Appendices
 Final Supplemental Environmental Impact Statement

The Public Health Service Hospital at the Presidio of San Francisco

Contents

APPENDICES

A FINANCIAL ANALYSIS OF PHSH ALTERNATIVES

B TRANSPORTATION TECHNICAL MEMORANDA
Technical Memorandum 1 - Expanded Existing Conditions
Technical Memorandum 2 - Expanded Travel Demand Assumptions
Technical Memorandum 3 - Expanded Transportation Impact
Analysis of Alternatives
Technical Memorandum 4 - Existing Year (2005) + Project
Transportation Impact Analysis of Alternatives
Technical Memorandum 5 - Sensitivity Analysis for Trip Generation and Assignment
Technical Memorandum 6 - Alternative 1 Trip Generation Variation Technical Memorandum 7 - Traffic Signal Warrant Analysis

C ENVIRONMENTAL REVIEW SUMMARY

Appendix A

Financial Analysis of PHSH Alternatives

APPENDIX A FINANCIAL ANALYSIS OF PHSH EIS ALTERNATIVES SUMMARY OF RESULTS MAY 2006					
	Requested No Action	Alternative 1	Alternative 2	Alternative 3	Alternative 4
First Stabilized Year Revenue to Trust					
Ground Rent ${ }^{(1)}$	\$0	\$570,000	\$680,000	\$601,000	\$670,700
Direct Rent ${ }^{(2)}$	784,459	1,853,764	1,899,221	1,808,618	1,356,036
Service District Charge ${ }^{(3)}$	242,393	1,304,077	1,142,459	775,850	1,016,518
Total	\$1,026,852	\$3,727,841	\$3,721,681	\$3,185,468	\$3,043,254
First Stabilized Year Revenue to Developer					
NOI after Ground Rent ${ }^{(4)}$	\$0	\$6,384,406	\$6,549,383	\$2,777,738	\$6,104,174
First Stabilized Year Project Revenue	\$1,026,852	\$10,112,247	\$10,271,064	\$5,963,206	\$9,147,428
Measure of Returns					
Developer Partner IRR	N.A.	11.7\%	9.9\%	6.3\%	10.2\%
Trust IRR	12.5\%	12.0\%	13.9\%	12.6\%	13.0\%
Weighted Average IRR	12.5\%	11.8\%	10.7\%	8.3\%	10.8\%
Sensitivity Weighted Average IRR ${ }^{(5)}$					
With Additional \$1.6M Offramp	N.A.	11.5\%	10.5\%	8.0\%	10.5\%
With Additional \$5.0M Offramp	N.A.	11.0\%	10.1\%	7.4\%	10.0\%
With Additional \$10.0M Offramp	N.A.	10.2\%	9.5\%	6.7\%	9.3\%
Income to Trust over 70 -year Term					
Total Income	\$334,986,109	\$680,301,953	\$678,170,563	\$595,604,669	\$528,940,563
Trust Investment	(8,200,000)	$(21,386,129)$	(19,458,345)	(20,117,850)	$(14,600,837)$
Total Net Income	\$326,786,109	\$658,915,825	\$658,712,218	\$575,486,819	\$514,339,726
Net Present Value ${ }^{(6)}$	\$6,322,251	\$28,267,103	\$38,009,142	\$27,966,301	\$25,212,327
Notes:					
(1) The ground rent is derived from developer units to the total units in (2) Revenue to Trust after vacancy al (3) Calculated based on $\$ 3.61$ per squ (4) Represents revenues to developer (5) Since the cost of the offramp is n Caltrans) to the worst case (which as (6) A discount rate of 8% was used for received in Alternatives 2 and 3. A d If a discount rate of 6% were used for	0 million ground r HSH complex. nce, operating exp foot times applica tner after vacancy nown for certain, we es no design excep ound rent and SDC nt rate of 10% was und rent and SDC	the PHSH complex insurance, and capi ea, increased by 3% ance, operating expe shown a range from re granted by Caltra ed in Alternatives for net cash flow of ternatives 1 and 4, th	rents in place. It is eserves. nnually. (See glossa insurance, capital best case (which a nd a midpoint case 4 while a discount t's funded project V to the Trust wou	prorated based on th definition of SDC). ves, SDC, and groun es all design except of 6% was used in grour Alternatives. $\$ 37.4 \mathrm{M}$ and $\$ 33.4$	ratio of master are granted by nd rent and SDC respectively.
Sources: CBRE Consulting 2004 and Presidio	st 2006.				5-May-06

Appendix B

Transportation Technical Memoranda

SAN FRANCISCO OFFICE

January 23, 2006
Project Number
395900

To:
 Amy Marshall, The Presidio Trust

From:
José I. Farrán, Project Manager
Nate Chanchareon, Senior Transportation Engineer
Subject: The Presidio of San Francisco
Public Health Service Hospital Site Supplemental Environmental Impact Statement
Technical Memorandum No. 1 - Expanded Existing Conditions

1. INTRODUCTION

This Technical Memorandum describes the existing transportation conditions in the vicinity of the Presidio of San Francisco's Public Health Service Hospital (PHSH) development site, which is located in the southern end of the Presidio, west of Park Presidio Boulevard, and north of Lake Street. This assessment is based in part on the Presidio Trust Management Plan - Background Transportation Report for the Final EIS, prepared by Wilbur Smith Associates (WSA) in May 2002. In addition, this information has been supplemented and updated by WSA with new traffic data collected specifically for this study. The following are the components of the transportation system that are addressed in this technical Memorandum:

- Roadway network,
- Traffic operations
- Transit services,
- Bicycle and pedestrian circulation, and
- Parking conditions.

2. ROADWAY NETWORK

The PHSH development site is located on the south side of the Presidio. Nearby roadways include Lake Street, California Street, Park Presidio Boulevard, $14^{\text {th }}$ Avenue, $15^{\text {th }}$ Avenue, Wedemeyer Street and Battery Caulfield Road. These roadways are described below.

Amy Marshall, The Presidio Trust
January 23, 2006
Page B-1.2 of B-1.12

Lake Street - Lake Street is an east-west oriented street located immediately south of the Presidio. It varies in width from approximately 50 feet between $15^{\text {th }}$ and $14^{\text {th }}$ Avenues to 62 feet between $14^{\text {th }}$ Avenue and Park Presidio Boulevard. West of $14^{\text {th }}$ Avenue, Lake Street has one travel lane and one bicycle lane each way, as well as on-street parking on both sides of the street. Between $14^{\text {th }}$ Avenue and Park Presidio Boulevard, Lake Street has one travel lane and a bicycle lane each way, an eastbound left-turn lane and an eastbound right turn lane. On-street parking is prohibited on Lake Street between $14^{\text {th }}$ Avenue and Park Presidio Boulevard. East of Park Presidio Boulevard, Lake Street has one travel lane in the eastbound direction, and a right-turn lane, a bicycle lane, a through lane and a left-turn lane in the westbound direction.

California Street - California Street is an east-west oriented street located immediately south of Lake Street. It is approximately 50 feet wide in the vicinity of the PHSH site, with one travel lane each way and on-street parking on both sides of the street. The San Francisco General Plan designates California Street as a secondary arterial and a neighborhood commercial street. East of Park Presidio Boulevard, California Street is designated as a Transit Oriented Street, while west of Park Presidio Boulevard is designated as a Secondary Transit Street.

Park Presidio Boulevard - Park Presidio Boulevard (Highway 1) is a major north-south arterial. It has three travel lanes each way with a raised median south of its intersection with Lake Street. Approximately 450 feet north of Lake Street, Park Presidio Boulevard narrows to two travel lanes each way prior to going through the MacArthur Tunnel. Highway 1 is a State-designated facility under Caltrans jurisdiction. Left-turns from Park Presidio Boulevard are prohibited at all intersections, with the exception of southbound buses at Geary Boulevard. Park Presidio Boulevard is part of San Francisco's Congestion Management Program network and it is designated in the San Francisco General Plan as a Neighborhood Network Connection Street.
$14^{\text {th }}$ Avenue $-14^{\text {th }}$ Avenue is a north-south oriented residential street, located immediately west of Park Presidio Boulevard. It is approximately 40 feet wide with one travel lane each way at its intersection with Lake Street. $14^{\text {th }}$ Avenue narrows to a width of 30 feet north of Lake Street, near the former entrance to the Presidio. The $14^{\text {th }}$ Avenue gate to the Presidio is currently closed. On-street parking is permitted on both sides of the street.
$15^{\text {th }}$ Avenue $-15^{\text {th }}$ Avenue is a north-south oriented residential street, located immediately west of $14^{\text {th }}$ Avenue. It is approximately 40 feet wide with one travel lane each way near Lake Street and California Street and narrows to approximately 35 feet near the Presidio gate. $15{ }^{\text {th }}$ Avenue has on-street parking on both sides of the street and provides access to the Presidio approximately 260 feet north of Lake Street.

Wedemeyer Street - Wedemeyer Street is generally a north-south oriented street within the Presidio that circumvents the PHSH site, connecting $14^{\text {th }}$ Avenue with Battery Caulfield Road north of the site. There is one travel lane each way and no on-street parking on Wedemeyer Street.

Amy Marshall, The Presidio Trus
January 23, 2006
Page B-1.3 of B-1.12

Battery Caulfield Road - Battery Caulfield Road is a north-south oriented street connecting Wedemeyer Street north of the PHSH site with Washington Boulevard at the West Washington residential neighborhood. It is approximately 24 feet wide with one travel lane each way. Onstreet parking is not permitted on either side of the street.

3. TRAFFIC OPERATIONS

3.1 Traffic Characteristics

The $15^{\text {th }}$ Avenue gate entrance is currently the only direct vehicular access to the PHSH site from outside the Presidio. As part of the Presidio Bus Management Plan study (September 1999), 24hour machine traffic counts were conducted at the nine Presidio gates during the second week of May (spring conditions), the first week of August (summer conditions), and the third week of November (fall conditions) in 1998. The data indicate that approximately 800 to 900 vehicles per day enter the Presidio via the $15^{\text {th }}$ Avenue gate, which represents approximately one percent of all vehicles entering or exiting the park on a weekday. A summary of the data is shown in Table 1.

Table 1
$15{ }^{\text {th }}$ Avenue Presidio Gate
Weekday Average Daily and PM Peak Hour Traffic Volumes (1998)

Season	Average Daily Traffic (vehicles)	PM Peak Hour Traffic (vehicles)	Percentage of Daily Traffic during PM Peak Hour
the			

The traffic counts at the $15^{\text {th }}$ Avenue Gate shown in Table 1 have been supplemented with turning movement counts at the intersection of $15^{\text {th }}$ Avenue/Battery Caulfield Road and Gate counts in 2001 and 2002. Weekday traffic volumes in the Presidio are primarily work-related, so they do not vary substantially by season, unlike weekend traffic, which is primarily recreational. Weekday PM peak hour traffic volumes include even more work-related trips than weekday daily traffic volumes, and therefore vary the least amount by season. As shown in Table 1 the highest traffic volumes at the $15^{\text {th }}$ Avenue gate occurred during the winter and spring seasons.

3.2 Intersection Analysis

Existing intersection operating conditions have been evaluated for weekday AM and PM peak period conditions at eight key intersections in the vicinity of the PHSH site. Because these intersections are the intersections closest to the PHSH district, these are the intersections that would most likely experience the greatest change in traffic volumes due to changes in land uses

Amy Marshall, The Presidio Trus
January 23, 2006
Page B-1.4 of B-1.12
at the PHSH site. The dispersion of traffic to several routes radiating from the PHSH district would yield a decreasing effect on individual intersections with increased distance from the PHSH district, and therefore the effect of the PHSH alternatives on intersections beyond those identified below would be minimal. The eight study intersections are:

- Lake Street $/ 17^{\text {th }}$ Avenue
- Lake Street $/ 15^{\text {th }}$ Avenue
- Lake Street $/ 14^{\text {th }}$ Avenue
- Lake Street/Park Presidio Boulevard
- Lake Street/Funston Avenue
- California Street $/ 15^{\text {th }}$ Avenue
- California Street $/ 14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

WSA conducted traffic counts at the study intersections in November 2000. New existing peakhour traffic counts have recently been provided by the Trust. These new counts were conducted during the morning and afternoon peak commute periods (7:30 to 9:30 AM and 4:30 to 6:30 PM) in October 2005. In general, the 2005 volumes show a decrease from the 2000 volumes, varying from two to six percent, with the exception at the California Street $/ 14^{\text {th }}$ Avenue, Lake Street $/ 15 \mathrm{rh}$ Avenue, and Lake Street $/ 17^{\text {th }}$ Avenue intersections, where the 2005 volumes remain the same or are slightly higher than the 2000 volumes. To represent the current operations at the study intersections, the most recent traffic counts (2005) have been used in this analysis.

The AM and PM peak hour intersection operations analysis was conducted according to the methodology described in the 2000 Highway Capacity Manual (HCM 2000) (Transportation Research Board, 2000). The HCM 2000 methodology is appropriate as it is the same methodology used by the San Francisco Planning Department (Transportation Impact Analysis Guidelines for Environmental Review, October 2002) and is also being used for the Doyle Drive study. The HCM methodology calculates the average delay experienced by a vehicle traveling through the intersection, and assigns a corresponding level of service (LOS). The levels of service range from LOS A, indicating volumes well below capacity with vehicles experiencing little or no delay, to LOS F, indicating volumes near capacity with vehicles experiencing extremely high delays. An intersection operating at LOS D or better is generally considered to be operating acceptably by the City and County of San Francisco and most other local agencies in the Bay Area, and levels of service E and F are undesirable and generally considered unacceptable. Appendix A contains the HCM 2000 LOS definitions.

For signalized intersections, the HCM 2000 methodology determines the average delay per vehicle for each lane group based on the particular movement, and traffic volume and capacity associated with that lane group. The average delay per vehicle is then aggregated for each

Amy Marshall, The Presidio Trust
January 23, 2006
Page B-1.5 of B-1.12
approach and for the intersection as a whole. A combined weighted average delay and LOS is then presented for the intersection as a whole. For unsignalized intersections, average delay and LOS operating conditions are calculated by approach (e.g., northbound) and movement (e.g., northbound left-turn). For two-way stop-controlled intersections, delay and LOS are calculated for each of the two stop-controlled approaches and operating conditions are reported for the worst approach. For all-way stop-controlled intersections, average delay per vehicle is averaged across all approaches, and operating conditions are reported for the average delay and LOS for the intersection as a whole.

It should be noted that because the PHSH EIS traffic analysis is based on the more up to date and more widely accepted HCM 2000 methodology and updated traffic counts (October 2005), the results for establishing the operating conditions shown in the PTMP EIS differ slightly from those shown in this technical memorandum. The transportation analyses conducted as part of the PTMP EIS were based on year 2000/2001 traffic counts and the 1994 HCM methodology, the generally accepted methodology at that time.

Table 2 presents the results of the intersection LOS analysis for the existing weekday AM and PM peak hour conditions (Appendix B contains the detailed calculations of the intersection LOS analysis). As shown from Table 2, all intersections are operating at LOS D or better during both the AM and PM peak hours with the exception of the intersection of California Street and $14^{\text {th }}$ Avenue, which is operating at LOS E during the PM peak period. It should be noted that the LOS and delay shown at the two-way stop controlled intersections are for the worst minor stopcontrolled approach vehicles, since traffic along the major street approaches are uncontrolled and does not experience delays.

Table 2
Intersection Levels of Service - Weekday AM and PM Peak Hours

Amy Marshall, The Presidio Trust
January 23, 2006
Page B-1.6 of B-1.12

4. TRANSIT SERVICE

Major public transit systems serving the PHSH site include the San Francisco Municipal Railway (Muni) and the Golden Gate Transit (GGT) operated by the Golden Gate Bridge, Highway and Transportation District. These services provide access to other regional carriers such as BART, AC Transit, Caltrain, SamTrans and the regional ferry system. In addition, the Presidio's internal shuttle bus service (PresidiGo) serves the park and connects to Muni and GGT buses at key transfer points.

4.1 Muni

Muni provides regular scheduled daily transit service directly to the San Francisco neighborhoods adjacent to the PHSH site with five routes (1-California, 1AX-California "A" Express, 1BX-California "B" Express, 28-19 ${ }^{\text {th }}$ Avenue, 28L-19 ${ }^{\text {th }}$ Avenue Limited). Table 3 summarizes the characteristics of Muni bus lines serving the PHSH site or its immediately adjacent neighborhoods, including route descriptions and the weekday AM and PM peak period headways.

Table 3
$\left.\begin{array}{llllll}\hline & & \text { Nearby Muni Transit Lines } & \\ \hline \begin{array}{l}\text { Route } \\ \text { Designation }\end{array} & \text { Route Type } & \text { Route Description } & \begin{array}{c}\text { Peak Period } \\ \text { Scheduled }\end{array} \\ \text { Headway (minutes) }\end{array}\right]$

Source: Muni September, 2005 Schedule
Note:
解
2. n.a. - Not applicable; Indicates that no runs are made on that route during that particular time period.

Amy Marshall, The Presidio Trus
January 23, 2006
Page B-1.7 of B-1.12

The 1-California and 1AX/1BX-California Expresses run along California Street, and are within two blocks of the $14^{\text {th }}$ Avenue and the $15^{\text {th }}$ Avenue gates. The $28-19^{\text {th }}$ Avenue and $28 \mathrm{~L}-19^{\text {th }}$ Avenue Limited travel along Park Presidio Boulevard with a stop at California Street, within three blocks of the $14^{\text {th }}$ Avenue gate; the 28L route ends at the Park Presidio/California intersection.

Recent ridership data are available at each line's maximum load point, defined as the location along the route at which the highest level of ridership typically occurs. In all instances, with the exception of the 1AX-California route, the maximum load point occurs at a substantial distance from the Presidio. Table 4 presents the maximum load points and associated current ridership for the various bus lines serving the Presidio or its adjacent neighborhoods, during the AM and PM peak commute periods. Table 4 indicates that the Muni lines serving the PHSH site are wellutilized, but still have available capacity.

4.2 Golden Gate Transit

Golden Gate Transit (GGT) operates bus lines and ferry routes between San Francisco and counties in the Golden Gate corridor of Marin and Sonoma Counties. Twenty-one of their bus lines pass through the Presidio during the AM and PM peak hours, all stopping at the Golden Gate Bridge Plaza. Only route 10 proceeds south into San Francisco via Highway 1, Park Presidio Boulevard and Geary Boulevard, with the stop nearest to the PHSH site located at the Park Presidio/California intersection

Route 10 opened for service on November 1, 2003 replacing and with the same alignment as previously served by route 50 through San Francisco. Weekday headway for route 10 is 55 to 63 minutes in the southbound direction and 25-62 minutes in the northbound direction during the morning period ($6-10 \mathrm{AM}$), and 21 to 64 in the southbound direction and 60 to 63 in the northbound direction during the afternoon period (3-7 PM). Recent peak hour ridership data was provided in September 2005 by GGT and summarized in Table 5. The data represents ridership and occupancy at the maximum loading point along the line, which is at the Golden Gate Bridge Plaza stop. Although ridership data are not available by individual bus stop, previous observations indicate that few passengers were originating or terminating their trips in the Presidio. (Wilbur Smith Associates, 2000)

Amy Marshall, The Presidio Trus
January 23, 2006
Page B-1.9 of B-1.12

Table 5
Route 10 Golden Gate Transit Bus Passenger Loads - Year 2005

Route 10 Golden Gate Transit Bus Passenger Loads - Year 2005					
Time Period	Number of Bus Trips	Number of Passengers	Peak Hour Passengers per Bus*	Capacity per Bus	Peak Hour Load Factor per Bus
AM (6-10 AM)	6				
- Northbound	60	17	39	43%	
- Southbound	4	76	24	39	62%
PM (3-7 PM)					
- Northbound	5	60	15	39	39%
- Southbound	6	90	19	39	49%
Source: Barbara Vincent, Associate Planner, GGT, September 27, 2005					
Note: *A 25 percent increase in ridership to account for higher demand during the highest peak hour was included.					

The data indicates that GGT route 10 is operating below its capacity during both the AM and PM peak commute hours. The highest peak hour load factor is 62 percent recorded in the southbound direction during the morning peak period. The average load factor in the northbound direction is slightly lower than the southbound direction, approximately 46 percent. During the afternoon peak period, the average load factor is 39 and 49 percent in the northbound and southbound directions, respectively. It should be noted that although the highest peak hour load factor is 62 percent, it is likely that some buses within the peak hours may be more crowded than others.

4.3 Presidio Internal Shuttle

Early in 2002 the Trust began implementation of an internal free-of-charge shuttle service for the Presidio (PresidiGo). The shuttle service consists of two routes (Around the Park and Downtown) that serve the entire Presidio with more than 35 stops within the park, including key transfer points to Muni and GGT buses. The service operates on 30-minute headways from 6:30 AM to 7:30 PM on weekdays and on one-hour headways from 11 AM to 6 PM on weekends, using compressed natural gas (CNG) buses.

PresidiGo Around the Park service currently serves the PHSH site with a stop at Wedemeyer Street, in front of Building 1808 (Nurses' Quarters) and the $14^{\text {th }}$ Avenue gate. PresidiGo also connects with Muni's 29-Sunset at Lincoln Boulevard, with GGT's Transbay lines at the Golden Gate Bridge Plaza, with Muni's 82X-Presidio and Wharves Express and PresidiGo Downtown service at the Transit Center in the Main Post, and with Muni's 43-Masonic on Letterman Drive. PresidiGo also stops at the Lombard Gate, one block from the terminus of Muni's 41-Union and 45 -Union/Stockton routes at Lyon/Greenwich. In October 2005, PresidiGo Downtown and Around the Park service carried 11,570 passengers.

In addition, PresidiGo provides special service for tenants and events within the Presidio. Special service must be arranged in advance and is generally paid for by the tenant or even sponsor.

Amy Marshall, The Presidio Trust
January 23, 2006
Page B-1.10 of B-1.12

5. BICYCLE AND PEDESTRIAN CONDITIONS

The Presidio does not currently have a continuous system of sidewalks, bicycle trails and bicycle lanes. Sidewalks and marked pedestrian crossings are provided sporadically throughout the Presidio. In many cases within the Presidio, pedestrians and bicyclists must mix with vehicles on the street system to move from one area to another.

Paved sidewalks are provided within the PHSH site connecting the main buildings in the area such as along the north side of Wedemeyer Street, in front of Building 1801 (the former hospital building) and Building 1808 (the former nurses' quarters). Separate pedestrian-only paths also connect the site to the nearby park entrances. Pedestrian paths are located inside the park on both sides of $15^{\text {th }}$ Avenue and on the east side of $14^{\text {th }}$ Avenue. A similar network of pedestrian paths links together the buildings on Wyman Avenue. A shared pedestrian-bicycle path also crosses under Highway 1 to connect the PHSH site to the Mountain Lake area.

A total of 67 pedestrians were counted at Battery Caulfield Road ${ }^{1}$ from 7 AM to 6 PM during a weekday in October 1999, while 157 pedestrian movements were counted the following Saturday during the same time period.

