Ad	justed Gamr	ma UCL (use	when n<50)	108.2
595												
596						Lognorma	GOF Test					
597			S	hapiro Wilk T	est Statistic	0.841		Shap	oiro Wilk Log	normal GOF	- Test	
598			5% SI	napiro Wilk C	ritical Value	0.818		Data appea	r Lognormal	at 5% Signif	icance Level	
599				Lilliefors T	est Statistic	0.235		Lil	liefors Logno	ormal GOF 1	ſest	
600			5	% Lilliefors C	ritical Value	0.313		Data appea	r Lognormal	at 5% Signif	icance Level	

	Α	В	С	D	E	F	G	Н	I	J	K	L
601					Data appear	Lognormal	at 5% Signific	ance Level				
602							Statiatica					
603				Minimum of L	agged Date		I Statistics			Maan of	logged Date	4 5 9 1
604			Λ		ogged Data	4.409					logged Data	4.301
605			ľ		ogged Data	4.707				50 01	logged Data	0.109
606					٨٥٩		rmal Distribut	ion				
607									90%	Chebyshev (109.5
608			95%	Chebyshev (I		114.6			97.5%	Chebyshev (MVUE) UCL	103.5
609			99%	Chebyshev (I		135.8			57.570	onebysnev (121.7
610						100.0						
611					Nonparame	tric Distribu	tion Free UCL	Statistics				
612				Data appear	r to follow a	Discernible	Distribution at	5% Signific	cance Level			
614								-				
615					Nonpai	rametric Dis	ribution Free	UCLs				
616				95	% CLT UCL	104.7				95% Ja	ckknife UCL	105.6
617			95%	Standard Bo	otstrap UCL	104.2				95% Boo	tstrap-t UCL	115.6
618			9	5% Hall's Bo	otstrap UCL	143.2			95% F	Percentile Bo	otstrap UCL	104.8
619			9	95% BCA Bo	otstrap UCL	106.3						
620			90% Ch	ebyshev(Mea	an, Sd) UCL	110			95% Ch	ebyshev(Me	an, Sd) UCL	115.4
621			97.5% Ch	ebyshev(Mea	an, Sd) UCL	122.9			99% Ch	ebyshev(Me	an, Sd) UCL	137.6
622												
623						Suggested	UCL to Use					
624				95% Stud	dent's-t UCL	<mark>105.6</mark>						
625												
626		Note: Sugge	stions regard	ling the selec	tion of a 95%	UCL are pr	ovided to help	the user to	select the m	lost appropria	ate 95% UCL	
627		These rec	ommendation	ns are based	upon the res	ults of the si	mulation studio	es summari	zed in Singl	n, Singh, and	laci (2002)	
628			and Singh	and Singh (2	003). Howev	er, simulatio	ns results will	not cover a	II Real World	d data sets.		
629				For add	ditional insigl	nt the user m	ay want to cor	nsult a statis	stician.			
630												
631	0.0.25											
632	Cu_0-3.5											
633						General	Statistics					
634			Total	Number of O	bservations	8	Oldlistics		Number	of Distinct C) bservations	5
635						•			Number	of Missing C	bservations	0
636					Minimum	12				g -	Mean	17.25
637					Maximum	30					Median	15
630					SD	5.898				Std. E	rror of Mean	2.085
640				Coefficient	of Variation	0.342					Skewness	1.648
641												
642			Note: Sam	ple size is sn	nall (e.g., <1	0), if data ar	e collected us	ing ISM ap	proach, you	should use		
643			guidance pr	ovided in ITF	RC Tech Reg	Guide on I	6M (ITRC, 20 ⁻	12) to comp	oute statistic	s of interest.		