There are several bicycle routes within the Presidio, although bicycles and vehicles currently share a standard-width roadway along most of these routes. Near the PHSH site, $15^{\text {th }}$ Avenue, $25^{\text {th }}$ Avenue and El Camino del Mar are part of the designated San Francisco Citywide Bicycle Routes (Routes \#69, \#75 and \#95, respectively) that continue into the Presidio. Route 69 is a Class III facility (signed route only where bicyclists share roadway with vehicles, generally with wider travel lanes), while Routes 75 and 95 are Class II facilities (dedicated, striped bike lanes on roadway edge) outside of the Presidio that change to Class III facilities inside the park. Route 10 on Lake Street is a Class II facility between $3^{\text {rd }}$ and $28^{\text {th }}$ Avenues.

In the immediate vicinity of the PHSH site, Route 69 (Class III) follows Wedemeyer Street and Battery Caulfield Road to connect with Route 65 (Class III) at Washington Boulevard. Park Boulevard/West Pacific Avenue at the southeast corner of the site is a Class I facility (paved offstreet path separated from motor vehicle traffic) from $14^{\text {th }}$ Avenue to the Presidio Golf Course parking area on West Pacific Avenue.

A total of 45 bicyclists were counted at Battery Caulfield Road ${ }^{1}$ from 7 AM to 6 PM during a weekday in October 1999, while 241 bicyclists were counted the following Saturday during the same time period.

[^0]Amy Marshall, The Presidio Trus
January 23, 2006
Page B-1.11 of B-1.12

6. PARKING CONDITIONS

6.1 On-street Parking Outside the Park

On-street parking in the area adjacent to the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates is not metered but is mostly restricted to a two-hour maximum time limit, except for local residents displaying the appropriate sticker. Parking supply and occupancy was surveyed in October 2001 and December 2000 as part of a study to assess the potential "spillover" effects of daytime parking fees and time restrictions in the Presidio. Results are tabulated in Table 6 below, indicate that there are approximately 260 on-street parking spaces near the $14^{\text {and }} 15^{\text {a }}$ Avenue gates.

Table 6

Location	Number of Spaces Available	Occupancy		
		$\begin{gathered} \text { 6:00-8:30 } \\ \text { AM } \\ \hline \end{gathered}$	$\begin{gathered} \text { 11:00 AM- } \\ \text { 1:00 PM } \\ \hline \end{gathered}$	$\begin{gathered} \text { 3:00-5:00 } \\ \text { PM } \\ \hline \end{gathered}$
Lake St., bet. $14^{\text {th }}$ Ave. and $18^{\text {th }}$ Ave. - North side - South side	$\begin{aligned} & 38 \\ & 31 \\ & \hline \end{aligned}$	$\begin{aligned} & 89 \% \\ & 94 \% \end{aligned}$	$\begin{aligned} & 66 \% \\ & 61 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 47 \% \\ & 68 \% \\ & \hline \end{aligned}$
California St., bet. $14^{\text {th }}$ Ave. and $18^{\text {th }}$ - North side - South side	ve. $\begin{aligned} & 32 \\ & 33 \end{aligned}$	$\begin{aligned} & 97 \% \\ & 94 \% \end{aligned}$	$\begin{aligned} & 72 \% \\ & 88 \% \end{aligned}$	$\begin{aligned} & 75 \% \\ & 91 \% \end{aligned}$
$14^{\text {th }}$ Ave., bet. California St. and Pres - East side - West side	$\begin{array}{r} \text { dio gate } \\ 44 \\ 29 \\ \hline \end{array}$	$\begin{aligned} & 86 \% \\ & 79 \% \end{aligned}$	$\begin{array}{r} 70 \% \\ 66 \% \\ \hline \end{array}$	$\begin{aligned} & 36 \% \\ & 28 \% \\ & \hline \end{aligned}$
$15^{\text {th }}$ Ave., bet. California St. and Pres - North side - South side	$\begin{array}{r} \hline \text { dio gate } \\ 26 \\ 28 \\ \hline \end{array}$	$\begin{aligned} & 69 \% \\ & 79 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \% \\ & 25 \% \\ & \hline \end{aligned}$	$\begin{gathered} 23 \% \\ 0 \% \\ \hline \end{gathered}$
Total	261	87\%	60\%	47\%

Parking occupancy data shown in Table 6 for the early morning, midday and early evening time periods indicate that parking occupancy is highest early in the morning, approaching 90 percent, as residents start leaving the area to go to work. Approximately half of all on-street parking spaces are occupied during the middle of the day. The cluster of parked vehicles near the 15 th Avenue Gate suggests that the Presidio is used by some residents in the surrounding neighborhood as a convenient parking area when sufficient on-street parking is not available, and that parking occupancy during late evenings and weekends likely nears 100 percent.

Amy Marshall, The Presidio Trus
January 23, 2006
Page B-1.12 of B-1.12

6.2 Parking at the PHSH site

Parking supply and occupancy information for the PHSH site was obtained from a survey taken on a typical Tuesday in May, 1999, between 10 AM and 2 PM. Table 7 summarizes the parking supply at the PHSH site. There are 306 parking spaces at the site, 69 of which are on the street and 237 off the street at two surface parking lots. Parking occupancy data showed that parking facilities within the PHSH site were less than five percent occupied, indicating that parking usage in 1999 was extremely light and that there was substantial available parking in the area.

Table 7

Parking Supply at the PHSH Site		
Location	Type	Spaces supplied
Lower Plateau		
PHSH West Lot	Off-street	200
PHSH East Lot	Off-street	37
Bldg. 1801 - PHS Hospital	On-street	19
Bldg. 1802 - Engineering Maint.	On-street	2
Bldg. 1806 - Sr. Enlisted Quarters	On-street	6
Bldg. 1808 - Nurses' Quarters	On-street	17
Bldgs. 1818 \& 1819 -Laboratories	On-street	6
Wyman Avenue	On-street	19
Off-street		237
On-street		69
Lower Plateau Subtotal		306
Upper Plateau		
Bldg 1450	Off-street	30
Upper Plateau Subtotal Total		30
		336

Source: Wilbur Smith Associates - May 1999 data \& Presidio Trust, 2004

APPENDIX A

Level of Service	Average Control Delay (seconds per vehicle)
Signalized Intersections	≤ 10 seconds
LOS A	$>10-20$ seconds
LOS B	$>20-35$ seconds
LOS C	$>35-55$ seconds
LOS D	$>55-80$ seconds
LOS E	>80 seconds
LOS F	
Two-Way STOP and All-Way STOP Intersections	≤ 10 seconds
LOS A	$>10-15$ seconds
LOS B	$>15-25$ seconds
LOS C	$>25-35$ seconds
LOS D	$>35-50$ seconds
LOS E	>50 seconds
LOS F	

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue
2/15/2006

	\Rightarrow				\leftarrow		4	\uparrow	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			${ }^{4}$			${ }_{4}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	532	13	15	253	1	,	1	39	4	4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	578	14	16	275	1	3	1	42	4	,	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	276			592			903	898	585	941	905	276
vC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	276			592			903	898	585	941	905	276
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	92	98	98	100
cM capacity (veh/h)	1299			993			252	276	514	221	273	768
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	595	292	47	12								
Volume Left	2	16	3	4								
Volume Right	14	1	42	3								
cSH	1299	993	471	301								
Volume to Capacity	0.00	0.02	0.10	0.04								
Queue Length 95th (ft)	0	1	8	3								
Control Delay (s)	0.0	0.6	13.5	17.5								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.0	0.6	13.5	17.5								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.1									
Intersection Capacity Utilization			39.4\%		ICU Leve	of Ser	vice		A			
Analysis Period (min)			15									

2005 Existing Conditions AM	Synchro 6 Report
Wilbur Smith Associates	Page 1

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu
2/15/2006

| | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SBR

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue
2／15／2006

HCM Signalized Intersection Capacity Analysis
103．Lake Street \＆Park Presidio Boulevard
2／15／2006

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow	7	\％	\uparrow	F		个个中			$\uparrow \uparrow \uparrow$	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4941	
Flt Permitted	0.62	1.00	1.00	0.29	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1126	1756	1492	512	1756	1492		5012			4941	
Volume（vph）	192	395	28	59	157	105	0	2350	77	0	2058	295
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	196	403	29	60	160	107	0	2398	79	0	2100	301
RTOR Reduction（vph）	0	0	5	0	0	2	0	4	0	0	22	0
Lane Group Flow（vph）	196	403	24	60	160	105	0	2473	0	0	2379	0
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	371	578	491	169	578	491		2889			2848	
v／s Ratio Prot		c0．23			0.09			c0．49			0.48	
v／s Ratio Perm	0.17		0.02	0.12		0.07						
v / c Ratio	0.53	0.70	0.05	0.36	0.28	0.21		0.86			0.84	
Uniform Delay，d1	23.1	24.8	19.4	21.6	21.0	20.6		15.0			14.7	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.58			1.00	
Incremental Delay，d2	5.3	6.8	0.2	5.7	1.2	1.0		1.9			3.1	
Delay（s）	28.4	31.6	19.6	27.4	22.2	21.6		10.7			17.8	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		30.1			22.9			10.7			17.8	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			16.4		HCM Le	el of Sersin	rvice		B			
HCM Volume to Capacity ratio			0.80									
Actuated Cycle Length（s）			85.0		Sum of	ost time			8.0			
Intersection Capacity Utilization			81．2\％		ICU Lev	of Ser			D			
Analysis Period（min）			15									
c Critical Lane Group												

Critical Lane Group

2005 Existing Conditions AM	Synchro 6 Report
Wilbur Smith Associates	Page 3

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Ave.

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue
2/15/2006

	\prime	\rightarrow	\rangle	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }^{4}$			${ }^{4}$			${ }^{4}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	24	525	14	11	251	23	7	16	29	16	14	14
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	26	565	15	12	270	25	8	17	31	17	15	15
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					528							
pX, platoon unblocked	0.93						0.93	0.93		0.93	0.93	0.93
vC , conflicting volume	295			580			952	942	572	969	937	282
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	244			580			949	938	572	967	933	231
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	98			99			96	93	94	91	94	98
cM capacity (veh/h)	1245			1004			206	241	523	191	242	759
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	605	306	56	47								
Volume Left	26	12	8	17								
Volume Right	15	25	31	15								
cSH	1245	1004	334	275								
Volume to Capacity	0.02	0.01	0.17	0.17								
Queue Length 95th (ft)	2	1	15	15								
Control Delay (s)	0.6	0.5	18.0	20.8								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.6	0.5	18.0	20.8								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.4									
Intersection Capacity Utilization			49.8\%	ICU Level of Service					A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
106: California Street \& 14th Avenue
2/15/2006

	\Rightarrow	\rightarrow		\checkmark	\leftarrow	4	4	\uparrow		\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		fi			4t			${ }_{4}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	14	544	12	50	272	27	0	7	26	121	12	13
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	15	573	13	53	286	28	0	7	27	127	13	14
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					228							
pX, platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC , conflicting volume	315			585			877	1028	293	753	1021	157
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	245			585			830	988	293	701	980	81
tC , single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			95			100	97	96	55	94	99
cM capacity (veh/h)	1280			999			229	224	710	282	226	930
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	301	299	196	172	35	154						
Volume Left	15	0	53	0	0	127						
Volume Right	0	13	0	28	27	14						
cSH	1280	1700	999	1700	486	294						
Volume to Capacity	0.01	0.18	0.05	0.10	0.07	0.52						
Queue Length 95th (ft)	1	0	4	0	6	71						
Control Delay (s)	0.5	0.0	2.7	0.0	13.0	29.9						
Lane LOS	A		A		B	D						
Approach Delay (s)	0.2		1.5		13.0	29.9						
Approach LOS					B	D						
Intersection Summary												
Average Delay			4.9									
Intersection Capacity Utilization			50.4\%	ICU Level of Service					A			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis
107: California Street \& Park Presidio Boulevard
2/15/2006

Critical Lane Group

2005 Existing Conditions AM	Synchro 6 Report
Wilbur Smith Associates	Page 7

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Street
2/16/2006

	\Rightarrow				\leftarrow		4	\uparrow	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }^{4}$			¢			${ }_{4}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	279	10	25	401	4	4	1	25	7	3	2
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	297	11	27	427	4	4	1	27	7	3	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	431			307			792	790	302	815	794	429
vC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	431			307			792	790	302	815	794	429
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	96	97	99	100
cM capacity (veh/h)	1139			1265			301	317	742	282	316	630
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	310	457	32	13								
Volume Left	2	27	4	7								
Volume Right	11	4	27	2								
cSH	1139	1265	598	320								
Volume to Capacity	0.00	0.02	0.05	0.04								
Queue Length 95th (ft)	0	2	4	3								
Control Delay (s)	0.1	0.7	11.4	16.7								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.1	0.7	11.4	16.7								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.1									
Intersection Capacity Utilization			48.5\%	ICU Level of Service					A			
Analysis Period (min)			15									

2005 Existing Conditions PM	Synchro 6 Report
Wilbur Smith Associates	Page 1

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu
2/16/2006

HCM Unsignalized Intersection Capacity Analysis
102: Lake Street \& 14th Avenue
2/16/2006

					\leftarrow			\uparrow			\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			${ }^{\text {A }}$			${ }^{4}$			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	0	343	4	118	436	5	2	0	49	5	0	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	0	365	4	126	464	5	2	0	52	5	0	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					300							
pX, platoon unblocked	0.87						0.87	0.87		0.87	0.87	0.87
vC , conflicting volume	469			369			1086	1087	367	1137	1087	466
vC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	387			369			1099	1101	367	1158	1100	384
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			90			99	100	92	96	100	100
cM capacity (veh/h)	1024			1200			152	166	683	129	166	579
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	369	595	54	6								
Volume Left	0	126	2	5								
Volume Right	4	5	52	1								
cSH	1024	1200	601	148								
Volume to Capacity	0.00	0.10	0.09	0.04								
Queue Length 95th (ft)	.	9	7	3								
Control Delay (s)	0.0	2.7	11.6	30.5								
Lane LOS		A	B	D								
Approach Delay (s)	0.0	2.7	11.6	30.5								
Approach LOS			B	D								
Intersection Summary												
Average Delay			2.4									
Intersection Capacity Utilization			61.4\%	ICU Level of Service					B			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis
103: Lake Street \& Park Presidio Boulevard
2/16/2006

Critical Lane Group

2005 Existing Conditions PM	Synchro 6 Report
Wilbur Smith Associates	Page 3

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue
2/16/2006

	\prime	\rightarrow	\rangle	\checkmark		4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }^{4}$			${ }^{4}$			${ }^{4}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	19	385	7	16	389	21	8	11	30	13	15	10
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	19	393	7	16	397	21	8	11	31	13	15	10
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					524							
pX, platoon unblocked	0.88						0.88	0.88		0.88	0.88	0.88
vC , conflicting volume	418			400			893	886	396	912	879	408
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	342			400			879	871	396	900	863	330
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	98			99			96	96	95	94	94	98
cM capacity (veh/h)	1086			1170			219	250	657	208	252	633
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	419	435	50	39								
Volume Left	19	16	8	13								
Volume Right	7	21	31	10								
cSH	1086	1170	388	276								
Volume to Capacity	0.02	0.01	0.13	0.14								
Queue Length 95th (ft)	1	1	11	12								
Control Delay (s)	0.6	0.4	15.6	20.2								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.6	0.4	15.6	20.2								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utilization			38.8\%	ICU Level of Service					A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
106: California Street \& 14th Avenue
2/16/2006

	\Rightarrow				\leftarrow			\uparrow			\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4 H			fi			${ }_{4}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	15	407	6	62	418	32	2	4	30	93	23	6
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	16	442	7	67	454	35	2	4	33	101	25	7
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					224							
pX, platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
vC , conflicting volume	489			449			859	1102	224	895	1088	245
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	352			449			756	1021	224	795	1005	85
tC , single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			94			99	98	96	56	88	99
cM capacity (veh/h)	1117			1122			235	202	785	230	207	883
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	238	228	295	262	39	133						
Volume Left	16	0	67	0	2	101						
Volume Right	0	7	0	35	33	7						
cSH	1117	1700	1122	1700	541	233						
Volume to Capacity	0.01	0.13	0.06	0.15	0.07	0.57						
Queue Length 95th (ft)	1	0	5	0	6	79						
Control Delay (s)	0.7	0.0	2.4	0.0	12.2	38.9						
Lane LOS	A		A		B	E						
Approach Delay (s)	0.4		1.3		12.2	38.9						
Approach LOS					B	E						
Intersection Summary												
Average Delay			5.4									
Intersection Capacity Utilization			49.6\%	ICU Level of Service					A			
Analysis Period (min)			15									

2005 Existing Conditions PM	Synchro 6 Report
Wilbur Smith Associates 7	

HCM Signalized Intersection Capacity Analysis
107: California Street \& Park Presidio Boulevard
2/16/2006

	\prime	\rightarrow				4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		\%	个施			$\uparrow \uparrow+$			$\uparrow \uparrow \uparrow$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util. Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00			1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd. Flow (prot)	1668	3302		1668	3216			4968			4999	
Flt Permitted	0.38	1.00		0.42	1.00			1.00			1.00	
Satd. Flow (perm)	664	3302		735	3216			4968			4999	
Volume (vph)	66	433	31	153	397	125	0	2055	204	0	2248	115
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	68	446	32	158	409	129	0	2119	210	0	2318	119
RTOR Reduction (vph)	0	1	,	0	2	0	0	14	,	0	6	
Lane Group Flow (vph)	68	477	0	158	536	0	0	2315	0	0	2431	
Confl. Peds. (\#/hr)												
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	3\%	3\%	3\%	3\%	3\%	3\%
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green, G (s)	34.0	34.0		34.0	34.0			43.0			43.0	
Effective Green, g (s)	34.0	34.0		34.0	34.0			43.0			43.0	
Actuated g/C Ratio	0.40	0.40		0.40	0.40			0.51			0.51	
Clearance Time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap (vph)	266	1321		294	1286			2513			2529	
v/s Ratio Prot		0.14			0.17			0.47			c0.49	
v / s Ratio Perm	0.10			c0.22								
v/c Ratio	0.26	0.36		0.54	0.42			0.92			0.96	
Uniform Delay, d1	17.0	17.9		19.5	18.4			19.4			20.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.68	
Incremental Delay, d2	2.3	0.8		6.9	1.0			7.0			5.7	
Delay (s)	19.4	18.6		26.4	19.4			26.4			19.4	
Level of Service	B	B		C	B			C			B	
Approach Delay (s)		18.7			21.0			26.4			19.4	
Approach LOS		B			C			C			B	
Intersection Summary												
HCM Average Control Delay			22.2		HCM Leve	el of Se	rvice		C			
HCM Volume to Capacity ratioActuated Cycle Length (s)			0.77									
			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			77.4\%		CU Leve	of Ser	vice		D			
Analysis Period (min)			15									
c Critical Lane Group												

2005 Existing Conditions PM
Wilbur Smith Associates
Synchro 6 Repor

Amy Marshall, The Presidio Trust
February 22, 2006
Page B-2.2 of B-2.10
description of each alternative. Table 1 summarizes the type and intensity of the land uses for the four alternatives.

1. INTRODUCTION

This Technical Memorandum provides a description of trip generation rates, mode split, auto occupancy factors and other travel and parking demand parameters associated with the four proposed alternatives for rehabilitation and reuse of the Presidio of San Francisco's Public Health Service Hospital (PHSH) development site, as well as the "Requested No Action" alternative, which would maintain the recent uses of the project site

The number of weekday daily, AM and PM peak hour trips generated by each of the alternatives is based on the methodology used in the cumulative analysis for the PTMP EIS, which, in turn, was based on trip-generation information from standard data sources such as the San Francisco Planning Department Guidelines for Environmental Review (SF Guidelines), the State of California Department of Transportation (Caltrans), and the Institute of Transportation Engineers (ITE). Modal split and auto occupancy for each of the alternatives varies by land use type, and whether the trip is external or internal to the Presidio. All of these travel characteristics incorporate the TDM measures associated with all of the proposed alternatives. Parking demand has also been estimated for midday weekday, evening and weekend conditions, based on the methodology used in the PTMP EIS.

2. LAND USES ASSOCIATED WITH EACH PHSH ALTERNATIVE

Five alternatives are being considered for evaluation in the Draft Environmental Impact Statement for the PHSH site. These are a "Requested No Action" alternative that represents the recent uses of the project site, an alternative that represents the PTMP land use scenario analyzed in the PTMP EIS (Alternative 1), and three additional alternatives (Alternatives 2, 3, and 4), each with differences in the proposed amount and location of demolition and new replacement construction and amount of various land uses. The following paragraphs provide a summary

Table 1
Land Use Type and Intensity by Alternative

Land Use Type	PHSH Alternative				
	Requested No Action Alternative	Alternative 1: PTMP Alternative	Alternative 2: Wings Retained/Trust Revised Alternative	Alternative 3: Wings Removed Alternative	Alternative 4: Battery Caulfield Alternative
Industrial/Warehouse (gsq.ft.)	15,105	1,480	15,000	32,000	15,000
Office (gsq.ft.)	14,332	9,583	45,050	0	0
Conference (gsq.ft.)	0	10,000	0	0	0
Recreation (gsq.ft.)	0	0	0	0	5,400
Cultural/Education (gsq.ft.)	0	153,214	1,700	0	0
Day Care (gsq.ft.)	37,708	37,708	4,750	10,000	9,600
Residential (d.u.)	0	185-210	230	230	114
Senior Residential (d.u.)	0	0	0	0	155
Total occupied building area (gsq.ft.)	67,145	400,000	400,000	275,000	362,000

Source:

Notes:
sqq.ft. $=$ gross square feet, d.u. $=$ dwelling units
Requested No Action Alternative- This alternative would maintain the recent uses for the project Requested No Action Alternative- This alternative would maintain the recent uses for the project
site. No building demolition or replacement construction would occur, and therefore the existing total building area of 400,000 gsq.ft., would be maintained; however, only 67,145 gsq.ft. of the existing building area would be occupied and utilized. The number of parking spaces in the west lot would be reduced concurrently with the remediation activities on the lower plateau to provide a total parking supply of 276 spaces, including 246 spaces on the lower plateau and 30 spaces on the upper plateau.

Alternative 1: PTMP Alternative - This alternative would rehabilitate buildings within the PHSH district to accommodate residential and educational uses. No building demolition or replacement construction would occur, and therefore the existing total building area of 400,000 gsq.ft., would be maintained. The historic concentration of development would be retained on the lower plateau (i.e., the PHSH complex), and the three-acre Battery Caulfield site, on the northern end of the district on the upper plateau, would continue to be used in the short term as a maintenance/corporation yard for Trust operations. The historic portion of Building 1801 and its non-historic additions (including the seven-story end "wings" and large one-story "connector" in front of the original main entry) would be rehabilitated for residential use (approximately 150 dwelling units and 52 dorm rooms units) together with the historic housing on Wyman Terrace (approximately 11 units). Other ancillary buildings in the district would be rehabilitated for mainly educational and some supporting uses. According to the Final Plan Alternative described in the PTMP, this alternative was proposed to have a parking supply of 708 spaces. However, the more site-specific analysis reflected in the Supplemental Draft EIS for the PHSH district

Amy Marshall, The Presidio Trus
February 22, 2006
Page B-2.3 of B-2.10
indicates that the parking supply could be reduced considerably from this level to 537 spaces, including 505 on the lower plateau and 32 on the upper plateau.

Alternative 2: Wings Retained/Trust Revised Alternative - This alternative would rehabilitate historic buildings within the PHSH district, and would concentrate and primarily locate development on the lower plateau for residential use (up to 217 residential units) and reuse buildings on the upper plateau for residential (up to 13 units) and other uses. Both the historic portion and non-historic wings of Building 1801 would be rehabilitated. Non-historic buildings and other non-historic portions of Building 1801 would be removed and replaced with an equivalent amount of compatible infill construction at locations on the lower plateau to maintain the existing total building area of 400,000 gsq.ft. No new buildings would be constructed on the Battery Caulfield site, which would remain as a Trust maintenance/corporation yard. This alternative proposes a total of 452 parking spaces, 123 of which would be underground or under buildings to increase the amount of landscaped open space, leaving 308 surface parking spaces on the lower plateau and 21 surface parking spaces on the upper plateau.

Alternative 3: Wings Removed Alternative - This alternative would rehabilitate historic buildings within the PHSH district, remove the non-historic wings of Building 1801, and provide no replacement construction at Battery Caulfield or elsewhere within the district. Total square footage of building area in the district would decrease to about $275,000 \mathrm{gsq} . \mathrm{ft}$. Buildings would be rehabilitated for residential use (230 units total). The Battery Caulfield site would remain in the short term as a Trust maintenance/corporation yard, and outlying buildings would continue to serve as Trust maintenance facilities. This alternative proposes a supply of 330 parking spaces.

Alternative 4: Battery Caulfield Alternative - This alternative would rehabilitate historic buildings within the PHSH district, remove the non-historic wings and provide for replacement construction within the Battery Caulfield site for primarily residential uses. Several non-historic buildings would be removed and replaced with an equivalent amount of compatible new residential construction (up to 192 residential units) within the lower plateau and within Battery Caulfield (about 77 units) for a total of 269 residential units, 155 of which would be senior/assisted living units. Total square footage of building area in the district would decrease to about 362,000 gsq.ft. This alternative proposes a supply of 267 parking spaces.

3. TRIP GENERATION

In order to estimate the number of person trips that would be generated by each alternative, trip generation rates were developed as explained below for the different land use types (office, retail, residential, etc.) and applied to each quantity. A trip generation rate expresses the number of person trips that would be generated by a unit of given land use type. Person trips for each alternative were calculated for weekday daily, AM peak hour and PM peak hour conditions.

Trip generation rates by land use type were estimated based on information obtained from sources that are widely used and accepted as industry standards, including the San Francisco Transportation Impact Analysis Guidelines for Environmental Review, and the Institute of Transportation Engineers Trip Generation Manual-Sixth Edition. The Caltrans’ 15th Progress Report on Trip Ends Generation Research Counts and the San Diego Traffic Generators Manual

Amy Marshall, The Presidio Trus
February 22, 2006
Page B-2.4 of B-2.10
were also consulted. The resulting person trip generation rates shown in Table 2 were developed to estimate the number of trips that were representative of the land uses expected in the PHSH site.

Based on the Presidio Trust's live/work model, it is expected that many of the employed residents living in the Presidio would also work within the Presidio. The resulting balance of employment and residential land uses within the Presidio in 2020 creates the opportunity for individuals that live in the Presidio to also work within the Presidio, indicating that some of the trips would both originate and terminate in the Presidio. So that these internal trips could be evaluated differently than trips to and from other parts of the City or Bay Area, the total number of person trips generated by the proposed land uses in each alternative was separated into external and internal trips. The mix of land uses expected within the Presidio in 2020 would also create the opportunity for "linked" trips. "Linked" trips are trips that are made as intermediate stops on the way from an origin to a primary trip destination. For example, a Presidio resident who stops at a café on the trip from home to work would be a linked trip. The fact that some trips within the Presidio would be linked yields fewer trips than would occur otherwise.

Table 2

Trip Generation Rates by Land Use									
	Land Use Type								
Time Period	Industrial/ Warehouse (1)	Office (1)	Conference (1)	Recreation (1)	Cultural/ Eduational (1)	Day Care (1)	Residential (2)	Senior Residential	
Daily	6	15	8.5	45	40	57	10	5	
Inbound	50%	50%	50%	50%	50%	50%	50%	50%	
Outbound	50%	50%	50%	50%	50%	50%	50%	50%	
AM Peak Hour	0.60	2.25	0.85	2.48	2.00	9.11	0.90	0.20	
Inbound	80%	90%	80%	60%	80%	53%	20%	20%	
Outbound	20%	10%	20%	40%	20%	47%	80%	80%	
PM Peak Hour	0.90	1.88	0.85	4.50	5.2	10.25	1.05	0.25	
Inbound	20%	15%	30%	50%	50%	47%	70%	70%	
Outbound	80%	85%	70%	50%	50%	53%	30%	30%	

Source: Wilbur Smith Associates - January 2006.
Notes:
(1) Number of person trips per 1,000 gross square feet
(2) Number of person trips per dwelling unit
(2) Number of person trips per dwelling unit

Table 3 presents the internal/external split by alternative. Each land use type was assumed to have a different internal/external split, and the figures in Table 3 represent the weighted average of these different internal/external splits for the various types of land uses making up each alternative. Approximately 6 to 13 percent of the trips generated or attracted to the PHSH site were assumed to begin and end within the Presidio, depending of the alternative. Persons employed within the Presidio could walk, bike or ride the internal shuttle service to destinations within the Presidio. Because internal trips are more likely to be made by transit, walking or bicycling than external trips, the separation of the two types of trips allowed for the application of different mode splits.

Amy Marshall, The Presidio Trust
February 22, 2006
Page B-2.5 of B-2.10

Table 3

Internal, External and Linked Person Trip Percentages by Alternative					
	PHSH Alternative				
	Requested No Action Alternative	Alternative 1: PTMP Alternative	Alternative 2: Wings Retained/Trust Revised Alternative	Alternative 3: Wings Removed Alternative	Alternative 4: Battery Caulfield Alternative
	94%	87%	93%	94%	88%
	6%	13%	7%	6%	12%
	51%	68%	79%	85%	79%
Source: Wilbur Smith Associates - January 2006	7%	3%	2%	4%	

4. MODE SPLIT

PHSH site-generated person trips were assigned to travel modes in order to estimate the number of auto, transit, and walk/bicycle trips. Mode split information was obtained from the PTMP EIS, Presidio employee and resident surveys, and the minimum performance standards of the Transportation Demand Management Program

The mode split obtained for the different alternatives assumes implementation of Travel Demand Management (TDM) measures associated with each alternative that would be phased in as more and more people work and live in the Presidio. Implementation of a TDM program would improve transit, pedestrian and bicycle conditions and would thereby reduce auto usage to Presidio destinations. The TDM program to be implemented as part of the Final Plan Alternative of the PTMP EIS would include the following:

- Mandatory participation and commitment to trip-reduction requirements by all nonresidential tenants
- A clean-fuel shuttle bus serving the entire Presidio with direct connections to Muni and GGT routes;
- On-site sale of transit passes
- Transit and ridesharing information disseminated on kiosks within the Park, the Presidio Trust's website, and employee orientation programs
- Mandatory event-specific TDM programs for all special events

Periodic monitoring of traffic volumes and mode choice among Presidio residents and employees;

Amy Marshall, The Presidio Trus
February 22, 2006
Page B-2.6 of B-2.10

- Express bus service to regional transit connections (i.e., BART and the Transbay Terminal)
- Secure bicycle parking; and
- Parking Management Program including:
- A constrained supply of parking spaces within the Presidio; and
- A parking regulation and fee program.

The TDM program consists of components that can be implemented to meet or exceed the intended traffic reductions. Expected reductions were used in calculating the potential impact of future vehicular traffic in the park and surrounding areas. The TDM traffic reductions used in the transportation analyses reflect the Trust's minimum performance standards. Since traffic reductions are likely to exceed what has been incorporated here, the traffic forecasts can be considered somewhat conservative.

Table 4 presents the projected daily, AM peak hour and PM peak hour travel demand estimates by mode for typical weekday conditions for the five PHSH site alternatives being analyzed for transportation impacts. Auto person trips refer to person trips either as a driver or passenger in a private vehicle. To determine the number of vehicle trips generated by the number of auto person trips, average vehicle occupancy was used. The assumed vehicle occupancy factor varies by land use. The chosen vehicle occupancy factors were based on the PTMP EIS, which in turn are based on Citywide Travel Behavior Survey (CTBS) travel data published by the San Francisco Planning Department. Therefore, the vehicle occupancy factors are consistent with the vehicle occupancy factors used in the San Francisco Planning Department's environmental analyses. Daily and peak hour travel demand vary by alternative, depending on the land use elements contained in the alternatives and the intensity of use. Detailed travel demand calculations by alternative are provided in Appendix A.

As shown in Table 4, the number of weekday daily person-trips would range from a low of about 2,505 for the Battery Caulfield Alternative (Alternative 4) to a high of approximately 9,197 for the PTMP Alternative (Alternative 1); vehicle trips would follow a similar pattern. In general, approximately eight to ten percent of the daily trips generated by Alternatives 1 through 4 occur during the AM peak hour, and eleven to fourteen percent occur during the PM peak hour. For the Requested No Action Alternative, approximately sixteen percent of the daily trips would occur during the AM peak hour, and approximately seventeen percent occur during the PM peak hour. The primary reason for the difference in peak hour trips for the Requested No Action Alternative versus Alternatives 1 through 4 is that the existing cultural/educational uses of the site tend to generate higher AM and PM peak hour trips; while the proposed residential uses generate high AM peak hour trips, but have a more dispersed PM trip generation rate (the PM peak hour trips occur over a longer peak period, therefore the PM peak hour trip generation is not as concentrated).

Amy Marshall, The Presidio Trust
February 22, 2006
Page B-2.7 of B-2.10

Table 4

Estimated Trip Generation ${ }^{1}$ by Mode of Travel and by Alternative
Weekday Daily, AM and PM Peak Hour

Time Period	PHSH Alternative				
	Requested No Action Alternative	Alternative 1: PTMP Alternative	Alternative 2: Wings Retained/Trust Revised Alternative	Alternative 3: Wings Removed Alternative	Alternative 4: Battery Caulfield Alternative
Daily					
Person-Trips ${ }^{2}$					
Auto	1,869	6,190	2,087	1,962	1,683
Transit	265	1,524	558	484	417
Other ${ }^{3}$	179	1,483	541	452	404
Total	2,313	9,197	3,186	2,898	2,504
Vehicle-Trips ${ }^{4}$	1,296	4,286	1,725	1,542	1,295
AM Peak Hour					
Person-Trips ${ }^{2}$					
Auto	295	542	224	209	159
Transit	41	114	58	48	34
Other ${ }^{3}$	27	103	56	43	31
Total	363	759	338	300	224
Vehicle-Trips ${ }^{4}$	203	377	187	161	119
PM Peak Hour					
Person-Trips ${ }^{2}$					
Auto	328	901	246	245	189
Transit	45	212	64	57	42
Other ${ }^{3}$	30	203	61	52	38
Total	403	1,316	371	354	269
Vehicle-Trips ${ }^{4}$	225	623	202	189	142

Source: Wilbur Smith Associates - January 2006.
Notes:
Includes total number (internal plus external) inbound and outbound trip
Person-trips refer to trips made by all modes
Other includes walk, bicycle and other modes
Vehicle trips are calculated by dividing the auto person trips by the average number of persons per vehicle
for each individual land use and then added together for each alternative
The transportation mode split, which is the percentage of total trips that would occur via a private vehicle, transit, or as a bicycle-or pedestrian, for each alternative reflects implementation of improvements to encourage transit, pedestrian and bicycle modes and discourage single occupant vehicle travel. The mode split differs for each land use type as well as for external and internal trips; thus, the overall modal split represents the composite of that for all the land uses, and since each alternative has a different mix of land uses, the overall mode split would vary by

Amy Marshall, The Presidio Trust
February 22, 2006
Page B-2.8 of B-2.10
alternative. Similarly, the average vehicle occupancy (number of person per vehicles) varies by land use type and for external and internal trips, and therefore would also vary by alternative. Table 5 summarizes the modal split percentages and average vehicle occupancies for each of the five PHSH site alternatives.

Table 5
Mode Choice and Vehicle Occupancy Characteristics by Alternative
Weekday Daily Total Trips

	Weekday Daily Total Trips				
Person Trip Type	Requested No Action Alternative	Alternative 1: PTMP Alternative	Alternative 2: Wings Retained/Trust Revised Alternative	Alternative 3: Wings Removed Alternative	Alternative 4: Battery Caulfield Alternative
Mode Choice					
Percentages	81%	67%	65%	67%	67%
Auto	11%	17%	18%	17%	17%
Transit	8%	16%	17%	16%	16%
Other 1	100%	100%	100%	100%	100%
Total 2					

Occupancy
Notes:

1. Other includes walk, bicycle and other modes
2. Total may not add up to 100% due to rounding

Average number of passengers per vehicle
As shown in Table 5, the modal split for the Requested No Action Alternative would be approximately 81 percent by auto, 11 percent by transit use, and 8 percent by walking and bicycle; while the PTMP alternative modal split would be approximately 67 percent by auto, 17 percent by transit use, and 16 percent by walking and bicycle. For the other three alternatives, the modal split would be approximately 65 to 67 percent by auto, 17 to 18 percent by transit use, and between 16 to 17 percent by walking and bicycle. The average number of occupants per vehicle would be between 1.2 and 1.4 for all alternatives.

5. TRIP DISTRIBUTION

The geographic distribution of employee, visitor and resident trips to the PHSH site was based on data gathered as part of the PTMP EIS transportation analyses, which in turn was based on a survey of Presidio employees, the San Francisco Guidelines for Environmental Review, and results from the San Francisco County Transportation Authority travel demand model. These data sources were used to develop a geographic distribution pattern that reflects distribution patterns for a project in the same general area of San Francisco, but is also consistent with distribution patterns of Presidio employees. With the exception of the Presidio survey data, these

Amy Marshall, The Presidio Trus
February 22, 2006
Page B-2.9 of B-2.10
sources are widely used for projects throughout San Francisco. The PHSH generated trips were distributed to San Francisco, the East Bay, the North Bay, and the South Bay. Table 6 presents project trip distribution. The trips to and from San Francisco were further separated into four quadrants of the City, or Superdistricts as described in the Citywide Travel Behavior Survey Based on the trip distribution, external vehicle trips were assigned to the local street network, and external transit trips were assigned to the appropriate transit routes.

Table 6

Project Trip Distribution

Origin/Destination	Percent Trip Distribution (In \& Out)	
	AM	PM
Superdistrict 1	11%	11%
Superdistrict 2	27%	27%
Superdistrict 3	23%	23%
Superdistrict 4	19%	19%
East Bay	5%	5%
North Bay	10%	10%
South Bay	5%	5%
Total	100%	100%
Source: Wilbur Smith Associates - January 2006		

6. PARKING DEMAND

Parking demand for the five land use alternatives has been estimated for the midday weekday, evening and weekend conditions, based on the methodology used in the PTMP EIS. Parking demand consists of both long-term demand (i.e., employee and resident parking) and short-term demand (i.e. visitor parking). Consistent with the methodology outlined in the San Francisco Planning Department's Transportation Impact Analysis Guidelines for Environmental Review (October 2002), long-term parking for non-residential land uses was estimated by determining the number of employees for each land use and applying the average mode split and vehicle occupancy from the trip generation estimates for both external and internal trips. Each employee vehicle trip was assumed to require one space per day. A long-term rate of 1.13 to 1.32 spaces per dwelling unit was used for standard residential units (depending on the mix of studios, onebedroom, two-bedroom, and three-bedroom units included in each alternative), and a rate of 0.27 spaces per dwelling unit was used for all senior housing, based on information in the San Francisco Planning Department's Transportation Impact Analysis Guidelines for Environmental Review (October 2002) and the Institute of Transportation Engineers' Parking Generation Manual, Second Edition.

Like the methodology used for long-term parking, the methodology for estimating short-term parking demand is also consistent with the methodology outlined in the San Francisco Planning Department's Transportation Impact Analysis Guidelines for Environmental Review (October 2002). Short-term parking was estimated based on the total daily visitor trips and the average

Amy Marshall, The Presidio Trust
February 22, 2006
Page B-2.10 of B-2.10
turnover rate. A short-term parking turnover rate of six vehicles per space per day was applied to turnover rate. A short-term parking turnover rate of six vehicles per space per day was applied to
industrial/warehousing and office uses, a rate of ten vehicles per space per day was used for cultural/educational uses and a rate of three vehicles per space per day was used for conference uses. Table 7 presents the estimated weekday midday and evening and weekend parking demand for all alternatives. Detailed parking demand calculations by alternative are provided in Appendix B.

Table 7
Parking Demand (spaces) by Time of Day and by Alternative

Time Period	PHSH Alternative				
	Requested No Action Alternative	Alternative 1: PTMP Alternative	Alternative 2: Wings Retained/Trust Revised Alternative	Alternative 3: Wings Removed Alternative	Alternative 4: Battery Caulfield Alternative
	431	286	196	141	
	59	411	318	296	215
	492	327	302	225	

The Requested No Action Alternative would generate the lowest overall parking demand, followed by the Battery Caulfield Alternative (Alternative 4), the Wings Removed Alternative (Alternative 3) and by the Wings Retained/Trust Revised Alternative (Alternative 2). The PTMP Alternative (Alternative 1) would generate the highest parking demand.

APPENDIX A
TRAVEL DEMAND BY ALTERNATIVE

trip generation and modal split for area bof the presiolo of san francisco

	Industrial Warehouse	Office	Retail	Lodging	Conference	Recreation	Day Care	$\underbrace{\text { and }}_{\substack{\text { Std. } \\ \text { Residential }}}$	Sr. Residential	total
Weekday Daily										
${ }^{\text {Auto Person TTips }}$	${ }_{26}^{52}$	${ }_{60}^{121}$	${ }_{0}^{0}$	$\stackrel{0}{\circ}$	\bigcirc	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1,697	\bigcirc	$\stackrel{0}{\circ}$	$\underset{934}{1.869}$
Outbound	26									
${ }_{\substack{\text { Transit Person Tips } \\ \text { Inound }}}$	$\stackrel{15}{7}$	35 17	${ }_{0}^{0}$	\bigcirc	\bigcirc	\bigcirc	215 107	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{132}^{265}$
Outbound	7	17	0	0	0	0	107	0	0	
Bike/Ped/Other Person TTips	15	${ }^{36}$	0	0	0	0	129	0	0	179
Inbound	8	18	0	0	0	0	${ }_{64}^{64}$	\bigcirc	\bigcirc	${ }_{90}^{90}$
Outbound	8	18	0	0	0	0	64	0	0	
Total Person Trips	${ }_{41}^{82}$	${ }_{96}^{191}$	0	\bigcirc	\bigcirc	\bigcirc	2,040	\%	${ }_{0}^{\circ}$	$\underset{\substack{2,1,13 \\ 1,156}}{ }$
	${ }_{41}^{41}$	${ }_{96}^{96}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\xrightarrow{1,020}$	\bigcirc	\bigcirc	${ }_{\text {1,156 }}$
Total Venicle Trips	${ }^{48}$	${ }^{117}$	0	0	0	0	1,131	0	0	1,296
linbuund	${ }_{24}^{24}$	59 59	\bigcirc	\bigcirc	\bigcirc	\bigcirc	566	\bigcirc	\bigcirc	${ }_{648}^{648}$
Weekday AM Peak Hour										
Auto Person Trips	5	18	0	0	0	0	271	0	0	295
mombend	${ }_{1}^{4}$	16	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{1}^{148}$	\bigcirc	\bigcirc	164 130
Transit Person Tipips	1	5	0							
	1	${ }_{1}^{5}$	\bigcirc	$\stackrel{0}{0}$	0	0	18 16	0	:	${ }_{17}^{24}$
Bike/Ped/Other Person TTips	${ }_{1}$	5	0	0	0	0	${ }^{21}$	0	0	${ }^{27}$
		${ }^{5}$		0	0	0	11	0	0	17
Total Person Trips	${ }_{7}^{8}$	29	0	0	0	0	${ }_{3}^{326}$	0	0	${ }_{305}^{363}$
${ }_{\substack{\text { Inbound } \\ \text { Outbound }}}$	${ }_{2}^{7}$	${ }^{26}$	0	\bigcirc	\bigcirc	\bigcirc	173 173	\bigcirc	\bigcirc	205 158
Total Vehicle Trips	5	18					181			
Inbound Outbound	${ }_{1}^{4}$	16 2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{85}^{96}$	\bigcirc	\bigcirc	${ }_{1}^{116}$
Weekday PM Peak Hour										
	${ }^{8}$	${ }_{2}^{15}$	0	0	0	0	${ }^{305}$	0	0	${ }^{328}$
${ }^{\text {nnound }}$ Outbund	${ }_{6}$	${ }_{13}$	\bigcirc	\bigcirc	${ }_{0}$	\bigcirc	${ }_{162}^{144}$	\bigcirc	\bigcirc	${ }_{181}^{187}$
Transit Person Tips		4								
	${ }_{2}$	1	\bigcirc	\bigcirc	0	0	18 20	0	0	19 26
Bike/Ped/Other Person Tips										
	0	1	0	\bigcirc	\bigcirc	\bigcirc	${ }_{12}^{11}$	\bigcirc	0	${ }_{18}^{12}$
Total Person Trips							367	0	0	403
Inbound ${ }_{\text {Intbound }}$	2	${ }_{20}^{4}$	\bigcirc	\bigcirc	:	\bigcirc	173 195	:	\bigcirc	179 225
Total Vehicle Trips										
Inbound Outbound	${ }_{6}$	$\stackrel{2}{12}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	96 108	\bigcirc	\bigcirc	99 126