644			For e	example, you	ı may want t	o use Cheby	shev UCL to	estimate EF	PC (ITRC, 2	012).		
645			Chebyshev	/ UCL can be	computed u	ising the No	nparametric a	nd All UCL	Options of	ProUCL 5.0		
646												
647						Normal (GOF Test					
648			S	hapiro Wilk T	est Statistic	0.819			Shapiro Wi	lk GOF Test		
649			5% SI	hapiro Wilk C	ritical Value	0.818		Data appe	ar Normal a	t 5% Significa	ance Level	
650				Lilliefors T	est Statistic	0.274			Lilliefors	GOF Test		

	А	В		С	D	E	F	G	Н		J	K	L
651				5	5% Lilliefors C	ritical Value	0.313		Data appe	ear Normal a	t 5% Significan	ce Level	
652						Data appe	ar Normal at	5% Signific	ance Level				
653													
654						As	suming Norr	nal Distribu	tion				
655				95% N	ormal UCL				95%	UCLs (Adju	sted for Skewr	ness)	
656					95% Stud	dent's-t UCL	21.2			95% Adjuste	d-CLT UCL (CI	hen-1995)	21.98
657										95% Modifie	ed-t UCL (John	son-1978)	21.4
658													
659							Gamma (GOF Test					
660					A-D T	est Statistic	0.508		Ander	rson-Darling	Gamma GOF	Test	
661					5% A-D C	ritical Value	0.715	Detecte	d data appea	ar Gamma Di	stributed at 5%	Significanc	e Level
662					K-S T	est Statistic	0.269		Kolmog	grov-Smirno	f Gamma GOF	Test	
663					5% K-S C	ritical Value	0.294	Detecte	d data appea	ar Gamma Di	stributed at 5%	Significanc	e Level
664					Detected	data appear	Gamma Dis	stributed at	5% Significa	nce Level			
665							-						
666							Gamma	Statistics					
667						k hat (MLE)	11.69			k :	star (bias correc	cted MLE)	7.387
668					The	a hat (MLE)	1.476			Thetas	star (bias correc	cted MLE)	2.335
669					n	u hat (MLE)	187				nu star (bias o	corrected)	118.2
670				M	LE Mean (bia	s corrected)	17.25				MLE Sd (bias	corrected)	6.347
671				۵ مالی		0:	0.0105			Approximate	Chi Square Va	alue (0.05)	94.09
672				Adju	Sted Level of	Significance	0.0195			AC	ijusted Chi Squ	lare value	88.66
673						A = -		na Diatriku	41 a.u.				
674		050/ Алля		ata Cammu			Suming Gam	ma Distribu		liveted Com		han n (EO)	22
675		95% Appr	OXIII	late Gamma	a UCL (use w	nen n>=50))	21.07		95% Ad	ijusted Gamr	na UCL (use w	nen n<50)	23
676							Lognormol	COE Toot					
677				c	Shaniro Wilk T	oct Statistic		GOF Test	Shor	oiro Wilk Loo		oct	
678				5% 9		ritical Value	0.09				at 5% Significa		
679				5785			0.010						
680				F		ritical Value	0.25		Data annea		at 5% Significa	ance Level	
681						Data annear		at 5% Signi	ficance Leve				
682							Lognorman			•			
683							Lognorma	Statistics					
684					Minimum of I	orged Data	2 485				Mean of loo	nged Data	2 804
685					Maximum of L	.ogged Data	3.401				SD of log	aged Data	0.303
686						-99						99	
687						Assu	umina Loano	rmal Distrib	oution				
000						95% H-UCL	21.91			90%	Chebyshev (M)	VUE) UCL	22.75
689				95%	Chebyshev (I	VUE) UCL	25.27			97.5%	Chebyshev (M)	, VUE) UCL	28.76
690				99%	Chebyshev (I	VUE) UCL	35.62					,	
602													
602						Nonparame	tric Distribu	tion Free U	CL Statistics				
604					Data appea	r to follow a	Discernible I	Distribution	at 5% Signifi	icance Level			
605									-				
606						Nonpai	rametric Dist	ribution Fre	e UCLs				
697					95	% CLT UCL	20.68				95% Jack	knife UCL	21.2
698				95%	Standard Bo	otstrap UCL	20.44				95% Bootst	trap-t UCL	23.99
690				ç	95% Hall's Bo	otstrap UCL	34.85			95% F	Percentile Boot	strap UCL	21
700					95% BCA Bo	otstrap UCL	21.38						
700													

	А	В	С	D	E	F	G	Н	I	J	K	L
701			90% Ch	ebyshev(Me	an, Sd) UCL	23.51			95% Ch	ebyshev(Mean	, Sd) UCL	26.34
702			97.5% Ch	ebyshev(Me	an, Sd) UCL	30.27			99% Ch	ebyshev(Mean	, Sd) UCL	38
703												
704						Suggested	UCL to Use					
705				95% Stu	dent's-t UCL	<mark>21.2</mark>						
706												
707		Note: Sugg	estions regard	ling the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropriate	95% UCL	
708		These re	commendation	ns are based	upon the res	ults of the si	mulation stud	dies summar	ized in Singh	, Singh, and la	ci (2002)	
709			and Singh	and Singh (2	2003). Howev	ver, simulatio	ons results wi	ill not cover a	all Real World	d data sets.		