-	Industrial	Office	Retail	Lodging	Conference	Recreation	Day Care	$\underset{\substack{\text { Std. } \\ \text { Residential }}}{\text { S }}$	${ }_{\text {Residential }}^{\text {Sr }}$	Total
	47	109	0	0	0	0	${ }^{1,643}$	0	0	1,799
Intinbund	${ }^{24}$	54	0	0	0	:	${ }_{821}^{821}$	0	0	${ }_{899}^{899}$
Transit Person Tips	13	30								
Inbound	7	15	\bigcirc	0	\bigcirc	0	97	\bigcirc	0	118
Outbound	7	15	0	0	0	0	97	0	0	118
BikelPed/Other Person Trips	${ }_{6}^{12}$	${ }_{14}^{29}$	0	0	0	0	${ }_{48}^{97}$	0	0	${ }^{137}$
${ }_{\text {l }}^{\text {Inbuund }}$ Outbound	${ }_{6}^{6}$	${ }_{14}^{14}$	\bigcirc	:	\bigcirc	:	${ }_{48}^{48}$	\bigcirc	0	${ }_{69}^{69}$
Total Person Trips	${ }^{73}$	168	0				1,933			
	${ }_{36}^{36}$	${ }_{84}^{84}$	\bigcirc	:	\bigcirc	\bigcirc	${ }_{966}^{966}$	\bigcirc	\bigcirc	1,086 1,086
Total Vehicle Trips										
Inbound	${ }_{22}$	53	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{548}$	\bigcirc	0	${ }_{622}$
Oubound	22	${ }_{5}$	0							
${ }^{\text {Weekray AM Peak Hour }}$										
${ }_{\text {a }}^{\text {Anto Oerson Trips }}$	${ }_{4}^{5}$	${ }_{15}^{16}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{139}^{263}$	\%	\bigcirc	${ }_{158}^{284}$
Outbound	1		0	0	0	0	124	0		
Transit Person Trips	1		0	0						
	1	${ }_{0}^{4}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{15}^{16}$:	\bigcirc	${ }_{15}^{22}$
Bike/Ped/Other Person Tips										
nnbound Outbound	1	${ }_{0}^{4}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{7}^{8}$	\bigcirc	\bigcirc	${ }_{8}^{13}$
Total Pers			0	0	0					
${ }_{\text {l }}^{\text {Inbound }}$ Outbound	${ }_{1}^{6}$	${ }^{23}$:	0	\bigcirc	0	164 145 1	0	0	192 149
Total Vehicle Trips	4	16	0	0	0		175			
Inbound	3	14	0	0	0	0	${ }_{82}^{93}$	0	0	${ }_{85}^{111}$
Outbound	1									
Weekday PM Peak Hour Auto Person Tips										
	1	${ }_{2}^{14}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{0}$	${ }_{139}^{296}$	\bigcirc	\bigcirc	${ }_{142}^{316}$
Outbound	6	12	0	0	0	0	157	0	0	174
Trasit Person TTips	${ }_{0}^{2}$	${ }_{1}^{4}$	0	\bigcirc	0	\bigcirc	${ }_{16}^{35}$	\bigcirc	\bigcirc	${ }_{17}^{41}$
Outbound	2	3	0	0	0	0	${ }_{18}$	0	0	23
Bike/Ped/Other Person Tips										
Inbound Outbound	${ }_{1}$	1	:	\bigcirc	\bigcirc	\bigcirc	${ }_{9}^{8}$	\bigcirc	\bigcirc	9
Total Person Trips										
	${ }_{9}^{2}$	18	\bigcirc	\bigcirc	\bigcirc	\bigcirc	${ }_{184}^{164}$	\bigcirc	\bigcirc	$\begin{aligned} & 169 \\ & 161 \end{aligned}$
Total Venicicle Trips										
Inbound	1	${ }^{2}$	0	0	\bigcirc	0	${ }_{1}^{93}$	0	0	96
Oubound										

TRIP GENERATION AND MODAL SPLLT FOR AREA B OF THE PRESIDIO OF SAN FRANCISCO
OHSH EA ALTERNATVE ONLY (Revised Trip Gen

	Industrial	Office	Retail	Lodging	Conference	Recreation	Cultural	$\underbrace{\substack{\text { Stial }}}_{\text {std. }}$	Day Care	Total
Weekday Daily Auto Person Trips										
Auto Person Trips Inbound	${ }_{3}^{5}$	${ }_{81}^{81}$	$\stackrel{0}{\circ}$	\bigcirc	${ }_{23}^{47}$	\bigcirc	${ }_{\substack{3,793 \\ 1,74}}$	${ }_{434}^{868}$	(1,697 ${ }_{848}$	${ }_{\substack{6,190 \\ 3,095}}$
Outbound										
${ }_{\text {T }}^{\text {Trasit Person Tips }}$ Thound	1	-123	\%	\bigcirc	${ }^{14}$	${ }_{0}^{0}$	(1,005	${ }_{133}^{266}$	215 107	${ }_{\substack{1,524 \\ 762}}$
Outbound	1	12	0	0	7	0	503	${ }_{133}$		
Bikefedother Person Trips	1	${ }^{24}$	0	0	14	0	1,017	297	129	${ }^{1,483}$
Inbound	1	${ }_{12}^{12}$	\bigcirc	\bigcirc	7	\bigcirc	509 509	149 149	64 64	741 741
								1,431		
	${ }_{4}^{8}$	${ }_{64}^{168}$	-	-	${ }_{37}$	\bigcirc	$\underbrace{}_{\substack{\text { j,758 } \\ \text { 2,758 }}}$	${ }_{716}$	$\xrightarrow{2,0020} 1$	${ }_{4,599}^{9,197}$
Outbound	4	64	0	0	37	0	${ }_{\text {2,758 }}$	716	1,020	4,599
Total Venicle Trips		78					2,329	706	${ }^{1,131}$	4,286
	${ }_{2}$	${ }_{39}^{39}$	\bigcirc	:	${ }_{19}^{19}$	\%	¢1,164 1,164	${ }_{3}^{353}$	${ }_{566}^{566}$	${ }_{2}^{2,143}$
Outbound										
Weekday AM Peak Hour										
Auto Person Trips	1	${ }_{11}^{12}$	0	0	5	0	175	${ }^{78}$	271	542
${ }_{\text {In }}^{\substack{\text { Inbund } \\ \text { Outbund }}}$	\bigcirc	11	$\stackrel{0}{0}$	\bigcirc	${ }_{1}^{4}$	\bigcirc	140 35	16 62	144 128	314 227
Transit Person Tips							50		${ }^{34}$	
Inbound l	\bigcirc	${ }_{0}$	\bigcirc	\bigcirc	1	!	40 10	${ }_{19}^{5}$	${ }_{16}^{18}$	${ }_{46}^{68}$
Bike/Ped/Other Person TTips				0	,		51	27	21	
${ }_{\text {In }}^{\text {Inbund }}$ Outbund	:	${ }_{0}^{3}$:	:	1	\bigcirc	${ }_{10}^{41}$	5 21	11	${ }_{42}^{61}$
Total Person Trips	1	19	0	0	7	0	276	${ }^{129}$	326	758
Inbound	1	17	0	0	6	0	${ }^{221}$	26	173	443
Outbound	0	2	0	0	1	0	55	103	153	315
Total Vehicle Trips	0						${ }^{116}$	${ }^{64}$	${ }^{181}$	
	\bigcirc	11	\bigcirc	\bigcirc	${ }_{1}^{3}$	\bigcirc	${ }_{23}^{93}$	${ }_{51}^{13}$	${ }_{85}^{96}$	216 161
Weekday PM Peak Hour										
${ }_{\text {ate }}^{\text {Auto Person T Tips }}$	1	${ }_{2}^{10}$	0		${ }_{1}$	0	${ }_{225}^{427}$	${ }^{126}$	${ }^{305}$	901
	1	${ }_{9}$	\bigcirc	\bigcirc	3	\bigcirc	${ }_{227}^{227}$	${ }_{38}^{88}$	${ }_{162}^{144}$	${ }_{439}^{462}$
Transit Person Trips										
Inbound	\bigcirc	${ }_{2}$	0	\bigcirc	1	\bigcirc	${ }_{65}^{65}$	${ }_{12}^{27}$	${ }_{20}^{18}$	111
							${ }_{66}^{132}$	${ }_{30}^{43}$	23 11	203 108
Outbound	0	3	0	0	1	\bigcirc	${ }_{66} 6$	13	12	95
Total Person Trips	1	16	0	0		0	717	208	367	1,316
${ }^{\text {anb }}$ Outbound	${ }_{1}^{1}$	${ }_{14}^{2}$	\bigcirc	\%	$\stackrel{2}{5}$:	${ }_{359}^{359}$	145 62	${ }_{195}^{173}$	${ }_{635}^{681}$
Outbund										
Total Venicle Trips		10								
lin	${ }_{1}$	${ }_{8}^{1}$	\bigcirc	\bigcirc	1	\bigcirc	${ }_{151}^{151}$	72 31	96 108	${ }_{301}^{321}$

rip generation and modal splt for area bof the presido of san francisco

	$\begin{gathered} \text { Industrial } \\ \text { Warehouse } \end{gathered}$	Office	Retail	Lodging	Con	Recreation	Cultural	$\underbrace{\substack{\text { Stidential }}}_{\text {Std. }}$	Day Care	Total
Weekday Daily										
Auto Person Trips	${ }^{5}$	${ }^{73}$	0		${ }^{41}$		${ }^{3,187}$	${ }^{660}$	1,643	
Inbound	${ }_{2}$	36 36	\bigcirc	\bigcirc	${ }_{21}^{21}$	\bigcirc	+1,593 $\begin{aligned} & 1,593\end{aligned}$	330 330	${ }_{821}^{821}$	2,804
Transit Person Tips										
	1	${ }_{10}^{20}$	${ }_{0}^{0}$	${ }_{0}$	${ }_{6}^{11}$	\bigcirc	${ }_{441}^{883}$	${ }_{91}^{183}$	${ }_{97}^{193}$	1,292
Outbound	1	10	0	0	6	0	${ }_{441}$	91	97	${ }_{646}$
	1	19	0	0	11	0	833	173	97	1,134
Inbound $\begin{aligned} & \text { lithend } \\ & \text { Outbund }\end{aligned}$	1	10	0	0	${ }_{5}^{5}$	0	${ }_{417} 4$	${ }_{86}^{86}$	${ }_{48}^{48}$	${ }_{567}^{567}$
Outbound	1	10	0							
Total Person Trips	7	${ }_{5}^{112}$					4,903	1,016	1,933	
, mbound	${ }_{4}^{4}$	${ }_{56}^{56}$	\bigcirc	\bigcirc	${ }_{32}^{32}$	\bigcirc	2,451	508 508	${ }_{966}^{966}$	$\xrightarrow{4,017} 4$
Total Vehicle Tips										
Inbound			。	0		-		268	${ }_{548}$	1,932
Outbound	2	${ }_{35}$	\bigcirc	\bigcirc	16	\bigcirc	${ }_{\text {1,062 }}$	${ }_{268}^{268}$	(${ }_{\text {ckis }}^{548}$	-1,932
Weekday AM Peak Hour										
	0	11	0	0	4	0	159	59	263	
Inbound	0	10	0	0	${ }^{3}$	0	${ }_{32}^{127}$	${ }^{12}$	${ }_{13}^{139}$	${ }_{292}^{292}$
	\bigcirc	3_{3}^{3}	0	0	1	\bigcirc	${ }_{35}^{44}$	[16	31 16	${ }_{59}^{96}$
Outbound	0	\bigcirc	0	0	\bigcirc	0	9	13	15	${ }_{37}$
Bike/Ped/Other Person Trips	0	3	0				42		15	
	0	${ }^{3}$	-	0	1	0	${ }^{33}$	${ }^{3}$	${ }^{8}$	48
Outbound	0	0	0	0	0	0	8			29
Total Person Trips	1	17	0	0			245	${ }^{91}$	${ }^{309}$	
Inbound	1	15	0	0	5	\%	${ }^{196}$	${ }_{73}^{18}$	164 1145	${ }_{231}^{399}$
Outbound	0	2	0	0	1	0	49	${ }^{73}$	145	271
Total Venicle TTips	0	${ }_{11}^{11}$			3		106 85			344 200
	\bigcirc	1	\bigcirc	\bigcirc	1	\bigcirc	${ }_{21}^{85}$	${ }_{39}^{10}$	${ }_{82}^{93}$	${ }_{144}^{200}$
Weekday PM Peak Hour										
Auto Intoundon Inips	${ }^{1}$	${ }_{1}$			${ }_{1}^{4}$		${ }_{207}^{414}$	${ }_{67}^{96}$	${ }_{139}^{296}$	${ }_{416}^{820}$
Outbound	1	8	0	0	3	0	207	29	157	404
Transit Person Trips	0	${ }^{3}$	0	0		0	115	${ }_{19}^{27}$	${ }_{36}^{35}$	${ }_{93}^{180}$
	\bigcirc	${ }_{2}$	\bigcirc	\bigcirc	1	\bigcirc	${ }_{57}^{57}$	19	${ }_{18}^{16}$	${ }_{87}^{93}$
Bike/Ped/OHer Person TTips										
Inbound	\bigcirc	${ }_{2}$	\bigcirc	\bigcirc	${ }_{1}$	\bigcirc	${ }_{54}^{54}$	${ }_{8}^{18}$	${ }_{9}^{8}$	${ }_{74}^{81}$
Total Person Trips							637	147		
	0	2	0	0	2	0	319	103	164	${ }^{590}$
Outbound	1	12	0	0	4	0	319	44	184	${ }_{564}$
Total Vehicle Trips	1	9	0	0	${ }^{3}$	0	${ }^{276}$	\% $\begin{aligned} & 78 \\ & 54\end{aligned}$	197	564 288
${ }^{\text {nobund }}$ Ooutbund	1	8	\bigcirc	0		\bigcirc	${ }_{138}^{178}$	${ }_{23}^{54}$	104	${ }_{276}^{228}$

TRIP GENERATION AND MODAL SPIIT FOR AREA B OF THE PRESIDIO OF SAN FRANCISCO
PHSH EA ALTERNATVE 2 ONLY - REVISED JAN 172006

	$\begin{gathered} \hline \begin{array}{c} \text { Industrial } \\ \text { Warehouse } \end{array} \\ \hline \end{gathered}$	Office	$\begin{gathered} \begin{array}{c} \text { Cultural } \\ \text { Education } \end{array} \\ \hline \end{gathered}$	Recreation	Day Care	$\begin{gathered} \text { Std. } \\ \text { Residential } \end{gathered}$	$\begin{gathered} \mathrm{Sr} . \\ \text { Residential } \\ \hline \end{gathered}$	Total
Weekday Daily								
Auto Person Trips	51	380	39	0	214	1,403	0	2,087
Inbound	${ }^{26}$	190	19	0	107	702	0	1,043
Outbound	26	190	19	0	107	702	0	1,043
Transit Person Trips	15	110	11	0	27	396	0	558
Inbound	7	55	6	0	14	198	0	279
Outbound	7	55	6	0	14	198	0	279
Bike/Ped/Other Person Trips	15	112	11	0	16	386	0	541
Inbound	7	56	6	0	8	193	0	270
Outbound	7	56	6	0	8	193	0	270
Total Person Trips	81	601	61	0	257	2,185	0	3,186
Inbound	41	301	31	0	128	1,093	0	1,593
Outbound	41	301	31	0	128	1,093	0	1,593
Total Vehicle Trips	48	369	26	0	142	1,141	0	1,725
Inbound	24	184	13	0	71	570	0	863
Outbound	24	184	13	0	71	570	0	863
Weekday AM Peak Hour								
Auto Person Trips	5	57	2	0	34	126	0	224
Inbound	4	51	2	0	18	25	0	100
Outbound	1	6	0	0	16	101	0	124
Transit Person Trips	1	16	1	0	4	36	0	58
Inbound	1	15	0	0	2	7	0	26
Outbound	0	2	0	0	2	28	0	33
Bike/Ped/Other Person Trips	1	17	1	0	3	35	0	56
Inbound	1	15	0	0	1	7	0	25
Outbound	0	2	0	0	1	28	0	31
Total Person Trips	8	90	3	0	41	197	0	339
Inbound	${ }_{6}$	81	${ }_{1}$	-	${ }^{22}$	39	0	151
Outbound	2	9	1	0	19	157	0	188
Total Vehicle Trips	5	55	1	0	23	103	0	187
Innound	4	${ }_{6}^{50}$	1	0	${ }_{11}^{12}$	21	0	${ }^{87}$
Outbound	1	6	0	0	11	82	0	100
Weekday PM Peak Hour								
Auto Person Trips			5	0	38	147	0	
Inbound	2	7	3	0	18	103	0	132
Outbound	6	40	3	0	20	44	0	114
Transit Person Trips	2	14	1	0	5	42	0	64
Inbound	0	2	1	0	2	29	0	35
Outbound	2	12	1	0	3	12	0	29
Bike/Ped/Other Person Trips	2	14	1	0	3	41	0	61
Inbound	0	2	1	0	1	${ }^{28}$	0	${ }^{33}$
Outbound	2	12	1	0	2	12	0	28
Total Person Trips	12	75	8	0	46	229	0	371
Inbound	2	11	4	0	22	161	0	200
Outbound	10	64	4	0	25	69	0	171
Total Vehicle Trips	7	46	3	0	26	120	0	202
Inbound	1	7	${ }^{2}$	0	12	84	0	106
Outbound	6	39	2	0	14	36	0	96

TRIP GENERATION AND MODAL SPLIT FOR AREA B OF THE PRESIDIO OF SAN FRANCISCO

	$\begin{aligned} & \text { Industrial } \\ & \text { Warehouse } \end{aligned}$	Office	$\begin{aligned} & \text { Cultural } \\ & \text { Education } \end{aligned}$	Recreation	Day Care	$\begin{gathered} \text { Std. } \\ \text { Residential } \\ \hline \end{gathered}$	$\begin{gathered} \text { Sr. } \\ \text { Residential } \\ \hline \end{gathered}$	Total
Weekday Daily								
Auto Person Trips	47	343	35	0	207	1，346	0	1，977
Inbound	${ }^{23}$	171	18	0	${ }^{103}$	${ }^{673}$	0	989
Outbound	23	171	18	0	103	673	0	989
Transit Person Trips	13	95	10	0	24	373	0	515
Inbound	6	47	5	0	12	186	0	257
Outbound	6	47	5	0	12	186	0	257
Bike／Ped／Other Person Trips	12	90	9	0	12	352	0	475
Inbound	6	45	5	0	6	176	0	238
Outbound	6	45	5	0	6	176	0	238
Total Person Trips	72	527	54	0	243	2，070	0	2，967
Inbound	36	264	27	0	122	1，035	0	1，483
Outbound	36	264	27	0	122	1，035	0	1，483
Total Vehicle Trips	43	333	24	0	138	1，094	0	1，631
Inbound	22	166	12	0	69	547	0	816
Outbound	22	166	12	0	69	547	0	816
Weekday AM Peak Hour								
Auto Person Trips	5	51	2	0	${ }^{33}$	121	0	212
Inbound	4	46	1	0	18	24	0	93
Outbound	1	5	0	0	16	97	0	119
Transit Person Trips	1	14	0	0	4	34	0	53
Inbound	1	13	0	0	$\stackrel{2}{2}$	7	0	${ }^{23}$
Outbound	0	1	0	0	2	27	0	30
Bike／Ped／Other Person Trips	1	13	0	0	2	32	0	49
Inbound	1	12	0	0	1	6	0	21
Outbound	0	1	0	0	1	25	0	28
Total Person Trips	7	79	3	0	39	186	0	314
Inbound	6	71	2	0	21	37	0	137
Outbound	1	8	1	0	18	149	0	177
Total Vehicle Trips	4	50	1	0	22	98	0	176
Inbound	3	45	1	0	12	20	0	81
Outbound	1	5	0	0	10	79	0	95
Weekday PM Peak Hour								
Auto Person Trips	7	${ }^{43}$	5	0	37	141	0	${ }_{127}^{233}$
Inbound	1	6	2	0	18	99	0	127
Outbound	6	36	2	0	20	42	0	106
Transit Person Trips	2	12	1	0	4	39	0	59
Inbound	0	2	1	0	${ }^{2}$	27	0	32
Outbound	2	10	1	0	2	12	0	26
Bike／Ped／Other Person Trips	2	11	1	0	2	37	0	53
Inbound	0	2	1	0	1	26	0	30
Outbound	1	10	1	0	1	11	0	24
Total Person Trips	11			0	44	217	0	345
Inbound	2	10	4	0	21	152	0	188
Outbound	9	56	4	0	23	65	0	157
Total Vehicle Trips	7	42	3	0	25	115	0	191
Inbound	1	6	2	0	12	80	0	101
Outbound	5	35	2	0	13	34	0	90

$000 \cdot 9$		0000	0000	082	00001	0000	0000	0000	000 z¢	KıISupul asn $^{\text {pue7 }}$
	ן！！uəp！səy	$\underset{\substack{(\operatorname{sis} 6 x)\\}}{(1)}$		Ieṇuәpisay			$(\% s \cdot x)$ әэนәృəృuoว	แม	asnouavem	ヨd＜l эsn anvol

产		\％ัำํํํ ํ		
		\％ั玉ำ		\％̊\％\％\％
嵩		\％\％\％ํ ํ．		\％̊\％ำ \％
		\％ัํํํ ํํ ®．	ถั่ำกำ	\％̊ํํ \％
		\％ั玉ำ		ํㅜㅇํํํํํ ㄲ
$\left\|\begin{array}{l} \stackrel{\circ}{\mathrm{g}} \\ \stackrel{\rightharpoonup}{\mathrm{a}} \end{array}\right\|$		\％ัำํํ ®．		\％ํํํํํ 으․
		\％ั玉ำ		\％ํํํ \％
		\％2ํํํ ํ \％	ถัถัํํํํํ ํ	\％̊\％\％\％
$\stackrel{\circ}{\text { ¢ }}$	幺ัสัํ	\％ั玉ำ	ถัจัจํํํํ	ร̊\％̊ํ \％
		\％ั玉̊ํ	ถัํำกำ	

TRIP GENERATION AND MODAL SPLIT FOR AREA B OF THE PRESIDIO OF SAN FRANCISCO

	Industrial Warehouse	Office	Conference	Recreation	Day Care	$\begin{gathered} \text { Std. } \\ \text { Residential } \end{gathered}$	$\begin{gathered} \mathrm{Sr} . \\ \text { Residential } \end{gathered}$	Total
Weekday Daily								
Auto Person Trips	109	0	0	0	450	1,403	0	1,962
Inbound	55	0	0	0	225	702	0	981
Outbound	55	0	0	0	225	702	0	981
Transit Person Trips	31	0	0	0	57	396	0	484
Inbound	16	0	0	0	28	198	0	242
Outbound	16	0	0	0	28	198	0	242
Bike/Ped/Other Person Trips	32	0	0	0	34	386	0	452
Inbound	16	0	0	0	17	193	0	226
Outbound	16	0	0	0	17	193	0	226
Total Person Trips	173	0	0	0	541	2,185	0	2,899
Inbound	86	0	0	0	271	1,093	0	1,449
Outbound	86	0	0	0	271	1,093	0	1,449
Total Vehicle Trips	101	0	0	0	300	1,141	0	1,542
Inbound	51	0	0	0	150	570	0	771
Outbound	51	0	0	0	150	570	0	771
Weekday AM Peak Hour								
Auto Person Trips	11	0	0	0	72	126	0	209
Inbound	9	0	0	0	38	25	0	72
Outbound	2	0	0	0	34	101	0	137
Transit Person Trips	3	0	0	0	9	36	0	48
Inbound	3	0	0	0	5	7	0	14
Outbound	1	0	0	0	4	28	0	33
Bike/Ped/Other Person Trips	3	0	0	0	5	35	0	43
Inbound	3	0	0	0	3	7	0	12
Outbound	1	0	0	0	3	28	0	31
Total Person Trips	17	0	0	0	87	197	0	300
Inbound	14	0	0	0	46	39	0	99
Outbound	3	0	0	0	41	157	0	201
Total Vehicle Trips	10	0	0	0	48	103	0	161
Inbound	8	0	0	0	${ }^{25}$	21	0	54
Outbound	2	0	0	0	23	82	0	107
Weekday PM Peak Hour								
Auto Person Trips	16				81	147		245
Inbound	3	0	0	0	38	103	0	144
Outbound	13	0	0	0	43	44	0	100
Transit Person Trips	5	0	0	0	10	42	0	57
Inbound	1	0	0	0	5	29	0	35
Outbound	4	0	0	0	5	12	0	22
Bik/Ped/Other Person Trips	5	0	0	0	6	41	0	52
Inbound	1	0	0	0	3	${ }^{28}$	0	${ }^{32}$
Outbound	4	0	0	0	3	12	0	19
Total Person Trips	26	0	0	0	97	229	0	353
Inbound	21	0	0	0	46 52	${ }_{69} 61$	0	${ }_{141}^{212}$
Outbound	21	0	0	0	52	69	0	141
Total Vehicle Trips	15			0	54	120	0	189
Inbound	3	0	0	0	${ }^{25}$	84	0	112
Outbound	12	0	0	0	29	36	0	77