710				For ad	ditional insig	ht the user m	nay want to c	onsult a stati	stician.			
711												
712												
712	Pb_0-3.5											
714												
714						General	Statistics					
716			Total	Number of C	bservations	44			Number	of Distinct Obs	servations	35
710									Number	of Missing Obs	servations	0
710					Minimum	6.2				-	Mean	98.85
718					Maximum	490					Median	61
719					SD	103.3				Std. Erro	r of Mean	15.57
720				Coefficient	of Variation	1.045					Skewness	2.134
721												
/22						Normal (GOF Test					
723			S	haniro Wilk T	est Statistic	0.73			Shaniro Wi	k GOF Test		
724			5% S	haniro Wilk C	critical Value	0.944		Data No	t Normal at 5	Significance		
725			0700		est Statistic	0.011		Data No	Lilliefors	GOF Test	20101	
726			5		ritical Value	0.232		Data No	t Normal at F	Significance		
727					Dete Not	Normal at F	5% Significar				Level	
728												
729					٨٥	suming Nor	mal Dietribut	ion				
730			95% N/		~3	suming Non		05%	LICLe (Adiu	eted for Skown	0000)	
731			35 /0 N		dont's tUCI	125		5576			1005	120.8
732				95 % Stu		125			05% Modific		1079	125.0
733									95% MOUIII		5011-1976)	125.9
734						Commo						
735					- oct Statiatia			Andor	Don Dorling		Toot	
736						0.771						-l
737				5% A-D C		0.771	D					ei
738						0.102			grov-Smirnoi		Test	-1
739				5% K-S C	ritical value	0.136			ma Distribut	ed at 5% Signifi	Icance Lev	el
740				Da	ta Not Gami	na Distributo	ed at 5% Sig	nificance Le	vei			
741												
742					<u> </u>	Gamma	Statistics					
743					k hat (MLE)	1.338			k s	star (bias correc	cted MLE)	1.262
744				Ihe	ta hat (MLE)	/3.8/			I heta s	star (bias correc	cted MLE)	/8.32
745				r	u hat (MLE)	117.8				nu star (bias o	corrected)	111.1
746			M	LE Mean (bia	s corrected)	98.85				MLE Sd (bias o	corrected)	87.99
747									Approximate	Chi Square Va	lue (0.05)	87.73
748			Adjus	sted Level of	Significance	0.0445			Ac	ljusted Chi Squ	are Value	87.03
749												
750					As	suming Gam	nma Distribut	tion				

	А	B C	D	E	F	G	Н	I	J	K	L
751		95% Approximate Gamma	a UCL (use whe	en n>=50))	125.1		95% Ad	justed Gamn	na UCL (use w	hen n<50)	126.1
752											
753					Lognorma	GOF Test					
754		S	Shapiro Wilk Te	st Statistic	0.968		Shap	oiro Wilk Log	normal GOF T	est	
755		5% S	Shapiro Wilk Cri	tical Value	0.944		Data appea	r Lognormal	at 5% Significa	ance Level	
756			Lilliefors Te	st Statistic	0.0992		Lil	liefors Logno	ormal GOF Tes	st	
757		Ę	5% Lilliefors Crit	tical Value	0.134		Data appea	r Lognormal	at 5% Significa	ance Level	
758			D	ata appear	Lognormal	at 5% Signif	icance Leve	I			
759											
760					Lognorma	I Statistics					
761			Minimum of Lo	gged Data	1.825				Mean of log	gged Data	4.175
762			Maximum of Lo	gged Data	6.194				SD of log	gged Data	0.935
763											
764				Assu	uming Logno	ormal Distrib	ution				
765			95	5% H-UCL	139.8			90% (Chebyshev (M)	VUE) UCL	147.8
766		95%	Chebyshev (M)	VUE) UCL	169.8			97.5% (Chebyshev (M)	VUE) UCL	200.2
767		99%	Chebyshev (M	VUE) UCL	260						
768											
769			N	Nonparame	etric Distribu	tion Free UC	L Statistics				
770			Data appear t	o follow a	Discernible	Distribution a	at 5% Signifi	cance Level			
771											
772				Nonpa	rametric Dis	tribution Fre	e UCLs			T	
773			95%	CLT UCL	124.5				95% Jack	knife UCL	125
774		95%	Standard Boot	strap UCL	123.6				95% Bootst	trap-t UCL	131.6
775		(95% Hall's Boot	strap UCL	131			95% F	Percentile Boot	strap UCL	124.8
776			95% BCA Boot	strap UCL	132.3						
777		90% CI	hebyshev(Mear	i, Sd) UCL	145.6			95% Ch	ebyshev(Mean	, Sd) UCL	<mark>166.7</mark>
778		97.5% Cl	hebyshev(Mear	i, Sd) UCL	196.1			99% Ch	ebyshev(Mean	, Sd) UCL	253.8
779											
780					Suggested	UCL to Use					
781			95	5% H-UCL	139.8		1	1	Г		
782											
783		Note: Suggestions regard	ding the selection	on of a 95%	UCL are pr	ovided to hel	p the user to	select the m	ost appropriate	95% UCL.	
784		I hese recommendatio	ons are based u	pon the res	ults of the si	mulation stud	dies summar	ized in Singh	i, Singh, and Ia	ici (2002)	
785		and Singr	and Singh (20)	03). Howev	er, simulatio	ons results wi	Ill not cover a	all Real World	d data sets.		
786			For addit	tional insig	nt the user m	ay want to c	onsult a stati	stician.			
787							<u> </u>				
788		Pro	OCL computes	and outpu	Its H-statisti		s for histori	cal reasons o	oniy.		
789		H-statistic often result	ts in unstable (t	both high a	nd low) valu	es of UCL95	as shown i	n examples i	n the Technica	al Guide.	
790		() 	t is therefore re	commende		ne use of H-	statistic das	ed 95% UCL	.S.		_
791	-	Use of nonparametric met	noos are preter	red to com		o tor skewed	data sets w	nich do not to	ollow a gamma	adistributio	n.
792											
793	7-025										
794	∠n_∪-3.5										
795					'	Ototiotic -					
796		Τ-1-	Number of Ob	oonvotiene	oeneral	SIGUSTICS		N I	of Distinct Ob	onvotional	7
797		ı ota		servations	Ŏ			Number		servations	/
798				Minstern	40			Number	of ivitssing Obs	servations	0
799				Maxim	40					Mean	02.5
800				waximum	97					Median	58.5