TRIP GENERATION AND MODAL SPLIT FOR AREA B OF THE PRESIDIO OF SAN FRANCISCO PHSH EA ALTERNATIVE 3 ONLY

	Industrial Warehouse	Office	Conference	Recreation	Day Care	$\begin{gathered} \text { Std. } \\ \text { Residential } \\ \hline \end{gathered}$	Sr. Residential	Total
Weekday Daily								
Auto Person Trips	100	0	0	0	436	1,346	0	1,881
Inbound	50	0	0	0	218	673	0	941
Outbound	50	0	0	0	218	673	0	941
Transit Person Trips	28	0	0	0	51	373	0	452
Inbound	14	0	0	0	26	186	0	226
Outbound	14	0	0	0	26	186	0	226
Bike/Ped/Other Person Trips	26	0	0	0	26	352	0	404
Inbound	13	0	0	0	13	176	0	202
Outbound	13	0	0	0	13	176	0	202
Total Person Trips	154	0	0	0	513	2,070	0	2,736
Inbound	77	0	0	0	256	1,035	0	1,368
Outbound	77	0	0	0	256	1,035	0	1,368
Total Vehicle Trips	92	0	0	0	290	1,094	0	1,477
Inbound	46	0	0	0	145	547	0	
Outbound	46	0	0	0	145	547	0	738
Weekday AM Peak Hour								
Auto Person Trips	10	0	0	0	70	121	0	201
Inbound	8	0	0	0	37	24	0	69
Outbound	2	0	0	0	33	97	0	132
Transit Person Trips	3	0	0	0	8	34	0	44
Inbound	2	0	0	0	4	7	0	13
Outbound	1	0	0	0	4	27	0	31
Bike/Ped/Other Person Trips	3	0	0	0	4	32	0	38
Inbound	2	0	0	0	2	6	0	11
Outbound	1	0	0	0	2	25	0	28
Total Person Trips	15	0	0	0	82	186	0	284
Inbound	12	0	0	0	43	37	0	93
Outbound	3	0	0	0	39	149	0	191
Total Vehicle Trips	9	0	0	0	46	98	0	
Inbound	7	0	0	0	25	20	0	52
Outbound	2	0	0	0	22	79	0	102
Weekday PM Peak Hour								
Auto Person Trips	15	0		0	78	141	0	235
Inbound	3	0	0	0	37	99	0	139
Outbound	12	0	0	0	42	42	0	96
Transit Person Trips	4	0	0	0	9	39	0	52
Inbound	1	0	0	0	4	27	0	33
Outbound	3	0	0	0	5	12	0	20
Bike/Ped/Other Person Trips	4	0	0	0	5	37	0	45
Inbound	1	0	0	0	2	26	0	29
Outbound	3	0	0	0	2	11	0	17
Total Person Trips	23	0		0	92	217	0	333
Inbound	5	0	0	0	43	152	0	200
Outbound	18	0	0	0	49	65	0	133
Total Vehicle Trips	14	0	0	0	52	115	0	181
Inbound	3	0	0	0	25	80	0	108
Outbound	11	0	0	0	28	34	0	73

tRIP generation and modal split for area b of the presidio of san francisco PHSH EA ALTERNATVE 4 ONL

	Industrial Warehouse	Office	Conference	Recreation	Day Care	$\begin{gathered} \text { Std. } \\ \text { Residential } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Sr} . \\ \text { Residential } \\ \hline \end{gathered}$	Total
Weekday Daily								
Auto Person Trips	51	0	0	109	${ }^{432}$	695	395	1,683
Innound	26	0	0	55	${ }_{216} 216$	348 348	198	${ }_{842} 8$
Outbound	26	0	0	55	216	348	198	842
Transit Person Trips	15	0	0	34	55	196	118	417
Inbound	7	0	0	17	27	98	59	209
Outbound	7	0	0	17	27	98	59	209
Bike/Ped/Other Person Trips	15	0	0	39	${ }^{33}$	192	126	404
Inbound	7	0	0	19	16	96	63	202
Outbound	7	0	0	19	16	96	63	202
Total Person Trips	81	0	0	182	519	1,083	639	2,505
Inbound	41	0	0	91	260	542	320	1,253
Outbound	41	0	0	91	260	542	320	1,253
Total Vehicle Trips	48	0	0	73	288	565	321	1,295
Inbound	24	0	0	36	144	283	161	648
Outbound	24	0	0	36	144	283	161	648
Weekday AM Peak Hour								
Inbound	4	0	0	4	37	13	3	60
Outbound	1	0	0	2	32	50	13	99
Transit Person Trips	1	0	0	${ }^{2}$	9	18	5	34
Inbound	1	0	0	1	5	4	1	11
Outbound	0	0	0	1	4	14	4	23
Bike/Ped/Other Person Trips	1	0	0	2	5	17	5	31
Inbound	1	0	0	1	3	3	1	10
Outbound	0	0	0	1	2	14	4	21
Total Person Trips	8	0	0	10	83	97	26	224
Inbound	6	0	0	6	44	19	5	81
Outbound	2	0	0	4	39	78	20	143
Total Vehicle Trips	5	0	0	4	46	51	13	119
Inbound	4	0	0	${ }^{2}$	24	10	3	43
Outbound	1	0	0	2	22	41	10	75
Weekday PM Peak Hour								
Auto Person Trips	8	0	0	${ }_{5}^{11}$	${ }_{37}^{78}$	${ }_{51}^{73}$	20	189
Inbound Outbound	${ }^{2}$	0	0	5	37	51	14	108
Outbound	6	0	0	5	41	22	6	81
Transit Person Trips	2	0	0	3	10	21	6	42
Inbound	0	0	0	2	5	14	4	25
Outbound	2	0	0	2	5	6	2	17
Bike/Ped/Other Person Trips	2	0	0	4	6	20	6	38
Inbound	0	0	0	${ }_{2}$	3	14	4	24
Outbound	2	0	0	2	3	6	2	15
Total Person Trips	12	0	0	18	93	114	32	270
Inbound	2	0	0	9	44	80	22	157
Outbound	10	0	0	9	50	34	10	112
Total Vehicle Trips	7	0	0	7	52	59	16	142
Inbound	1	0	0	4	24	${ }^{42}$	11	82
Outbound	6	0	0	4	27	18	5	59

TRIP generation and modal split for area b of the presidio of san francisco

	Industrial Warehouse	Office	Conference	Recreation	Day Care	Std. Residentia	Sr. Residenti Residential	Total
Weekday Daily								
Auto Person Trips	47	0	0	79	418	667	327	1,538
Inbound	23	0	0	39	209	333	164	769
Outbound	${ }^{23}$	0	0	39	209	333	164	769
Transit Person Trips	13	0	0	22	49	185	91	359
Inbound	6	0	0	11	${ }^{25}$	92	45	180
Outbound	6	0	0	11	25	92	45	180
Bike/Ped/Other Person Trips	12	0	0	21	25	174	86	318
Inbound	6	0	0	10	12	87	43	159
Outbound	6	0	0	10	12	87	43	159
Total Person Trips	72	0	0	122	492	1,026	504	2,215
Inbound	36	0	0	61	246	513	252	1,108
Outbound	36	0	0	61	246	513	252	1,108
Total Venicle Trips	43	0	0	53	279	542	266	1,183
Inbound	22	0	0	26	139	271	133	592
Outbound	22	0	0	26	139	271	133	592
Weekday AM Peak Hour								
Inbound	4	0	0	3	35	12	3	56
Outbound	1	0	0	2	31	48	10	93
Transit Person Trips	1	0	0	1	8	17	4	31
Inbound	1	0	0	1	4	3	1	10
Outbound	0	0	0	0	4	13	3	21
Bike/Ped/Other Person Trips	1	0	0	1	4	16	3	25
Inbound	1	0	0	1	${ }^{2}$	3	1	8
Outbound	0	0	0	0	2	13	3	18
Total Person Trips	7	0	0	7	79	92	20	205
Inbound	6	0	0	4	42	18	4	74
Outbound	1	0	0	3	37	74	16	131
Total Vehicle Trips	4	0	0	3	45	49	11	111
Inbound	3	0	0	${ }_{2}$	${ }^{24}$	10	${ }^{2}$	${ }_{71} 1$
Outbound	1	0	0	1	21	39	9	71
Weekday PM Peak Hour								
Auto Person Trips	7	0	0	8	75	70	16	177
Inbound	1	0	0	4	35	49	11	101
Outbound	6	0	0	4	40	21	5	75
Transit Person Trips	2	0	0	2	9	19	5	37
Inbound	0	0	0	1	4	14	3	22
Outbound	2	0	0	1	5	6	1	15
Biike/Ped/Other Person Trips	2	0	0	2	4	18	4	31
Inbound	0	0	0	1	2	13	3	19
Outbound	1	0	0	1	2	5	1	12
Total Person Trips	11	0	0	12	89	108	25	244
Inbound	2	0	0	6	42	75	18	143
Outbound	9	0	0	6	47	32	8	102
Total Vehicle Trips						57	13	
Inbound	1	0	0	3	24	40	,	77
Outbound	5	0	0	3	27	17	4	56

APPENDIX B
PARKING DEMAND BY ALTERNATIVE

			Γ_{0}

SAN FRANCISCO OFFICE

April 19, 2006
Project Number:
395900
To:
Amy Marshall, The Presidio Trust
From: José I. Farrán, Project Manager
Nate Chanchareon, Senior Transportation Enginee
Subject: The Presidio of San Francisco
Public Health Service Hospital Site Supplemental Environmental Impact Statement
Technical Memorandum No. 3 - Expanded Transportation Impact Analysis of Alternatives

1. INTRODUCTION

This Technical Memorandum estimates and describes the potential impacts parameter associated with the Requested No Action Alternative and Alternatives 1, 2, 3 and 4 for rehabilitation and reuse of the Presidio of San Francisco's Public Health Service Hospital (PHSH) development site. This Technical Memorandum estimates the impact of each land use alternative with respect to

- Traffic levels in and adjacent to the Presidio,
- Traffic at adjacent intersections,
- On/Off-site pedestrian and bicycle facilities,
- Public transportation
- Parking, and
- Cumulative impacts.

2. TRAFFIC OPERATIONS

2.1 Future Highway Network

Currently, the $15^{\text {th }}$ Avenue Gate is open to vehicular and pedestrian traffic while the $14^{\text {th }}$ Avenue Gate is open only to pedestrians. This roadway configuration is assumed to be maintained for the Requested No Action Alternative. Although this configuration functions adequately with the existing level of traffic, future occupancy of the PHSH and other Presidio buildings is expected to warrant improved access and circulation. The NPS 1994 General Management Plan Amendment for the Presidio recognized such access needs and recommended reopening the $14^{\text {th }}$

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.2 of B-3.47

Avenue Gate to vehicular traffic and operating the $14^{\text {th }}$ Avenue and $15^{\text {th }}$ Avenue Gates as a oneway couplet with the $14^{\text {th }}$ Avenue Gate accommodating northbound traffic entering the Presidio and the $15^{\text {th }}$ Avenue Gate accommodating southbound traffic exiting the Presidio. This one-way couplet was assumed in the analysis of transportation-related impacts of land use alternatives in the Presidio Trust Management Plan - Background Transportation Report for the Final EIS, prepared by Wilbur Smith Associates (WSA) in May 2002 and has also been assumed for the assessment of traffic impacts related to Alternatives 1, 2, 3, and 4 in the Final EIS for the PHSH district.

2.2 Intersection Analysis

Intersection operating conditions have been evaluated for weekday AM and PM peak period conditions in the year 2025 at eight key intersections in the vicinity of the PHSH site. Because these intersections are the intersections closest to the PHSH district, these are the intersections that would most likely experience the greatest change in traffic volumes due to changes in land uses at the PHSH site. The dispersion of traffic to several routes radiating from the PHSH district would yield a decreasing effect on individual intersections with increased distance from the PHSH district, and therefore the effect of the PHSH alternatives on intersections beyond those identified below would be minimal. The eight study intersections are

- Lake Street $/ 17^{\text {th }}$ Avenue
- Lake Street $/ 15^{\text {th }}$ Avenue
- Lake Street $/ 14^{\text {th }}$ Avenue
- Lake Street/Park Presidio Boulevard
- Lake Street/Funston Avenue
- California Street $/ 15^{\text {th }}$ Avenue
- California Street $/ 14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

The AM and PM peak hour intersection operations analysis was conducted according to the methodology described in the 2000 Highway Capacity Manual (HCM 2000) (Transportation Research Board, 2000). The HCM 2000 methodology is appropriate as it is the same methodology used by the San Francisco Planning Department (Transportation Impact Analysis Guidelines for Environmental Review, October 2002) and is also being used for the Doyle Drive study. The HCM methodology calculates the average delay experienced by a vehicle traveling through the intersection, and assigns a corresponding level of service (LOS). The levels of service range from LOS A, indicating volumes well below capacity with vehicles experiencing little or no delay, to LOS F, indicating volumes near capacity with vehicles experiencing extremely high delays ${ }^{1}$

[^1]Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.3 of B-3.47

For signalized intersections, the HCM 2000 methodology determines the average delay per vehicle for each lane group based on the particular movement, and traffic volume and capacity associated with that lane group. The average delay per vehicle is then aggregated for each approach and for the intersection as a whole. A combined weighted average delay and LOS is then presented for the intersection as a whole. For unsignalized intersections, average delay and LOS operating conditions are calculated by approach (e.g., northbound) and movement (e.g., northbound left-turn). For two-way stop-controlled intersections, delay and LOS are calculated for each of the stop-controlled approaches and operating conditions are reported for the worst approach. For all-way stop-controlled intersections, average delay per vehicle is averaged across all approaches, and operating conditions are reported for the average delay and LOS for the intersection as a whole. LOS calculation worksheets are included in Appendix A.

2.2.1 One-Way Couplet at $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates

Tables 1 and 2 present the results of the intersection LOS analysis for the 2025 weekday AM and PM peak hour conditions for the four land use alternatives (Alternatives 1-4) assuming that the $14^{\text {th }}$ Avenue and $15^{\text {th }}$ Avenue Gates operate as a one-way couplet with the $14^{\text {th }}$ Avenue Gate accommodating northbound traffic entering the Presidio and the $15^{\text {th }}$ Avenue Gate accommodating southbound traffic exiting the Presidio (Appendix A contains the detailed calculations of the intersection LOS analysis). Under the Requested No Action Alternative, the 14 Avenue Gate would remain closed to both inbound and outbound traffic, with the 15 Avenue Gate maintaining its existing operations as the entrance and exit to the Presidio and PHSH site.

Intersection Levels of Service - Year 2025 Weekday PM Peak Hour											
Intersection	Traffic Control Device	No Action Alt		Alt. 1		Alt. 2		Alt. 3		Alt. 4	
		Delay ${ }^{1}$	Los								
Lake St $17^{\text {th }} \mathrm{Ave}^{2}$	$\begin{array}{\|c\|} \hline \text { 2-Way } \\ \text { Stop } \end{array}$	$\begin{aligned} & \hline 21.0 \\ & \text { (SB) } \end{aligned}$	C	$\begin{aligned} & \hline 22.0 \\ & \text { (SB) } \end{aligned}$	C	$\begin{aligned} & \hline 20.9 \\ & (\mathrm{SB}) \end{aligned}$	C	$\begin{aligned} & 20.9 \\ & (\mathrm{SB}) \end{aligned}$	C	$\begin{aligned} & 20.7 \\ & \text { (SB) } \end{aligned}$	c
Lake St/ $15^{\text {th }}$ Ave	$\begin{gathered} \text { 4-Way } \\ \text { Stop } \end{gathered}$	31.4	D	28.2	D	18.3	c	17.8	C	17.2	C
Lake St/ $14^{\text {th }} \mathrm{Ave}^{2}$	$\begin{gathered} \text { 2-Way } \\ \text { Stop } \end{gathered}$	$\begin{gathered} >50 \\ \text { (SB) } \end{gathered}$	F	$\begin{aligned} & >50 \\ & \text { (SB) } \end{aligned}$	F	$\begin{aligned} & >50 \\ & \text { (SB) } \end{aligned}$	F	$\begin{aligned} & >50 \\ & \text { (SB) } \end{aligned}$	F	$\begin{aligned} & >50 \\ & \text { (SB) } \end{aligned}$	F
Lake St/ Park Presidio Blvd.	Traffic Signal	39.8	D	49.1	D	39.7	D	39.6	D	38.7	D
Lake St/Funston Ave ${ }^{2}$	$\begin{aligned} & \text { 2-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 19.2 \\ & (\mathrm{NB}) \end{aligned}$	C	$\begin{aligned} & 20.5 \\ & \text { (NB) } \end{aligned}$	c	$\begin{aligned} & 19.1 \\ & \text { (NB) } \end{aligned}$	c	$\begin{aligned} & 19.1 \\ & \text { (NB) } \end{aligned}$	c	$\begin{aligned} & 18.9 \\ & (\mathrm{NB}) \end{aligned}$	c
California St/ $15^{\text {th }}$ Ave ${ }^{2}$	$\begin{aligned} & \text { 2-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 30.1 \\ & \text { (SB) } \end{aligned}$	D	$\begin{aligned} & 29.4 \\ & \text { (SB) } \end{aligned}$	D	$\begin{aligned} & 25.3 \\ & \text { (SB) } \end{aligned}$	D	$\begin{aligned} & 25.6 \\ & \text { (SB) } \end{aligned}$	D	$\begin{aligned} & 25.3 \\ & \text { (SB) } \end{aligned}$	D
$\begin{aligned} & \text { California St/ } 14^{\text {th }} \\ & \text { Ave }^{2} \end{aligned}$	$\begin{gathered} \text { 2-Way } \\ \text { Stop } \end{gathered}$	$\begin{aligned} & >50 \\ & (\mathrm{SB}) \end{aligned}$	F	$\begin{aligned} & >50 \\ & >(\mathrm{SB}) \end{aligned}$	F	$\begin{aligned} & >50 \\ & >(\mathrm{SB}) \end{aligned}$	F	$\begin{aligned} & >50 \\ & (\mathrm{SB}) \end{aligned}$	F	$\begin{aligned} & >50 \\ & \text { (SB) } \end{aligned}$	F
California St/ Park Presidio Blvd.	Traffic Signal	42.1	D	42.2	D	42.1	D	42.1	D	42.1	D
Source: Wilbur Smith Notes: Delay presented in sec LOS and delay shown	ciates - Fe	2006		$\begin{gathered} \text { Meln } \\ \text { Maj }^{2} \end{gathered}$				ut dela			

Amy Marshall, The Presidio Trust
April 19, 2004
Page B-3.6 of B-3.47

Requested No Action Alternative - As Table 1 indicates, under the Requested No Action Alternative, in the AM peak hour, all but three intersections would operate at LOS D or better The minor approaches to the two-way stop-controlled intersections of Lake Street/ $14^{\text {th }}$ Avenue and California Street $/ 14^{\text {th }}$ Avenue would operate at LOS E and F, respectively. The all-way stopcontrolled intersection of Lake Street $/ 15^{\text {th }}$ Avenue would also operate at LOS E, primarily due to the retention of the existing circulation (closure of $14^{\text {th }}$ Avenue gate with all traffic through the $15^{\text {th }}$ Avenue gate)

As shown in Table 2, in the PM peak hour, the minor approaches to the two-way stop-controlled intersections of Lake Street $/ 14^{\text {th }}$ Avenue, and California Street $/ 14^{\text {th }}$ Avenue would operate at LOS F. All other intersections would operate at LOS D or better.

Alternative 1: PTMP Alternative -As Table 1 indicates, under Alternative 1, in the AM peak hour, all but three intersections would operate at LOS D or better. The minor approaches to the wo-way stop-controlled intersections of Lake Street/ $14^{\text {th }}$ Avenue and California Street $/ 14^{\text {th }}$ Avenue would operate at LOS F. The all-way stop-controlled intersection of Lake Street $/ 15^{\text {th }}$ Avenue would also operate at LOS E.

As shown in Table 2, in the PM peak hour, the minor approaches to the two-way stop-controlled intersections of Lake Street $/ 14^{\text {th }}$ Avenue and California Street $/ 14^{\text {th }}$ Avenue would operate at LOS . All other intersections would operate at LOS D or better

Comparison of Alternative 1 to the Requested No Action Alternative
Compared to the Requested No Action Alternative, Alternative 1 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 11%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 15%)

Alternative 1 results in no substantive change to the delay compared to the Requested No Action Alternative at the following intersection during the AM peak hour:

- California Street/ $14^{\text {th }}$ Avenue

During the AM peak hour, Alternative 1 results in increased delays at the following intersections compared to the Requested No Action Alternative:

- Lake Street $/ 17^{\mathrm{h}}$ Avenue (approximate increase of 2\%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of more than 28\%)
-Lake Street/Park Presidio Boulevard (approximate increase of 4\%)
- Lake Street/Funston Avenue (approximate increase of 3\%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.7 of B-3.47

- California Street/Park Presidio Boulevard (approximate increase of 1\%

Compared to the Requested No Action Alternative, Alternative 1 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 10%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2\%)

Alternative 1 results in no substantive changes to the delays compared to the Requested No Action Alternative at the following intersections during the PM peak hour:

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street/ $14^{\text {th }}$ Avenue

During the PM peak hour, Alternative 1 results in increased delays at the following intersections compared to the Requested No Action Alternative.