	А	В	С	D		E	F	G	Н	I	J	K	L
801				Coofficia	at of	SD Variation	18.31				Sta. E	rror of Mean	0.475
802				Соепісіе	ent of	variation	0.293					Skewness	1.013
803			Noto: Som		omoli	(0.0. <1	0) if data or			proceb you			
804					TRC	Tech Re	o, il data al		2012) to com	nute statistic	s of interest		
805			For			av want t	o use Cheby	/shev UCI	to estimate F	PC (ITRC 2	3 01 Interest.		
806			Chebyshe	v UCL can	he co	mouted	using the No	nparametr	ic and All UC	Options of I	ProUCL 5.0		
807						parea	g						
808							Normal (GOF Test					
809 910			5	Shapiro Will	Test	Statistic	0.915			Shapiro Wil	k GOF Test		
811			5% S	hapiro Wilk	Critic	cal Value	0.818		Data app	ear Normal at	5% Significa	ance Level	
812				Lilliefors	s Test	Statistic	0.239			Lilliefors	GOF Test		
813			5	5% Lilliefors	Critic	cal Value	0.313		Data app	ear Normal at	5% Significa	ance Level	
814					D	ata appe	ar Normal a	t 5% Signif	icance Level				
815													
816						As	suming Nor	mal Distrib	ution				
817			95% N	ormal UCL					95%	UCLs (Adju	sted for Skew	wness)	
818				95% S	tuden	t's-t UCL	74.77			95% Adjuste	d-CLT UCL (Chen-1995)	75.63
819										95% Modifie	ed-t UCL (Joh	nnson-1978)	75.15
820													
821							Gamma	GOF Test					
822				A-D) Test	Statistic	0.302		Ande	rson-Darling	Gamma GO	F Test	
823				5% A-D	Critic	cal Value	0.716	Detect	ed data appea	ar Gamma Di	stributed at 5	% Significan	ce Level
824				K-S	6 Test	Statistic	0.203		Kolmo	grov-Smirnof	f Gamma GO	OF Test	
825				5% K-S	Critic	cal Value	0.294	Detect	ed data appea	ar Gamma Di	stributed at 5	% Significan	ce Level
826				Detecte	ed da	ta appea	r Gamma Di	stributed a	t 5% Significa	nce Level			
827							Commo	Statiation					
828					k h			Statistics		ka	tar (bias cor	racted MLE)	9 106
829				T		$\frac{1}{1}$	/ 320			Theta c	tar (bias cor		6 864
830					nuh	at (MLE)	231			i neta s	nu star (bia		145 7
831			М	l E Mean (r	na n	orrected)	62.5				MI E Sd (bia	s corrected)	20.71
832							02.0			Approximate	Chi Square	Value (0.05)	118.8
833			Adiu	sted Level	of Sia	nificance	0.0195			Ad	liusted Chi S	quare Value	112.7
834 925			,								,	•	
836						As	suming Gam	nma Distrib	ution				
837	9	5% Approxi	mate Gamma	JUCL (use	when	n>=50))	76.65		95% Ad	ljusted Gamn	na UCL (use	when n<50)	80.83
838													
839							Lognorma	I GOF Tes	t				
840			5	Shapiro Will	Test	Statistic	0.962		Sha	piro Wilk Log	normal GOF	Test	
841			5% S	hapiro Wilk	Critic	cal Value	0.818		Data appea	ar Lognormal	at 5% Signifi	cance Level	
842				Lilliefors	s Test	Statistic	0.189		Li	liefors Logno	rmal GOF T	est	
843			5	5% Lilliefors	Critic	cal Value	0.313		Data appea	ar Lognormal	at 5% Signifi	cance Level	
844					Dat	ta appea	r Lognormal	at 5% Sigr	ificance Leve				
845													
846							Lognorma	I Statistics					
847				Minimum o	f Log	ged Data	3.689				Mean of	logged Data	4.1
848				Maximum o	f Log	ged Data	4.575				SD of	logged Data	0.279
849													
850						Ass	uming Logno	ormal Distr	bution				

	A	В	С	D	E	F	G	Н		J	K	L		
851			050/	0	95% H-UCL	//./4			80.98					
852			95%	Chebyshev (89.38			97.5% (Chebyshev (MVUE) UCL	101		
853			99%	Chebyshev (MVUE) UCL	123.9								
854	Nonnarametric Distribution Erec LICL Statistics													
855	Date oppoar to follow a Discorpible Distribution at E% Significance Level													
856				Data appea	r to follow a	Discernible	Distribution	at 5% Signif	icance Level					
857	Nonnarametric Distribution Free LICLs													
858	95% CLT UCL 73.15 95% Jackknife UCI													
859			05%	Stondard Pa		73.10		/4.//						
860			93.%	5% Hall's Bo		153.2		72 75						
861				95% BCA Bo	otstrap UCI	73.75								
862			90% Ch	ehvshev(Me	an Sd) UCI	81.93	05% Chobyohay/Maan 84 UCL							
863			97.5% Ch	ebvshev(Me	an, Sd) UCL	102.9			99% Ch	ebvshev(Me	an, Sd) UCL	126.9		
864											,,			
865	Suggested UCL to Use													
000 967	95% Student's-t UCL 74.77													
868														
869		Note: Sugge	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to he	Ip the user to	select the m	lost appropria	ate 95% UCL			
870	These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002)													
871	and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.													