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 5\%)
- Lake Street/Park Presidio Boulevard (approximate increase of 23\%)
- Lake Street/Funston Avenue (approximate increase of 7\%)
- California Street/Park Presidio Boulevard (approximate increase of less than 1\%)

Alternative 2: Wings Retained/Trust Revised Alternative - As shown in Table 1, during both the AM and PM peak hours in 2025, Alternative 2 would yield the same intersection levels of service as Alternative 1 (the PTMP Alternative) with the exception of Lake Street/ $15^{\text {th }}$ Avenue intersection. The LOS results at the Lake Street $/ 15^{\text {tit }}$ Avenue intersection are expected to improve from LOS E (Alternative 1) to LOS D (Alternative 2) in the AM peak hour and from LOS D (Alternative 1) to LOS C (Alternative 2) in the PM peak hour.

Comparison of Alternative 2 to Alternative 1
Compared to Alternative 1, Alternative 2 results in reduced delays at six of the eight study intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 3\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 21\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 4\%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 5\%)
- California Street/Park Presidio Boulevard (approximate reduction of 1\%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.8 of B-3.47

Alternative 2 results in no substantive change to the delay compared to Alternative 1 at the following intersections during the AM peak hour:

- Lake Street/ $14^{\text {th }}$ Avenue
- California Street/ $14^{\text {th }}$ Avenue

During the PM peak hour, Alternative 2 results in reduced delays at six of the eight study intersections compared to Alternative 1

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 5\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 35\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 19\%)
- Lake Street/Funston Avenue (approximate reduction of 7\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 14%)
- California Street/Park Presidio Boulevard (approximate reduction of less than 1\%)

Alternative 2 results in no substantive changes to the delays compared to Alternative 1 at the following intersection during the PM peak hour:

- Lake Street/ $14^{\text {th }}$ Avenue
- California Street/ $14^{\text {th }}$ Avenue

Comparison of Alternative 2 to the Requested No Action Alternative
Compared to the Requested No Action Alternative, Alternative 2 results in reduced delays at five of the eight study intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 30\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 1%)
- Lake Street/Funston Avenue (approximate reduction of 1\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 19\%)

Alternative 2 results in no substantive change to the delay compared to the Requested No Action Alternative at the following intersection during the AM peak hour:

- California Street $/ 14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.9 of B-3.47

Amy Marshall, The Presidio Trust

April 19, 2006
Page B-3.10 of B-3.47

- Lake Street $/ 17^{\text {th }}$ Avenue
- Lake Street/ $14^{\text {th }}$ Avenue
- California Street/ $14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

Compared to Alternative 2, Alternative 3 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 3\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of less than 1\%)

Alternative 3 results in no substantive changes to the delays compared to Alternative 2 at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue
- Lake Street $/ 14^{\text {th }}$ Avenue
- Lake Street/Funston Avenue
- California Street/ $14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

During the PM peak hour, Compared to Alternative 2, Alternative 3 results in increased delay on the minor approaches of the following intersection:

- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 1%)

Comparison of Alternative 3 to Alternative 1
Compared to Alternative 1, Alternative 3 results in reduced delays at six of the eight study intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 3\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 21%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 5\%)
- Lake Street/Funston Avenue (approximate reduction of 4\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 5\%)
- California Street/Park Presidio Boulevard (approximate reduction of 1\%)

Alternative 3 results in no substantive change to the delay compared to Alternative 1 at two of the eight study intersections during the AM peak hour:

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.11 of B-3.47

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.12 of B-3.47

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street/ $14^{\text {th }}$ Avenue

Compared to Alternative 1, Alternative 3 results in reduced delays at six of the eight study intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 5\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 37\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 19\%)
- Lake Street/Funston Avenue (approximate reduction of 7\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 13%)
- California Street/Park Presidio Boulevard (approximate reduction of less than 1\%)

Alternative 3 results in no substantive change to the delay compared to Alternative 1 at the remaining two study intersections during the PM peak hour:

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street/ $14^{\text {th }}$ Avenue

Comparison of Alternative 3 to the Requested No Action Alternative
Compared to the Requested No Action Alternative, Alternative 3 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 1\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 30\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 1 \%)
- Lake Street/Funston Avenue (approximate reduction of 1\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 19%)

Alternative 3 results in no substantive change to the delay compared to the Requested No Action
Alternative at the following intersections during the AM peak hour:

- California Street $/ 14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

During the AM peak hour, Alternative 3 results in increased delay at the following intersection compared to the Requested No Action Alternative:

- Lake Street/ $14^{\text {th }}$ Avenue (approximate increase of more than 28%)

Compared to the Requested No Action Alternative, Alternative 3 results in reduced delays at five of the eight study intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 43%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 1\%)
- Lake Street/Funston Avenue (approximate reduction of 1\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 15%)

Alternative 3 results in no substantive changes to the delays compared to the Requested No Action Alternative at the following intersections during the PM peak hour:

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street/ $14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

Alternative 4: Battery Caulfield Alternative -As shown in Table 1, during the AM peak hour in 2025, Alternative 4 would yield the same intersection levels of service as Alternative 1 for all intersections with the exception of Lake Street $/ 15^{\text {th }}$ Avenue intersection. Its LOS is expected to improve from LOS E under Alternative 1 to LOS D under Alternative 4.

Similarly, as shown in Table 2, during the PM peak hour in 2025, Alternative 4 would yield the same levels of service as Alternative 1 with the exception of Lake Street $/ 15^{\text {th }}$ Avenue intersection, where its level of service is expected to improve from LOS D under Alternative 1 to LOS C under Alternative 4. All intersections under Alternative 4 are expected to operate with the same or less average delay per vehicle than Alternative 1 during both the AM and PM peak hours.

Comparison of Alternative 4 to Alternative 3
Compared to Alternative 3, Alternative 4 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 1\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 9\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 1\%)
- Lake Street/Funston Avenue (approximate reduction of 1\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 1\%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.13 of B-3.47

Alternative 4 would result in no substantive change to the delay compared to Alternative 3 at the following intersections during the AM peak hour:

- Lake Street $/ 14^{\text {th }}$ Street
- California Street $/ 14^{\text {th }}$ Street
- California Street/Park Presidio Boulevard

Compared to Alternative 3, Alternative 4 results in reduced delays at five of the eight study intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 3\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 2\%)
- Lake Street/Funston Avenue (approximate reduction of 1\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 1%)

Alternative 4 results in no substantive change to the delay compared to Alternative 3 at the following intersections during the PM peak hour:

- Lake Street $/ 14^{\text {th }}$ Street
- California Street/ $14^{\text {th }}$ Street
- California Street/Park Presidio Boulevard

Comparison of Alternative 4 to Alternative 2
Compared to Alternative 2, Alternative 4 results in reduced delays at five of the eight study intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 9\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 1\%)
- Lake Street/Funston Avenue (approximate reduction of 1\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2\%)

Alternative 4 results in no substantive change to the delay compared to Alternative 2 at the following intersections during the AM peak hour:

- Lake Street $/ 14^{\text {th }}$ Street
- California Street/ $14^{\text {th }}$ Street

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.14 of B-3.47

- California Street/Park Presidio Boulevard

Compared to Alternative 2, Alternative 4 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street/ $17^{\text {th }}$ Avenue (approximate reduction of 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 6%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 3\%)
- Lake Street/Funston Avenue (approximate reduction of 1\%)

Alternative 4 results in no substantive change to the delay compared to Alternative 2 at the following intersections during the PM peak hour:

- Lake Street $/ 14^{\text {th }}$ Street
- California Street/ $14^{\text {th }}$ Street
- California Street/Park Presidio Boulevard
- California Street $/ 15^{\text {th }}$ Avenue

Comparison of Alternative 4 to Alternative 1
Compared to Alternative 1, Alternative 4 would result in reduced delays at six of the eight study intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 4\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 28\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 6\%)
- Lake Street/Funston Avenue (approximate reduction of 4\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 6\%)
- California Street/Park Presidio Boulevard (approximate reduction of 1\%)

Alternative 4 would result in no substantive change to the delay compared to Alternative 1 at the following intersection during the AM peak hour:

- Lake Street $/ 14^{\text {th }}$ Street
- California Street/ $14^{\text {th }}$ Street

Compared to Alternative 1, Alternative 4 would result in reduced delays at the remaining study intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 6\%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.15 of B-3.47

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 39%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 21\%)
- Lake Street/Funston Avenue (approximate reduction of 8\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 14%)
- California Street/Park Presidio Boulevard (approximate reduction of less than 1\%)

Alternative 4 would result in no substantive change to the delay compared to Alternative 1 at the remaining study intersections during the PM peak hour:

- Lake Street $/ 14^{\text {th }}$ Street
- California Street/ $14^{\text {th }}$ Street

Comparison of Alternative 4 to the Requested No Action Alternative
Compared to the Requested No Action Alternative, Alternative 4 would result in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 36%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 2\%)
- Lake Street/Funston Avenue (approximate reduction of 2\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 20\%)

Alternative 4 would result in no substantive change to the delay compared to the Requested No Action Alternative at the following intersection during the AM peak hour:

- California Street $/ 14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

During the AM peak hour, Alternative 4 would result in increased delays at the following intersection compared to the Requested No Action Alternative:

- Lake Street/ $14^{\text {th }}$ Avenue (approximate increase of more than 28\%)

Compared to the Requested No Action Alternative, Alternative 4 would result in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 45%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 3\%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.16 of B-3.47

- Lake Street/Funston Avenue (approximate reduction of 2\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 16%)

Alternative 4 would result in no substantive changes to the delays compared to the Requested No Action Alternative at the following intersections during the PM peak hour:

- Lake Street/ $14^{\text {th }}$ Avenue
- California Street/ $14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard
2.2.2 Park Presidio Boulevard Access Variant with Inbound Only Traffic at $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates

Tables 3 and 4 present the results of the intersection LOS analysis for the 2025 weekday AM and PM peak hour conditions for the four proposed land use build alternatives (Alternatives 1, 2, 3 and 4) assuming a new connection to Park Presidio Boulevard to and from the PHSH site north of Lake Street. The new intersection would allow traffic leaving the PHSH site to turn left or right on Highway 1, and allow southbound traffic on Highway 1 to enter the PHSH site directly from Highway 1. Both the 14th and 15th Avenue Gates would be open to inbound (northbound) traffic only.

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.17 of B-3.47

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.18 of B-3.47

Table 3
Intersection Levels of Service - Weekday AM Peak Hour Year 2025

Intersection	Traffic Control Device	Alt. 1		Alt. 2		Alt. 3		Alt. 4	
		Delay ${ }^{1}$	LOS						
Lake St/ $17{ }^{\text {th }} \mathrm{Ave}^{2}$	$\begin{gathered} \text { 2-Way } \\ \text { Stop } \end{gathered}$	20.8	C	20.3	C	20.3	C	20.2	C
Lake St $/ 15^{\text {th }}$ Ave	4-Way Stop	27.0	D	23.6	C	23.0	C	22.6	C
Lake St/ $14^{\text {th }} \mathrm{Ave}^{2}$	$\begin{aligned} & \text { 2-Way } \\ & \text { Stoy } \end{aligned}$	>50	F	43.7	E	40.3	E	39.1	E
Lake St/ Park Presidio Blvd.	Traffic Signal	20.9	C	20.2	C	20.3	C	19.9	B
Lake St/ Funston Ave^{2}	2-Way Stop	23.9	C	23.3	C	23.2	C	23.1	C
$\begin{aligned} & \text { California St/ } 15^{\text {th }} \end{aligned}$	2-Way Stop	22.4	C	20.2	C	19.9	C	19.8	C
$\begin{aligned} & \text { California St/ } 14^{\text {th }} \\ & \text { Ave }^{2} \end{aligned}$	2-Way Stop	>50	F	>50	F	>50	F	>50	F
California St/ Park Presidio Blvd.	Traffic Signal	20.5	C	20.5	C	20.5	C	20.5	C
New Alternative Access/ Park Presidio Blvd.	Traffic Signal	5.5	A	5.1	A	5.1	A	5.0	A

Source:

Delay presented in seconds per vehicle based on the 2000 HCM methodology
LOS and delay shown for worst minor stop-controlled approach. Major approach is uncontrolled and without delay.

Table 4
Intersection Levels of Service - Weekday PM Peak Hou Year 2025

Intersection	Traffic Control Device	Alt. 1		Alt. 2		Alt. 3		Alt. 4	
		Delay ${ }^{1}$	LOS						
Lake St/ $17^{\text {th }} \mathrm{Ave}^{2}$	$\begin{aligned} & \hline \text { 2-Way } \\ & \text { Stop } \end{aligned}$	21.8	C	20.7	C	20.6	C	16.1	C
Lake St $/ 15^{\text {th }}$ Ave	4-Way Stop	20.0	C	17.3	C	17.2	C	16.9	C
Lake St/ $14^{\text {th }} \mathrm{Ave}^{2}$	2-Way Stop	>50	F	>50	F	>50	F	>50	F
Lake St/ Park Presidio Blvd.	Traffic Signal	41.5	D	35.9	D	35.3	D	35.3	D
Lake St/ Funston Ave ${ }^{2}$	2-Way Stop	23.3	C	22.6	C	22.6	C	22.5	C
$\begin{aligned} & \text { California St/ } 15^{\text {th }} \\ & \text { Ave }^{2} \end{aligned}$	2-Way Stop	28.8	D	26.1	D	26.2	D	25.8	D
$\begin{aligned} & \text { California St/ } 14^{\text {th }} \\ & \text { Ave }^{2} \end{aligned}$	2-Way Stop	>50	F	>50	F	>50	F	>50	F
California St/ Park Presidio Blvd.	Traffic Signal	47.9	D	43.6	D	43.2	D	42.9	D
New Alternative Access/ Park Presidio Blvd.	Traffic Signal	16.3	B	7.4	A	6.9	A	6.8	A

Source

Notes:

號 delay shown for worst minor stop-controlied approach. Major approach is uncontrolled and without delay.
ternative 1: PTMP Alternative - For the Park Presidio Boulevard Access variant, Tables and 4 show that seven intersections would operate at LOS D or better under both AM and PM peak hour conditions. During both the AM and PM peak hours, the minor street approaches to the two-way stop-controlled intersections of Lake Street $14^{\text {th }}$ Avenue and California Street $/ 14^{\text {th }}$ would operate at LOS F. All other intersections would operate at LOS D or better.

Comparison of Alternative 1 to the Requested No Action Alternative
Compared to the Requested No Action Alternative, Alternative 1 results in reduced delays at the following intersections during the AM peak hour

- Lake Street $15^{\text {th }}$ Avenue (approximate reduction of 38%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 5\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 9%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.19 of B-3.47

Amy Marshall, The Presidio Trust

April 19, 2006
Page B-3.20 of B-3.47

Alternative 1 results in no substantive change to the delay compared to the Requested No Action Alternative at one study intersection during the AM peak hour:

- California Street $/ 14^{\text {th }}$ Avenue

During the AM peak hour, Alternative 1 results in increased delays at the following intersections compared to the Requested No Action Alternative:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 0.5%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of 81%)
- Lake Street/Funston Avenue (approximate increase of 16%)
- California Street $/ 14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard (approximate increase of 0.5\%)

Compared to the Requested No Action Alternative, Alternative 1 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 36%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 4%)

Alternative 1 results in no substantive change to the delay compared to the Requested No Action Alternative at one study intersection during the AM peak hour:

- California Street $/ 14^{\text {th }}$ Avenue

During the PM peak hour, Alternative 1 results in increased delays at the following intersections compared to the Requested No Action Alternative:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 4%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of more than 28\%)
- Lake Street/Park Presidio Boulevard (approximate increase of 4\%)
- Lake Street/Funston Avenue (approximate increase of 21%)
- California Street/Park Presidio Boulevard (approximate increase of 14\%)

Alternative 2: Wings Retained/Trust Revised Alternative - As shown in Table 3, in the AM peak hour in 2025, the minor approaches to the two-way stop-controlled intersections of Lake Street $/ 14^{\text {th }}$ Avenue and California Street $/ 14^{\text {th }}$ Avenue would operate at LOS E and LOS F, respectively under Alternative 2. As Table 4 indicates, in the PM peak hour in 2025, levels of service for Alternative 2 would be the same as under Alternative 1, except for the intersection of New Alternative Access/Park Presidio Boulevard which would operate at LOS A rather than LOS B.

Comparison of Alternative 2 to Alternative 1
Compared to Alternative 1, Alternative 2 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 2\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 13%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate reduction of more than 13\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 3\%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 10%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 7\%)

Alternative 2 results in no substantive change to the delay compared to Alternative 1 at the following intersections during the AM peak hour:

- California Street/Park Presidio Boulevard
- California Street/ $14^{\text {th }}$ Avenue

Compared to Alternative 1, Alternative 2 results in reduced delays at five of the study intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 5\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 14%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 14%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 9%)

Alternative 2 would result in no substantive change to the delay compared to Alternative 1 at the following intersections in the PM peak hour:

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street $/ 14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard (approximate reduction of 9\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 55\%)

Comparison of Alternative 2 to the Requested No Action Alternative

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.21 of B-3.47

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.22 of B-3.47

Alternative 3: Wings Removed Alternative - As Table 3 indicates, in the AM peak hour in 2025, the levels of service for Alternative 3 would be the same as with Alternative 2. As shown in Table 4, the PM peak hour levels of service under Alternative 3 would also be the same as with Alternative 2.

Comparison of Alternative 3 to Alternative 2
Compared to Alternative 2, Alternative 3 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 3\%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 8%)
- Lake Street/Funston Avenue (approximate reduction of less than 1\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2\%)

Alternative 3 results in no substantive change to the delay compared to Alternative 2 at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard
- New Alternative Access/Park Presidio Boulevard
- California Street $/ 14^{\text {th }}$ Avenue

During the AM peak hour, Alternative 3 results in increased delays at the following study intersection compared to Alternative 2:

- Lake Street/Park Presidio Boulevard (approximate increase of less than 1%)

Compared to Alternative 2, Alternative 3 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of less than 1\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 1%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 2\%)
- California Street/Park Presidio Boulevard (approximate reduction of less than 1\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 7\%)

Alternative 3 results in no substantive changes to the delays compared to Alternative 2 at the following intersections during the PM peak hour:

- Lake Street/Funston Avenue

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.23 of B-3.47

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street $/ 14^{\text {th }}$ Avenue

During the PM peak hour, Alternative 3 results in increased delays at the following study intersection compared to Alternative 2:

- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of less than 1%)

Comparison of Alternative 3 to Alternative 1
Compared to Alternative 1, Alternative 3 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 2\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 15%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of more than 19\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 3\%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 11%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 7\%)

Alternative 3 results in no substantive change to the delay compared to Alternative 1 at the following intersections during the AM peak hour:

- California Street/Park Presidio Boulevard
- California Street $/ 14^{\text {th }}$ Avenue

Compared to Alternative 1, Alternative 3 results in reduced delays at seven of the study intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 6%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 14%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 15\%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 9\%)
- California Street/Park Presidio Boulevard (approximate reduction of 10\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 58\%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.24 of B-3.47

Alternative 3 would result in no substantive change in delay compared to Alternative 1at the following intersections during the PM peak hour:

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street $/ 14^{\text {th }}$ Avenue

Comparison of Alternative 3 to the Requested No Action Alternative
Compared to the Requested No Action Alternative, Alternative 3 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 2\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 47%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 8\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 19%)

Alternative 3 results in no substantive change to the delay compared to the Requested No Action Alternative at one study intersection during the AM peak hour.

- California Street $/ 14^{\text {th }}$ Avenue

During the AM peak hour, Alternative 3 results in increased delays at the following intersections compared to the Requested No Action Alternative:

- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of 3\%)
- Lake Street/Funston Avenue (approximate increase of 13\%)
- California Street/ Park Presidio Boulevard (approximate increase of less than 1\%)

Compared to the Requested No Action Alternative, Alternative 3 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 2\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 45%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 11\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 13%)

Alternative 3 results in no substantive change to the delay compared to the Requested No Action Alternative at two of the study intersections during the PM peak hour:

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street $/ 14^{\text {th }}$ Avenue

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.25 of B-3.47

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.26 of B-3.47

During the PM peak hour, Alternative 3 results in increased delays at the following intersections compared to the Requested No Action Alternative:

- Lake Street/Funston Avenue (approximate increase of 18%)
- California Street/Park Presidio Boulevard (approximate increase of 3\%)

Alternative 4: Battery Caulfield Alternative - As shown in Table 3, in the AM peak hour in 2025, levels of service with Alternative 4 would be the same as with Alternatives 2 and 3, except for the intersection of Lake Street/Park Presidio Boulevard which would operate at LOS B rather than LOS C. In the PM peak hour in 2025, all intersections would operate under Alternative 4 at the same levels of service as with Alternatives 2 and 3.

Comparison of Alternative 4 to Alternative 3
Compared to Alternative 3, Alternative 4 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2\%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 3\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 2\%)
- Lake Street/Funston Avenue (approximate reduction of less than 1%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 2\%)

Alternative 4 results in no substantive change to the delays compared to Alternative 3 at the following intersections during the AM peak hour:

- California Street/Park Presidio Boulevard
- California Street/ $14^{\text {th }}$ Avenue

Compared to Alternative 3, Alternative 4 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 22%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2\%)
- Lake Street/Funston Avenue (approximate reduction of less than 1\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2\%)
- California Street/Park Presidio Boulevard (approximate reduction of less than 1\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 1\%)

Alternative 4 results in no substantive changes to the delays compared to Alternative 3 at the following intersections during the PM peak hour:

- Lake Street/Park Presidio Boulevard
- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street/ $14^{\text {th }}$ Avenue

Comparison of Alternative 4 to Alternative 2
Compared to Alternative 2, Alternative 4 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 4%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 11%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 2\%)
- Lake Street/Funston Avenue (approximate reduction of less than 1%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 2\%)

Alternative 4 results in no substantive change to the delay compared to Alternative 2 at the following intersections during the AM peak hour:

- California Street/Park Presidio Boulevard
- California Street $/ 14^{\text {th }}$ Avenue \backslash

Compared to Alternative 2, Alternative 4 results in reduced delays at seven of the study intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 22%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 2\%)
- Lake Street/Funston Avenue (approximate reduction of less than 1\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 1%)
- California Street/Park Presidio Boulevard (approximate reduction of 2\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 8\%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.27 of B-3.47

During the PM peak hour, Alternative 4 would result in no substantive change in delays at the two study intersections compared to Alternative 2:

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street $/ 14^{\text {th }}$ Avenue

Comparison of Alternative 4 to Alternative 1
Compared to Alternative 1, Alternative 4 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 3\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 16%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of more than 22%)
- Lake Street/Park Presidio Boulevard (approximate reduction of less than 5\%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 12%)
- California Street/ $14^{\text {th }}$ Avenue (approximate reduction of 29\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 9\%)

Alternative 4 results in no substantive change to the delays compared to Alternative 1 at the following intersections during the AM peak hour:

- California Street/Park Presidio Boulevard
- California Street $/ 14^{\text {th }}$ Avenue

Compared to Alternative 1, Alternative 4 results in reduced delays at most study intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 26%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 15%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 15%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 10%)
- California Street/Park Presidio Boulevard (approximate reduction of 10\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 58\%)

During the PM peak hour, Alternative 4 would result in no substantive change in delays at two study intersections compared to Alternative 1.

Amy Marshall, The Presidio Trust

April 19, 2006
Page B-3.28 of B-3.47

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street $/ 14^{\text {th }}$ Avenue

Comparison of Alternative 4 to the Requested No Action Alternative
Compared to the Requested No Action Alternative, Alternative 4 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 3\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 48%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 10\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 19%)

Alternative 4 results in no substantive change to the delay compared to the Requested No Action Alternative at one of the study intersection during the AM peak hour:

- California Street $/ 14^{\text {th }}$ Avenue

During the AM peak hour, Alternative 4 results in increased delays at the following intersections compared to the Requested No Action Alternative:

- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of less than 1%)
- Lake Street/Funston Avenue (approximate increase of 12\%)
- California Street/Park Presidio Boulevard (approximate increase of less than 1\%)

Compared to the Requested No Action Alternative, Alternative 4 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 23%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 48%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 11\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 14%)

During the PM peak hour, Alternative 4 results in increased delays at the following intersections compared to the Requested No Action Alternative:

- Lake Street/Funston Avenue (approximate increase of 17%)
- California Street/ Park Presidio Boulevard (approximate increase of 2\%)

Alternative 4 results in no substantive change to the delays compared to the Requested No Action Alternative at two study intersections during the PM peak hour:

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.29 of B-3.47

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.30 of B-3.47

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street $/ 14^{\text {th }}$ Avenue

2.3 Traffic Operations and Safety Considerations

Traffic conditions on Park Presidio Boulevard and in the surrounding residential neighborhood would vary across alternatives. Tables 5 and 6 show anticipated peak hour traffic volumes through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates for each of the alternatives with and without the Park Presidio Boulevard Access Variant. Future traffic volumes through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates would relate directly to the level of comfort and safety concerns of the residents of the surrounding neighborhood.

2.3.1 One-Way Couplet at $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates

Requested No Action Alternative - The Requested No Action Alternative is expected to result in approximately 310 and 330 vehicles per hour traveling through the $15^{\text {th }}$ Avenue Gate in the AM and PM peak hours, respectively. A PM peak hour volume of 330 vehicles is about 136% greater than the PM peak hour volume of 140 vehicles per hour observed in October 2005.

Land Use Alternative	AM Peak Hour	PM Peak Hour
Requested No Action Alternative	310^{2}	330^{2}
Alternative 1 Alternative 2 Alternative 3 Alternative 4	$\begin{aligned} & 420 \\ & 300 \\ & 280 \\ & 250 \end{aligned}$	$\begin{aligned} & 590 \\ & 310 \\ & 310 \\ & 270 \end{aligned}$

Source: Wilbur Smith Associates - February 2006.

Note:

1. Forecasted 2025 gate volumes have been rounded to the nearest 10 .
2. Under the Requested No Action Alternative all traffic in
3. Under the Requested No Action Alternative, all traffic in and out of the Presidio would use the $15^{\text {ti }}$ Avenue Gate; the $14^{\text {th }}$ Avenue Gate would remain closed.

Alternative 1: PTMP Alternative -Alternative 1 is expected to result in approximately 420 and 590 vehicles per hour traveling through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours, respectively. A PM peak hour volume of 590 vehicles is about four times the PM peak hour volume of 140 vehicles per hour observed in October 2005. Compared to the Requested No Action Alternative, Alternative 1 would generate approximately 35 percent more trips through the gates during the AM peak hour and 79 percent more trips through the gates during the PM peak hour.

Alternative 2: Wings Retained/Trusted Revised Alternative - Alternative 2 would result in 47 percent fewer PM peak hour vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates than Alternative 1, and approximately 6 percent fewer trips during the PM peak hour compared to the Requested No Action Alternative. During the AM peak hour, Alternative 2 would generate 29 percent fewer vehicle trips through the gates than Alternative 1, and approximately 3 percent fewer vehicle trips through the gates than the Requested No Action Alternative. The reduction in traffic volume through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates would result in less traffic on nearby residential neighborhood streets, and therefore could result in a higher level of comfort, quality of life benefits, and safer conditions for neighborhood residents.

Alternative 3: Wings Removed Alternative - Compared to Alternative 2, Alternative 3 would result in 7 percent fewer trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates during the AM peak hour, respectively. When compared to Alternative 1, Alternative 3 would result in approximately 33 percent and 47 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates during the AM and PM peak hours, respectively; and approximately 10 and 6 percent fewer vehicle trips through the Gates during the AM and PM peak hours, respectively compared to the Requested No Action Alternative.

Alternative 4: Battery Caulfield Alternative - Alternative 4 would generate 19 and 18 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours than the Requested No Action Alternative, respectively; 40 and 54 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours than Alternative 1, respectively; 17 and 13 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in both the AM and PM peak hours than Alternative 2 respectively; and 11 and 13 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours, respectively, than through the 1

2.3.2 Park Presidio Boulevard Access Variant with Inbound Only Traffic at $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates

Requested No Action Alternative - The Requested No Action Alternative is expected to result in approximately 310 and 330 vehicles per hour traveling through the $15^{\text {th }}$ Avenue Gate in the AM and PM peak hours, respectively. A PM peak hour volume of 330 vehicles is about 136% greater than the PM peak hour volume of 140 vehicles per hour observed in October 2005.

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.31 of B-3.47

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.32 of B-3.47

Table 6
Comparison of Peak Hour Traffic Volumes ${ }^{1}$ through $14^{\text {th }} / 15^{\text {th }}$ Avenue Gates Year 2025 (Park Presidio Boulevard Access Variant)

Land Use Alternative		
	AM Peak Hour	PM Peak Hour
Requested No Action Alternative	310^{2}	330^{2}
Alternative 1	200	220
Alternative 2	140	140
Alternative 3	130	140
Alternative 4	120	130

Note:

1. Forecasted 2025 gate volumes have been rounded to the nearest 10

Under the Requested No Action Alternative, all traffic in and out of the Presidio would use the $15^{\text {th }}$ Avenue Gate; the $14^{\text {th }}$ Avenue Gate would remain closed.

Alternative 1: PTMP Alternative -Alternative 1 is expected to result in approximately 200 and 220 vehicles per hour traveling through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours, respectively. A PM peak hour volume of 220 vehicles is about one and a half times the PM peak hour volume of 140 vehicles per hour observed in October 2005. Compared to the Requested No Action Alternative, Alternative 1 would generate approximately 35 percent fewer trips through the gates during the AM peak hour and 33 percent fewer trips through the gates during the PM peak hour.

Alternative 2: Wings Retained/Trusted Revised Alternative - Alternative 2 would result in 36 percent fewer PM peak hour vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates than Alternative 1 , and approximately 57 percent fewer trips during the PM peak hour compared to the Requested No Action Alternative. During the AM peak hour, Alternative 2 would generate 30 percent fewer vehicle trips through the gates than Alternative 1, and approximately 54 percent fewer vehicle trips through the gates than the Requested No Action Alternative. The reduction in traffic volume through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates would result in less traffic on nearby residential neighborhood streets, and therefore could result in a higher level of comfort, quality of life benefits, and safer conditions for neighborhood residents.

Alternative 3: Wings Removed Alternative - Compared to Alternative 2, Alternative 3 would result in 7 percent fewer trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates during the AM peak hour, respectively. When compared to Alternative 1, Alternative 3 would result in approximately 35 percent and 36 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates during the AM and PM peak hours, respectively; and approximately 58 and 60 percent fewer vehicle trips through the Gates during the AM and PM peak hours, respectively, compared to the Requested No Action Alternative.

Alternative 4: Battery Caulfield Alternative - Alternative 4 would generate 61 percent fewer vehicle trips through the 14^{th} and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours than the Requested No Action Alternative; 40 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours than Alternative 1, respectively; 14 and 7 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in both the AM and PM peak hours than Alternative 2 respectively; and 7 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours, respectively, than Alternative 3.

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.33 of B-3.47

3. TRANSIT SERVICE

The land uses associated with the PHSH alternatives would generate transit trips on several Bay Area transit providers, and would most affect the three transit providers that directly serve the project site, the San Francisco Municipal Railway (Muni), Golden Gate Transit (GGT) and the Presidio's internal shuttle (PresidiGo). Trips to and from the project site expected to be made by transit were estimated based on the expected mode split discussed in Technical Memorandum No. 2, and then assigned to transit routes based on the geographic distribution of origins and destinations, also discussed in Technical Memorandum No. 2. Because some transit passengers may use more than one transit mode (e.g., transfer from Muni to PresidiGo), the sum of transit trips made on each transit provider may exceed the total number of people choosing transit to ravel to/from the PHSH district. Table 7 summarizes the expected AM peak hour and PM peak hour transit trips to and from the project site by transit service provider for each alternative. Tables 8, 9, 10 and 11 summarize the AM and PM peak hour ridership on Muni, Golden Gate Transit and PresidiGo for all trips to and from the Presidio, including the PHSH district.

Under Year 2025 conditions, the majority of Muni lines will have sufficient capacity to accommodate all project alternatives; however, forecast ridership on some Muni lines will exceed capacity unless Muni expands service, without or with the additional ridership associated with the PHSH project alternatives. During the AM peak hour under Year 2025 conditions, the PHSH alternatives will contribute less than 2% to the total ridership on the Muni routes anticipated to exceed capacity, and between 1% and 11% to the total ridership during the PM peak hour. GGT Route 10 is not expected to exceed capacity under Year 2025 conditions with any of the alternatives. The future MUNI analysis does not assume an increase in peak hour capacity between 2006 and 2025. However, both Muni and GGT periodically assess system efficiency and capacity, and will generally modify or expand service to meet ridership demands. Detailed transit ridership tables are provided in Appendix B.

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.34 of B-3.47

Table 7
Peak Hour Transit Trips to/from Project Site by Service Provider and Alternative Year 2025

Time Period and Service Provider	Requested No Action Alternative	Alternative 1	Alternative 2	Alternative 3	Alternative 4	
AM Peak Hour						
S.F. Muni	35	90	50	42	29	
Golden Gate Transit	4	10	5	4	3	
PresidiGo	14	44	18	14	11	
PM Peak Hour						
S.F. Muni	38	169	55	49	35	
Golden Gate Transit	4	18	6	5	4	
PresidiGo	15	78	20	17	14	
Source: Wilbur Smith Associates - Febrary 2006						

Source: Wibur Smith Associates - February 2006

Table 9
Year 2025 Muni Cumulative Passenger Loads and Load Factors

Line	Direction	$\underset{\text { Point }}{\text { Maximum Load }}$	Number of Passengers					Average Load Factor				
			Requested No Action	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Requested No Action	Alt. 1	Alt. 2	Alt. 3	Alt. 4
1	to Howard/Main to Geary/33rd	Clay/Powell Sacramento/Polk	$\begin{gathered} \hline 754 \\ 1,276 \end{gathered}$	$\begin{gathered} \hline 786 \\ 1,289 \end{gathered}$	$\begin{gathered} \hline 755 \\ 1,278 \end{gathered}$	$\begin{gathered} 752 \\ 1,278 \end{gathered}$	$\begin{gathered} \hline 749 \\ 1,277 \end{gathered}$	$\begin{aligned} & 59 \% \\ & 109 \% \end{aligned}$	$\begin{gathered} \hline 62 \% \\ 110 \% \end{gathered}$	$\begin{aligned} & \hline 59 \% \\ & 109 \% \end{aligned}$	$\begin{aligned} & \hline 59 \% \\ & 109 \% \end{aligned}$	$\begin{aligned} & \hline 59 \% \\ & 109 \% \end{aligned}$
1AX	to Davis/Pine	$\xrightarrow[\substack{\text { n.a. } \\ \text { California/Park } \\ \text { Presidio }}]{ }$	267	284	270	270	268	0\%	0\%	0% 92%	0% 92%	0% 91%
1BX	to Davis/Pine to Park Presidio/California	$\begin{gathered} \text { n.a. } \\ \text { California/Fillmore } \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 343 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 360 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 346 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ 346 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 344 \\ \hline \end{gathered}$	$\begin{gathered} 0 \% \\ 103 \% \end{gathered}$	$\begin{gathered} 0 \% \\ 108 \% \end{gathered}$	$\begin{gathered} \hline 0 \% \\ 104 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \% \\ 104 \% \\ \hline \end{gathered}$	$\begin{gathered} 0 \% \\ 103 \% \\ \hline \end{gathered}$
28	to Fort Mason to Daly City BART	$19^{\text {th }}$ Ave/Lincoln	$\begin{aligned} & 313 \\ & 432 \\ & \hline \end{aligned}$	$\begin{aligned} & 341 \\ & 455 \\ & \hline \end{aligned}$	$\begin{aligned} & 315 \\ & 437 \end{aligned}$	$\begin{aligned} & 312 \\ & 437 \\ & \hline \end{aligned}$	$\begin{aligned} & 310 \\ & 434 \\ & \hline \end{aligned}$	$\begin{aligned} & 117 \% \\ & 142 \% \end{aligned}$	$\begin{aligned} & 128 \% \\ & 149 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 118 \% \\ & 143 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 117 \% \\ & 143 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 116 \% \\ & 142 \% \\ & \hline \end{aligned}$
28 L	to Park Presidio/ California to Daly City BART	$\begin{aligned} & \text { n.a. } \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \% \\ & 0 \% \\ & 0 \% \end{aligned}$	$\begin{aligned} & 0 \% \\ & 0 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \% \\ & 0 \% \end{aligned}$	$\begin{aligned} & 0 \% \\ & 0 \% \\ & \hline \end{aligned}$	0\%
	Wilbur Smith Associates - Febru Not applicable; Indicates that no hour capacity is based on the M and 80% of the number of seated California line operates at an n load points located east of Fill	y 2006. uns are made on that ro Bus and Metro FY 20 Bssengers, depending o $\%$ of the two-hour peak t-minute headway wes ore Street.	in that direct 2005 Weekda e specific tra Fillod ridership Fillmore Str	on during Conditi sit vehic t and at	hat partic s. It assu configura three-min	lar time tion) and te headw	period. preciable may not i ay east of	number of s clude the ef Fillmore Str	$\begin{aligned} & \text { nces pe } \\ & \text { pe } \\ & \text { t. The } \end{aligned}$	icle	$\begin{aligned} & \text { mewhe } \\ & \text { uns. } \end{aligned}$	between ond to

Amy Marshall, The Presidio Trust

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.38 of B-3.47

Table 10
Route 10 Golden Gate Transit Bus Cumulative Passenger Loads and Load Factors
Year 2025

Time Period	Number of Passengers					Average Load Factor ${ }^{(1)}$				
	Requested No Action	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Requested No Action	Alt. 1	Alt. 2	Alt. 3	Alt. 4
AM Peak Hour										
- Northbound	35	37	36	36	35	59\%	63\%	62\%	62\%	60\%
- Southbound	30	34	30	29	29	19\%	22\%	19\%	19\%	19\%
PM Peak Hour										
- Northbound	24	31	25	24	23	12\%	16\%	13\%	12\%	12\%
- Southbound	40	47	41	41	40	17\%	20\%	18\%	18\%	17\%
Source: Wilbur Smith Associates - February 2006. Notes:										

Table 11

PresidiGo Cumulative Ridership by Alternative Year 2025		
Alternative	AM Peak Hour	PM Peak Hour
Requested No	231	341
Action Alt.	244	369
Alternative 1	231	342
Alternative 2	230	341
Alternative 3	230	342
Alternative 4		

Requested No Action Alternative - The Requested No Action Alternative would generate 265 daily transit trips. The alternative would generate 41 transit trips in the AM peak hour and 45 daily transit trips. The alternative would generate
transit trips in the PM peak hour. The transit analysis of year 2025 conditions shows that cumulative ridership due to regional growth trends on Routes 1, 1AX, and 1BX could exceed capacity in the inbound (toward downtown) direction during the AM peak hour if additional capacity is not added to these routes by 2025. However, the Presidio is expected to contribute less than two percent to the total projected 2025 AM peak hour ridership on these routes in this direction. In the PM peak hour, cumulative ridership on Muni Routes 1, 1BX, and 28 could exceed capacity if additional capacity is not added. The projected ridership on Muni Route 28 is expected to exceed capacity in both the inbound and outbound directions. The maximum load point for the Muni Route 28 occurs south of Golden Gate Park, and many passengers traveling to and from the Presidio are expected to board the bus at a considerable distance from the maximum load point.

Golden Gate Transit (GGT) Route 10 is the route that directly serves the project site. As shown in Table 10, ridership on GGT Route 10 is not expected to exceed capacity during either the AM or PM peak hours. This analysis conservatively assumes that all transit ridership to/from the North Bay would be on GGT Route 10. In reality, some passengers may choose to ride PresidiGo to the Golden Gate Bridge Toll Plaza, and transfer to another GGT route, in which case, the transit load would be distributed across more routes, thereby resulting in a lesser impact.

Alternative 1: PTMP Alternative - Alternative 1 would generate 1,524 daily transit trips, which is approximately 475 percent more transit trips than the Requested No Action Alternative. The alternative would generate 114 transit trips in the AM peak hour and 212 transit trips in the PM peak hour; which is an increase of 178 and 371 percent, respectively, compared to the Requested No Action Alternative. If Muni does not provide additional capacity for Routes 1, 1AX, and 1BX on California Street by 2025, the cumulative ridership due to regional growth trends and implementation of the PTMP could exceed capacity on one or more of these three trends and implementation of the PTMP could exceed capacity on one or more of these three
routes in the (toward downtown) direction in the AM peak hour. However, the Presidio is expected to contribute less than three percent to the total AM peak hour projected 2025 ridership on these routes in this direction. In the PM peak hour, cumulative ridership on Muni Route 1, 1BX, and 28 could exceed capacity if additional capacity is not added to this route. The projected ridership on Muni Route 28 is expected to exceed capacity in both the inbound and outbound directions. The maximum load point for the Muni Route 28 occurs south of Golden Gate Park, and many passengers traveling to and from the Presidio are expected to board the bus at a considerable distance from the maximum load point.

As shown in Table 10, ridership on GGT Route 10 with Alternative 1is not expected to exceed capacity during either the AM or PM peak hours. Alternative 1 results in similar load factors for GGT ridership as the Requested No Action Alternative. This analysis conservatively assumes that all transit ridership to/from the North Bay would be on GGT Route 10. In reality, some passengers may choose to ride PresidiGo to the Golden Gate Bridge Toll Plaza, and transfer to another GGT route, in which case, the transit load would be distributed across more routes, thereby resulting in a lesser impact.

Alternative 2: Wings Retained/Trust Revised Alternative - Alternative 2 would generate 558 daily transit trips, or 62 percent fewer than Alternative 1 , and approximately 111 percent more than the Requested No Action Alternative. In the AM peak hour, Alternative 2 would generate 58 transit trips, or 49 percent fewer than Alternative 1 and approximately 41 percent more than the Requested No Action Alternative. In the PM peak hour, Alternative 2 would generate 64 transit trips, or 70 percent fewer than Alternative 1, and approximately 42 percent more than the Requested No Action Alternative.

As shown in Tables 8 and 9, average load factors on Muni lines during the AM and PM peak hours with Alternative 2 would be virtually the same as with the Requested No Action Alternative and similar to that with Alternative 1. The Muni lines that would experience an

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.39 of B-3.47

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.40 of B-3.47
average load factor at the maximum load point higher than 100 percent $(1,1 \mathrm{AX}$, and 1 BX in the AM peak hour; $1,1 \mathrm{BX}$, and 28 in the PM peak hour) under Alternative 1 due to the growth in cumulative ridership associated with Bay Area regional trends in population and employment would also do so under Alternative 2.

As shown in Table 10, the average load factor on GGT Route 10 in the AM peak hour in the northbound direction would improve to 62 percent, from 63 percent under Alternative 1. None of the average load factors in the year 2025 under Alternative 2 would be above 100 percent. This analysis conservatively assumes that all transit ridership to/from the North Bay would be on GGT Route 10. In reality, some passengers may choose to ride PresidiGo to the Golden Gate Bridge Toll Plaza, and transfer to another GGT route, in which case, the transit load would be distributed across more routes, thereby resulting in a lesser impact.

As Table 11 indicates, PresidiGo ridership in the year 2025 under Alternative 2 would decrease by approximately five percent in the AM peak hour and seven percent in the PM peak hour when compared to Alternative 1, due to the lower development intensity associated with Alternative 2. PresidiGo ridership for Alternative 2 effectively be the same as that for the Requested No Action Alternative in both the AM and PM peak hours.

Alternative 3: Wings Removed Alternative -Alternative 3 would generate 484 daily transit trips, or 83 percent more than the Requested No Action Alternative; 68 percent fewer than Alternative 1; and 13 percent fewer than Alternative 2. In the AM peak hour, Alternative 3 would generate 48 transit trips, or 17 percent more than the Requested No Action Alternative; 58 percent fewer than Alternative 1; and 17 percent fewer than Alternative 2. In the PM peak hour, Alternative 3 would generate 57 transit trips, or 27 percent more than the Requested No Action Alternative; 73 percent fewer than Alternative 1 ; and 11 percent fewer than Alternative 2.

As shown in Tables 8 and 9, average load factors on Muni lines during the AM and PM peak hours with Alternative 3 would be similar to other alternatives. The Muni lines that would experience an average load factor at the maximum load point higher than 100 percent ($1,1 \mathrm{AX}$, and 1 BX in the AM peak hour; $1,1 \mathrm{BX}$, and 28 in the PM peak hour) under Alternative 1 due to the growth in cumulative ridership associated with Bay Area regional trends in population and employment would also do so under Alternative 3.

As shown in Table 10, GGT's average load factor for the AM peak hour in the northbound direction would improve to 62 percent, from 63 percent under Alternative 1. None of the average load factors in the year 2025 under Alternative 3 would be above 100 percent for Alternative 3 in either the AM or PM peak hour. This analysis conservatively assumes that all transit ridership to/from the North Bay would be on GGT Route 10. In reality, some passengers may choose to ride PresidiGo to the Golden Gate Bridge Toll Plaza, and transfer to another GGT route, in which case, the transit load would be distributed across more routes, thereby resulting in a lesser impact.

As Table 11 indicates, PresidiGo ridership in the year 2025 under Alternative 3 would decrease slightly in the AM and PM peak hours when compared to Alternative 2; decrease by approximately six percent in the AM peak hour and eight percent in the PM peak hour when compared to Alternative 1, due to the lower development intensity associated with Alternative 3; and effectively be the same as that with the Requested No Action Alternative.

Alternative 4: Battery Caulfield Alternative -Alternative 4 would generate 417 daily transit trips, or 57 percent more than the Requested No Action Alternative; 73 percent fewer than Alternative 1; 25 percent fewer than Alternative 2; and 14 percent fewer than Alternative 3. In the AM peak hour, Alternative 4 would generate 34 transit trips, or 17 percent fewer than the Requested No Action Alternative; 70 percent fewer than Alternative 1; 41 percent fewer than Alternative 2; and 29 percent fewer than Alternative 3. In the PM peak hour, Alternative 4 would generate 42 transit trips, or 7 percent fewer than the Requested No Action Alternative; 80 percent fewer than Alternative 1; 34 percent fewer than Alternative 2; and 26 percent fewer than Alternative 3.