872	For additional insight the user may want to consult a statistician.													
873	/3													
874	874													
875	Bapeq(0-2	.5)												
876														
877						General	Statistics							
878			Total	Number of C	Observations	6			Number	of Distinct C	Observations	6		
879								Number of Missing Observations						
880					Minimum	0.00975					Mean	0.0151		
881					Maximum	0.0265					Median	0.0132		
882				0	SD	0.00593								
883				Coefficient	of variation	0.394					Skewness	1.893		
884			Noto: Som	olo oizo io or	noll (o.g. <1	0) if data or			nroach vou	abould upo				
885			quidance pr	ovided in ITE	RC Tech Rec	u), il uata al Guide on la		$\frac{1}{12}$ to com	pute statistic	should use				
886			For e		i may want te	o use Chehy	shev UCL to	o estimate F		012)				
887			Chebyshev	UCL can be	e computed i	using the No	nparametric	and All UC	L Options of I	ProUCL 5.0				
888					, compared (lonig the rie								
889						Normal C	GOF Test							
890			S	hapiro Wilk T	Fest Statistic	0.797			Shapiro Wi	lk GOF Test				
891			5% SI	hapiro Wilk C	Critical Value	0.788		Data appear Normal at 5% Significance Level						
892				Lilliefors	Fest Statistic	0.3	Lilliefors GOF Test							
804			5	% Lilliefors C	Critical Value	0.362	Data appear Normal at 5% Significance Level							
894					Data appe	ar Normal at	5% Signific	ance Level						
898														
897					As	suming Norr	nal Distribut	tion						
898			95% No	ormal UCL				95%	UCLs (Adju	sted for Ske	wness)			
899				95% Stu	dent's-t UCL	0.0199			95% Adjuste	d-CLT UCL ((Chen-1995)	0.021		
900									95% Modifie	ed-t UCL (Joł	nnson-1978)	0.0202		
891 892 893 894 895 896 897 898 899 900			5% SI	hapiro Wilk C Lilliefors 7 % Lilliefors C prmal UCL 95% Stu	Critical Value Test Statistic Critical Value Data appe As dent's-t UCL	0.788 0.3 0.362 ar Normal at suming Norr	5% Signific	Data app Data app cance Level tion 95%	6 UCLs (Adjute 95% Modifie	t 5% Significa GOF Test t 5% Significa sted for Ske d-CLT UCL (Joh	ance Level ance Level wness) (Chen-1995) nnson-1978)			

	А		В	С		D	E		F	G	ŀ	-	I		J		К	Τ	L
901																			
902	2 Gamma GOF Test																		
903					A-D	0.492	2 Anderson-Darling Gamma GOF Test												
904	5% A-D Critical Value								0.698	Detected data appear Gamma Distributed at 5% Significan							ince	Level	
905	K-S Test Statistic							0.251		K	Colmog	grov-Smirr	noff	Gamma	GOF	Test			
906	5% K-S Critical Value							0.333	Detecte	d data	appea	ar Gamma	Dist	tributed a	t 5% :	Significa	ince	Level	
907	Detected data appear								Gamma Dis	stributed at	5% Sig	nifica	nce Level						
907																			
000	Gamma Statistics																		
010					9.613	k star (bias corrected MLE)									4.918				
011						The	ta hat (N	/LE)	0.00157	Theta star (bias corrected MLE)									0.00306
012						r	u hat (N	/LE)	115.4						nu star (t	bias c	orrected	I)	59.01
012				N	ЛLЕ	E Mean (bia	is correc	cted)	0.0151					Ν	/LE Sd (t	bias c	orrected	I)	0.00679
913												Approxima	ate (Chi Squar	e Val	ue (0.05	;)	42.35	
914				Adju	uste	ed Level of	Significa	ance	0.0122					Adju	usted Chi	Squa	are Valu	e	37.31
915																			
910	916 Assuming Gamma Distribution																		
917	95% Approximate Gamma UCI (use when p>=50)) 0.021 95% Adjusted Gamma UCI (use when p<50) (0.0238						
918						,									,			<i>′</i>	
919	Lognormal GOF Test																		
920	Shapiro Wilk Test Statistic 0.897 Shapiro Wilk Lognormal GOF Test																		
921	5% Shapiro Wilk Critical Value							0.788		Data	appea	r Lognorm	nal a	t 5% Sigr	nificar	nce Leve	el		
922	Lilliefors Test Statistic							0.234			Lil	liefors Loo	anor	mal GOF	Test	1			
923	5% Lilliefors Critical Value							0.362		Data	appea	r Lognorm	nal a	t 5% Sigr	nificar	nce Leve	 əl		
924	Data appear Loanormal at 5% Significance Level																		
925								-	-										
027	Lognormal Statistics																		
928					Μ	inimum of l	_ogged [Data	-4.63					Mean of logged Data					-4.249
929	Maximum of Logged Data						-3.63						SD	of log	ged Dat	а	0.34		
930																			
931								Assu	uming Logno	rmal Distrib	ution								
932							95% H-	UCL	0.0215				909	% C	hebyshev	/ (MV	UE) UC	L	0.0212
933				95%	S C	hebyshev (MVUE)	UCL	0.024				97.59	% C	hebyshev	/ (MV	UE) UC	L	0.028
934				99%	S C	hebyshev (MVUE)	UCL	0.0357										
935																			
936							Nonpa	rame	etric Distribut	tion Free U	CL Stat	tistics							
937					C	Data appea	r to follo	w a l	Discernible I	Distribution	at 5% :	Signifi	cance Lev	vel					
938																			
939							No	onpar	rametric Dist	ribution Fre	e UCL	s							
940						95	% CLT	UCL	0.019	95% Jackknife UC						nife UC	L	0.0199	
941	95% Standard Bootstrap UCL							0.0187	95% Bootstrap-t UCI						L	0.0268			
942	95% Hall's Bootstrap UCL							0.0397	95% Percentile Bootstrap UCL						L	0.0191			
943	95% BCA Bootstrap UCL 0.0203									+									
944				90% C	he	byshev(Me	an, Sd) '	UCL	0.0223				95% (Che	byshev(N	lean,	Sd) UC	L	0.0256
945	97.5% Chebyshev(Mean, Sd) UCL 0.0302 99% Chebyshev(Mean, Sd) UCL									L	0.0391								
946																			
947									Suggested	UCL to Use									
948						95% Stu	dent's-t	UCL	0.0199										
949																		1	
950		Note	: Sugge	stions regar	din	g the selec	tion of a	95%	UCL are pro	ovided to he	lp the ι	user to	select the	e mo	st approp	oriate	95% UC	Ľ.	

	A	В	С	D	E	F	G	Н	I	J	К	L		
951	These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002)													
952	and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.													
953	For additional insight the user may want to consult a statistician.													
954														
955	5													
956	אספפק(ט-ט.כ)													
957														
958						General	Statistics							
959	I otal Number of Observations 6 Number of Distinct Observations													
960	Number of Missing Observations													
961					Minimum	0.00975					Mean	0.0151		
962					Maximum	0.0265				-	Median	0.0132		
963					SD	0.00593				Std. E	irror of Mean	0.00242		
964				Coefficient	of Variation	0.394					Skewness	1.893		
965														
966	6 Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use													
967	guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.													
968	For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).													
969	Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0													
970														
971	Normal GOF Test													
972	Shapiro Wilk Test Statistic 0.797 Shapiro Wilk GOF Test													
973	5% Shapiro Wilk Critical Value 0.788 Data appear Normal at 5% Significance Level													
974	Lilliefors Test Statistic 0.3 Lilliefors GOF Test													
975	5% Lilliefors Critical Value 0.362 Data appear Normal at 5% Significance Level													
976	Data appear Normal at 5% Significance Level													
977	1													
978			0E9/ N		As	suming Nor	mai Distridu			atad for Ska				
979			95% 10		dent's t UCI	0.0100		(Chap 100E)	0.021					
980	95% Student's-t UCL					0.0199			95% Aujuste		(Chen-1993)	0.021		
981									90 % WOULIN		1115011-1978)	0.0202		
982						Gamma	COE Test							
983				ت م ۸	ost Statistic	0.402		Ander	eon-Darling	Gamma GC				
984				5% A D C		0.492	Dotocto	Detected data appear Gamma Distributed at 5% Signific						
985				3 % A-D C		0.098	Delecte			ff Gamma G				
986				5% K-S C	ritical Value	0.231	Detecte		r Camma Di	istributed at	5% Significan			
987				Detected	data annea	r Gamma Di	stributed at	5% Significa						
988				Delected										
989						Gamma	Statistics							
990					k hat (MLE)	9.613			k	star (bias co	rrected MLE)	4 918		
991				The	ta hat (MLE)	0.00157	K Star (bias corrected					0.00306		
992				r	u hat (MLE)	115.4		59.01						
993			M	I F Mean (hia	s corrected)	0.0151		MI F Sd (bias corrected)						
994			141			0.0101			Approximate	Chi Square	Value (0.05)	42.35		
995			Δdiug	sted evel of	Significance	0 0122			Δ	diusted Chi 9		37.31		
996			Aujue		- granounoe	0.0122						57.01		
997					۵۵	sumina Gen	nma Dietribu	ition						
998		95% Annrovi	mate Gamma		hen n>=50\\	0.021		۹5% ۵۸	iusted Gam	na UCL (use	when n<501	0 0238		
999	`			. 502 (036 W		0.021		55 /0 Au				0.0200		
1000														

	А	В	С		D	E	F	G	Н	I	J	K	L		
1001							Lognorma	I GOF Test							
1002				Shap	piro Wilk	Test Statisti	c 0.897		Shaj	oiro Wilk Lo	gnormal GC	OF Test			
1003			5%	Shap	iro Wilk (Critical Valu	e 0.788								
1004					Lilliefors	Test Statisti	c 0.234	Lilliefors Lognormal GOF Test							
1005				5% l	-illiefors (Critical Valu	e 0.362		Data appea	ir Lognorma	l at 5% Sigr	ificance Level			
1006						at 5% Signif	ficance Leve	1							
1007															
1008	Lognormal Statistics														
1009				Min	imum of	Logged Dat	a -4.63				Mean	of logged Data	-4.249		
1010				Мах	imum of	Logged Dat	a -3.63				SD	of logged Data	0.34		
1011															
1012	Assuming Lognormal Distribution														
1013						95% H-UC	L 0.0215			90%	Chebyshev	(MVUE) UCL	0.0212		
1014	95% Chebyshev (MVUE) UCL						0.024			97.5%	Chebyshev	(MVUE) UCL	0.028		
1015			99%	% Che	ebyshev (MVUE) UC	L 0.0357								
1016															
1017		Nonparametric Distribution Free UCL Statistics													
1018				Da	ita appea	r to follow a	Discernible	Distribution	at 5% Signif	icance Leve					
1019															
1020						Nonp	arametric Dis	tribution Fre	e UCLs						
1021					95	5% CLT UC	L 0.019				95%、	Jackknife UCL	0.0199		
1022			95	% Sta	andard Bo	ootstrap UC	L 0.0187				95% Bo	ootstrap-t UCL	0.0275		
1023				95%	Hall's Bo	ootstrap UC	L 0.0398			95%	Percentile E	Bootstrap UCL	0.019		
1024				95%	6 BCA Bo	ootstrap UC	L 0.0204								
1025			90% (Cheby	/shev(Me	an, Sd) UC	0.0223	95% Chebyshev(Mean, Sd) UCL							
1026			97.5% (Cheby	/shev(Me	an, Sd) UC	L 0.0302	99% Chebyshev(Mean, Sd) UCL 0.03							
1027															
1028							Suggested	UCL to Use							
1029					95% Stu	dent's-t UC	L 0.0199				-1				
1030															
1031		Note: Sugge	estions rega	rding	the selec	ction of a 95	% UCL are pr	ovided to he	Ip the user to	select the r	nost approp	riate 95% UCL	•		
1032		These rec	commendati	ions a	are based	upon the re	sults of the s	mulation stu	dies summai	rized in Sing	h, Singh, ar	nd laci (2002)			
1033			and Sing	gh an	d Singh (2	2003). How	ever, simulation	ons results w	ill not cover a	all Real Wor	ld data sets	•			
1034					For ac	lditional insi	ght the user n	nay want to c	onsult a stat	istician.					
1035															