As shown in Tables 8 and 9, average load factors on Muni lines during the AM and PM peak hours with Alternative 3 would be similar to other alternatives. The Muni lines that would experience an average load factor at the maximum load point higher than 100 percent ($1,1 \mathrm{AX}$, and 1 BX in the AM peak hour; $1,1 \mathrm{BX}$, and 28 in the PM peak hour) under Alternative 1 due to the growth in cumulative ridership associated with Bay Area regional trends in population and employment would also do so under Alternative 4.

As shown in Table 10, GGT's average load factor for the AM peak hour in the northbound direction would improve to 60 percent, from 62 percent under Alternative 2 and 3, from 63 percent under Alternative 1, and from 59 percent under the Requested No Action Alternative. None of the average load factors in the year 2025 under Alternative 4 would be above 100 percent.

As Table 11 indicates, PresidiGo ridership in the year 2025 under Alternative 4 would effectively be the same compared to Alternative 3 ; decrease by approximately six percent in the AM peak hour and seven percent in the PM peak hour when compared to Alternative 1, due to the lower development intensity associated with Alternative 4; and effectively be the same compared to the Requested No Action Alternative.

4. BICYCLE AND PEDESTRIAN CONDITIONS

The number of person trips to and from the project site expected to be made by bicycling, walking, or some other mode was calculated assuming the mode split discussed in Technical Memorandum No. 2.

All of the alternatives assume improvements to the pedestrian and bicycle circulation network consistent with the Trails and Bikeways Master Plan. In the vicinity of the project site, the Trails and Bikeways Master Plan would provide a multi-use path that would extend from Battery Caulfield Road on the west side of the site around the south side of the site to connect with Park

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.41 of B-3.47

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.42 of B-3.47

Boulevard, which is an existing multi-use path that continues under Highway 1 to the Mountain Lake area. The Master Plan would also provide an uphill bike lane on Wedemeyer Street/Battery Caulfield Road between $15^{\text {th }}$ Avenue and Washington Boulevard, a pedestrian path in the Wedemeyer Street/Battery Caulfield corridor, and pedestrian paths that connect the project site to Lobos Creek and the Baker Beach Apartments.

Requested No Action Alternative - The Requested No Action Alternative would generate 179 daily pedestrian or bicycle trips. The alternative would generate 27 pedestrian or bicycle trips in the AM peak hour and 30 pedestrian or bicycle trips in the PM peak hour.

Alternative 1: PTMP Alternative - Alternative 1 would generate 1,483 daily pedestrian or bicycle trips, which is about 8 times that of the Requested No Action Alternative. In the AM peak hour, Alternative 1 would generate 103 pedestrian or bicycle trips, or more than 3 times that of the Requested No Action Alternative. In the PM peak hour, Alternative 1 would generate 203 pedestrian or bicycle trips, or more than 6 times that of the Requested No Action Alternative. The expected level of pedestrian and bicycle activity with Alternative 1 would be accommodated within the bicycle and pedestrian network planned as part of the Presidio Trails and Bikeways Master Plan.

Alternative 2: Wings Retained/Trust Revised Alternative - Alternative 2 would generate 541 daily pedestrian or bicycle trips, or 64 percent fewer than Alternative 1 ; and approximately 3 times more than for the Requested No Action Alternative. In the AM peak hour, Alternative 2 would generate 56 pedestrian or bicycle trips, or 46 percent fewer than Alternative 1; and approximately twice that for the Requested No Action Alternative. In the PM peak hour, Alternative 2 would generate 61 pedestrian or bicycle trips, or 70 percent fewer than Alternative 1 ; and approximately twice that for the Requested No Action Alternative. Since Alternative 2 would generate fewer bicycle and pedestrian trips than Alternative 1, the expected level of pedestrian and bicycle activity with Alternative 2 could be accommodated within the bicycle and pedestrian network planned as part of the Presidio Trails and Bikeways Master Plan.

Alternative 3: Wings Removed Alternative - Alternative 3 would generate 452 daily pedestrian or bicycle trips, or 16 percent fewer than Alternative 2; 70 percent fewer than Alternative 1 ; and approximately 152 percent more than the Requested No Action Alternative. In the AM peak hour, Alternative 3 would generate 43 pedestrian or bicycle trips, or 23 percent fewer than Alternative 2; 58 percent fewer than Alternative 1; and approximately 59 percent more than the Requested No Action Alternative. In the PM peak hour, Alternative 3 would generate 52 pedestrian or bicycle trips, or 15 percent fewer than Alternative 2; 74 percent fewer than Alternative 1 ; and approximately 73 percent more than the Requested No Action Alternative. The expected level of pedestrian and bicycle activity with Alternative 3 would be accommodated within the bicycle and pedestrian network planned as part of the Presidio Trails and Bikeways Master Plan.

Alternative 4: Battery Caulfield Alternative - Alternative 4 would generate 404 daily pedestrian or bicycle trips, or 11 percent fewer than Alternative 3; 25 percent fewer than

Alternative 2; 73 percent fewer than Alternative 1; and approximately 126 percent more than the Requested No Action Alternative. In the AM peak hour, Alternative 4 would generate 31 pedestrian or bicycle trips, or 28 percent fewer than Alternative 3; 45 percent fewer than Alternative 2; 70 percent fewer than Alternative 1; and approximately 15 percent more than the Requested No Action Alternative. In the PM peak hour, Alternative 4 would generate 38 pedestrian or bicycle trips, or 27 percent fewer than Alternative 3; 38 percent fewer than Alternative 2; 81 percent fewer than Alternative 1; and approximately 27 percent more than the Requested No Action Alternative. The expected level of pedestrian and bicycle activity with Alternative 4 would be accommodated within the bicycle and pedestrian network planned as part of the Presidio Trails and Bikeways Master Plan.

5. PARKING CONDITIONS

Parking demand generated by the five land use alternatives has been estimated for the midday weekday, evening, and weekend conditions, based on the methodology used in the PTMP EIS. Parking demand consists of both long-term demand (i.e., employee and resident parking) and short-term demand (i.e., visitor parking). Consistent with the methodology outlined in the San Francisco Planning Department's Transportation Impact Analysis Guidelines for Environmental Review (October 2002), long-term parking for non-residential land uses was estimated by determining the number of employees for each land use and applying the average mode split and vehicle occupancy from the trip generation estimates for both external and internal trips. Each employee vehicle trip was assumed to require one space per day. A long-term rate of 1.13 to 1.32 spaces per dwelling unit was used for standard residential units (depending on the mix of unit types/sizes for each alternative), and a rate of 0.27 space per dwelling unit was used for all senior housing, based on the Institute of Transportation Engineers' Parking Generation Manual, Second Edition.

Like the methodology for estimating long-term parking demand, the methodology for estimating short-term parking demand is also consistent with the methodology outlined in the San Francisco Planning Department's Transportation Impact Analysis Guidelines for Environmental Review (October 2002). Short-term parking was estimated based on the total daily visitor trips and the average turnover rate. A short-term parking turnover rate of six vehicles per space per day was applied to industrial/warehousing and office uses, ten vehicles per space per day was used for cultural/educational uses, and three vehicles per space per day was used for conference uses. Tables 12 and 13 present the estimated average weekday midday, evening, and weekend parking demand for all alternatives.

Requested No Action Alternative - There are currently approximately 306 parking spaces on the lower plateau of the project site and 30 spaces on the upper plateau. Under the Requested No Action Alternative there would continue to be 30 spaces on the upper plateau, and approximately 60 of the 306 spaces on the lower plateau would be removed during remediation of Landfill 10. Under the Requested No Action Alternative, 22 of the 30 parking spaces available on the upper plateau would be occupied during peak demand periods, leaving a surplus of 8 parking spaces (representing approximately 26% of the parking capacity on the upper plateau). On the lower

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.43 of B-3.47

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.44 of B-3.47
plateau, 111 of the 246 parking spaces available would be occupied during the peak demand period, leaving a surplus of 135 parking spaces (representing approximately 55% of the parking capacity on the lower plateau).

Table 12

Time Period/ Supply and Demand	Number of Parking Spaces				
	Requested No Action Alt.	Alt. $1^{(1)}$	Alt. 2	Alt. $3^{(2)}$	Alt. 4
Weekday Midday	22	32	11	18	51
Weekday Evening	1	8	19	1	102
Weekend	2	11	19	2	102
Peak Period Demand	22	32	19	18	102
Proposed Supply	30	32	21	18	107
Surplus / (Deficit)	8	0	2	0	5
Surplus / (Deficit) as \% or Available Spaces	26\%	0	9\%	0	5\%

Source: Wilbur Smith Assoc
arking demand.
(2) Note: Alternative 3: parking supply meets parking demand

Table 13

Time Period/ Supply and Demand	Number of Parking Spaces				
	Requested No Action Alt.	Alt. 1	Alt. 2	Alt. 3	Alt. 4
Weekday Midday	111	399	275	177	90
Weekday Evening	58	403	299	294	113
Weekend	79	480	308	300	123
Peak Period Demand	111	480	308	300	123
Proposed Supply	246	505	431	312	160
Surplus / (Deficit)	135	25	123	12	37
Surplus / (Deficit) as \% or Available Spaces	55\%	5\%	29\%	4\%	23\%

Source: Wilbur Smith Associates - February 2006

Alternative 1: PTMP Alternative - According to the Final Plan Alternative described in the PTMP, the PHSH district was estimated to have a demand of 674 spaces, and therefore was proposed to have a parking supply of 708 spaces. The parking demand calculation assumptions for residential uses in the PTMP EIS were intended to reflect the wide range of types and sizes of residential units throughout the Presidio. The parking demand assumptions used for the
calculations in the PTMP EIS have been refined for the purposes of this site-specific study, and consequently the parking demand for Alternative 1 is estimated to be 491 spaces. The parking supply of 708 parking spaces called for in the PTMP would far exceed the peak period demand, thus allowing for a reduction in this proposed parking supply to 537 spaces. It should be noted that for Alternative 1, parking supply would meet the parking demand on the upper plateau. Of the 505 spaces available on the lower plateau, 480 spaces would be occupied during peak demand period, leaving a surplus of 25 parking spaces

As a percentage of supply, on the lower plateau Alternative 1 has approximately 5% excess capacity, which is substantially less than the 55% excess capacity of the Requested No Action Alternative.

Alternative 2: Wings Retained/Trust Revised Alternative - Alternative 2 would increase the total parking supply from 336 to 452 , where the upper plateau would have 21 spaces and the lower plateau would have 431 spaces. About 123 of the spaces on the lower plateau would be underground beneath Building 1801. Of the 21 spaces on the upper level, 19 would be occupied during peak demand periods. Of the 431 spaces on the lower plateau, 308 would be occupied during peak demand periods. As such, the proposed supply of 452 spaces would accommodate the estimated demand, and provide a surplus of about 125 spaces. Some of these spaces would be underground.

Alternative 3: Wings Removed Alternative - Alternative 3 is expected to have a peak period demand of 18 spaces on the upper plateau and 300 spaces on the lower plateau. The proposed supply of 330 spaces would adequately accommodate the estimated demand, and would provide about twelve additional spaces on the lower plateau for drivers circulating to find parking spaces and for trailhead parking.

Alternative 4: Battery Caulfield Alternative - Of Alternatives 1, 2, 3 and 4, Alternative 4 would generate the least overall parking demand, with a weekend demand for about 225 spaces in 2025 , or approximately 69 percent more than the peak period demand expected for the Requested No Action Alternative. The proposed supply of 267 spaces would accommodate the expected demand.

6. MITIGATION MEASURES

6.1 Potential Impacts Identified

The possible mitigation measure identified for Lake Street $/ 14^{\text {th }}$ Avenue in the PTMP EIS included signalization and restriping to provide a westbound left-turn pocket at Lake Street $/ 14^{\text {th }}$ Avenue (Mitigation Measure TR-11). The possible mitigation measure identified in the PTMP EIS for the California Street $/ 14^{\text {th }}$ Avenue intersection included installing STOP signs on California Street at the intersection and restriping to add a right-turn lane to the northbound approach, or possibly installing a traffic signal if queues on the westbound approach were determined to extend into the adjacent intersection of Park Presidio Boulevard/California Street.

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.45 of B-3.47

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.46 of B-3.47

While signalization would mitigate the operation of these intersections, coordination with the San Francisco Department of Parking and Traffic following its comments on the PTMP EIS raised questions about the need for improving the minor approaches to these intersections (PTMP EIS, Volume II, Chapter 5, page 5-59). It has been determined, through subsequent analysis (Access Study at $14^{\text {th }} / 15^{\text {th }}$ Avenue Gates, Presidio Trust, February 2003), that if LOS E or F conditions occur on the minor approaches to Lake Street $/ 14^{\text {th }}$ Avenue, they could be mitigated with other measures such as RIGHT TURN ONLY restrictions for the minor approaches if the City determines that this is warranted. The minor approaches to the intersection of Lake Street $/ 14^{\text {th }}$ Avenue are expected to operate with an average delay per vehicle that is comparable to that for the minor approaches to the intersection of California Street/ $14^{\text {th }}$ Avenue. Therefore, such measures would also likely improve the minor approaches to the intersection of California Street $/ 14^{\text {th }}$ Avenue to LOS D or better in the AM and PM peak hours, and to improve the minor approaches to the intersection of California Street $/ 15^{\text {th }}$ Avenue to LOS D or better in the PM peak hour.

As discussed in Section 3 Transit Service, if Muni does not add capacity to the routes, four Muni lines (1, 1AX, 1BX, and 28) would experience a maximum peak hour load factor higher than 100 percent under all alternatives in the year 2025 due to the growth in cumulative ridership associated with trends in population and employment in the Bay Area region and at the Presidio. Mitigation measures called for in the PTMP EIS, including increased frequency on MUNI lines, PresidiGo service, and monitoring of GGT routes and coordination with GGT, would reduce the effects of these alternatives on transit service.

6.2 Mitigation Measures Identified in the PTMP EIS

The following measures are part of the PTMP EIS and would apply to all PHSH site alternatives, with and without the Park Presidio Boulevard Access Variant, unless indicated otherwise. For measures that fall outside the Presidio, the Trust would coordinate with the City's Department of Parking and Traffic, which would have sole jurisdiction.

TR-11 Lake Street / $14^{\text {th }}$ Avenue Intersection Improvements (Alternatives 1,2, and 3 with the couplet and Alternative 1 with the Variant) - Designate the $15^{\text {th }}$ Avenue Gate for outbound traffic, and open the $14^{\text {th }}$ Avenue Gate for inbound traffic. Alternatively, if the Park Presidio traffic, and open the 14 Avenue Gate for inbound traffic. Alternatively, if the Park Presidio
Boulevard Access Variant is implemented, designate both the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates for inbound traffic only. Prior to the operation of the minor approach(es) deteriorating to LOS E or F, implement right-turn-only restrictions for the minor approach(es) at the intersection of Lake Street $/ 14^{\text {th }}$ Avenue if the City determines that this is warranted. The Trust would coordinate with the City and County of San Francisco to determine the contribution of each party to the cost of the improvements. Using the forecasted peak hour turning movement volumes, and analysis of Caltrans' Peak Hour Signal Warrant indicates that at least one of the two parts of the warrant would be met with Alternatives 1, 2, and 3 with the couplet and Alternative 1 with the Park Presidio Boulevard Access Variant. Therefore, the effect is considered significant with these alternatives, and less than significant with all other alternatives.

Of the alternatives with which there would be a significant effect, Alternative 1 with the couplet would have a project-specific effect on this intersection, as Alternative 1 would comprise the majority of the expected growth in total intersection traffic volume. The effect would be cumulatively significant with Alternatives 2 and 3 with the couplet and Alternative 1 with the Variant.

TR-15 California Street / $14^{\text {th }}$ Avenue Intersection Improvements - Prior to the operations of the minor approach(es) deteriorating to LOS E or F, implement right-turn only restrictions for the minor approaches at the two-way stop-controlled intersection of Lake Street $/ 14^{\text {th }}$ Avenue. ${ }^{2}$ Using the forecasted peak-hour turning movement volumes, an analysis of Caltrans' Peak Hour Signal Warrant indicates that at least one part of the warrant would be met with Alternatives 1,2, 3, and 4 as well as the Requested No Action Alternative. The Trust would coordinate with the City and County of San Francisco to determine the contribution of each party to the cost of the improvements.

Traffic associated with alternatives (all alternatives would meet at least one part of the Caltrans peak hour volume warrant) would comprise 12 (Requested No Action Alternative) to 47 (Alternative 1) percent of the cumulative growth in the AM peak hour volume between 2005 and 2025. Traffic associated with Alternatives 2, 3, and 4 would comprise 10 to 18 percent of the cumulative growth in the AM peak hour volume between 2005 and 2025. In the PM peak hour, alternatives would comprise 7 to 31 percent of the cumulative growth in the PM peak hour intersection volume between 2005 and 2025. Although all alternatives are expected to meet at least one part of the Caltrans peak hour volume warrant in 2025, the warrant would be met with volume on the southbound approach in all cases, and none of the alternatives are expected to add traffic to the southbound approach of this intersection. Therefore, the effect is considered cumulatively significant with all alternatives.

TR-22 TDM Program Monitoring - The Trust has agreed to implement a TDM Program to reduce automobile usage by all tenants, occupants, and visitors (see Appendix D of the PTMP for a full description). The Trust would monitor implementation and effectiveness of the TDM program on an ongoing basis. If the TDM performance standards as described in the PTMP (Appendix D) are not being reached, the Trust will implement more aggressive TDM strategies or intensify components of the existing TDM program, such as requiring tenant participation in more TDM program elements, or implementing more frequent and/or extensive shuttle service.

TR-10 and TR-25 Transit Service Improvements and Monitoring Program - The Trust currently monitors Muni operations and passenger loads within the Presidio. Continued
${ }^{2}$ The PTMP EIS proposed installing all-way stop control at this intersction, and if that were not feasible because of queues extending into the adjacent intersection on Park Presidio Boulevard, installing a traffic signal. In a comment letter on the PTMP EIS, the San Francisco Department of Parking and Traffic (DPT) expressed concern about the reasonableness of signalization at this intersection. The alternatives to signalization developed for the intersection of Lake Stree/t14th Avenue (right-turn-only restrictions) would
approaches of the intersection of California Street 14^{th} Avenue.

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-3.47 of B-3.47
monitoring of Muni service in the Presidio, and similar monitoring of GGT service at the Presidio would indicate any capacity problems. If the monitoring were to reveal insufficient capacity for northbound Presidio-generated passengers during the PM peak hour, the Trust will notify Muni and/or the Golden Gate Bridge Highway and Transportation District of the deficiencies. Transit service providers could then reduce passenger load factors through increased frequency.

TR-26 Construction Traffic Management Plan - During pre-construction activities, the contractor(s) of individual projects will work with the Trust to develop a construction traffic management protocol. The plan will include information on construction phases and duration, scheduling, proposed haul routes, permit parking, staging area management, visitor safety, detour outes, and pedestrian movements on adjacent routes.

6.3 Additional PHSH-related Mitigation Measure

TR-27 Lake Street / 15 ${ }^{\text {th }}$ Avenue Intersection Improvements (Requested No Action Alternative Only.) - This all-way stop-controlled intersection is expected to operate at LOS E in the AM peak hour with the Requested No Action Alternative. Implementation of the one-way couplet assumed in PTMP and under the other alternatives will improve the operation of this intersection to LOS D or better.

It should be noted that the intersection is also expected to operate at LOS E under Alternative 1 during the AM peak hour. However, the average intersection delay would improve compared to the Requested No Action Alternative. Additionally, the result of the signal warrant analysis attached in Appendix C shows that the intersection is not expected to meet the Caltrans peak hour signal warrant. Therefore, the LOS E operating conditions in the AM peak hour with Alternative 1 do not constitute a significant impact.

PTMP mitigation measures related to parking supply and the use of the $14^{\text {th }} / 15^{\text {th }}$ Avenue Gates (TR-23 and TR-11 portion) have been addressed in the definition of the project alternatives and are therefore not repeated here. Other intersection improvement measures included in the PTMP EIS fall outside the PHSH district and vicinity, and also are not repeated here. Mitigation Measure TR-9 Bicycle and Pedestrian Amenities will be implemented as planned improvements are funded pursuant to the adopted Presidio Trails and Bikeways Master Plan. Mitigation Measure TR-21 Presidio-wide Parking Management, which applies to the Crissy Field area, does not apply to the PHSH district.

Year 2025
Requested No Action Alternative
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			¢			${ }_{4}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	616	14	17	300	1	3	1	43	4	4	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	670	15	18	326	1	3	1	47	4	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	327			685			1051	1046	677	1092	1053	327
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	327			685			1051	1046	677	1092	1053	327
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			98	100	90	97	98	100
cM capacity (veh/h)	1244			918			199	225	456	170	223	719
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	687	346	51	12								
Volume Left	2	18	3	4								
Volume Right	15	1	47	3								
cSH	1244	918	413	241								
Volume to Capacity	0.00	0.02	0.12	0.05								
Queue Length 95th (ft)	0	2	10	4								
Control Delay (s)	0.0	0.7	14.9	20.7								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.0	0.7	14.9	20.7								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.2									
Intersection Capacity Utilization			43.9\%		CU Leve	of Ser			A			
Analysis Period (min)			15									

Year 2025 - AM Peak (No Action Alt)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\dagger}$			\dagger			¢			\dagger	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	48	601	14	14	292	90	2	64	41	52	40	24
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	50	626	15	15	304	94	2	67	43	54	42	25
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	691	413	111	121								
Volume Left (vph)	50	15	2	54								
Volume Right (vph)	15	94	43	25								
Hadj (s)	0.00	-0.13	-0.23	-0.03								
Departure Headway (s)	5.4	5.6	6.8	7.0								
Degree Utilization, x	1.04	0.64	0.21	0.23								
Capacity (veh/h)	658	622	479	479								
Control Delay (s)	68.9	18.1	11.6	12.1								
Approach Delay (s)	68.9	18.1	11.6	12.1								
Approach LOS	F	C	B	B								
Intersection Summary												
Delay			43.3									
HCM Level of Service			E									
Intersection Capacity Utilization			72.3\%		CU Leve	of Se			C			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	3	685	6	177	388	7	4	5	44	3	2	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate（vph）	3	706	6	182	400	7	4	5	45	3	2	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX ，platoon unblocked	0.93						0.93	0.93		0.93	0.93	0.93
vC，conflicting volume	407			712			1489	1488	709	1532	1487	404
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	363			712			1526	1524	709	1572	1523	359
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	100			80			94	94	90	95	98	99
cM capacity（veh／h）	1123			897			74	88	437	61	88	642
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	715	590	55	9								
Volume Left	3	182	4	3								
Volume Right	6	7	45	4								
cSH	1123	897	251	115								
Volume to Capacity	0.00	0.20	0.22	0.08								
Queue Length 95th（ft）	0	19	20	6								
Control Delay（s）	0.1	5.0	23.3	39.0								
Lane LOS	A	A	C	E								
Approach Delay（s）	0.1	5.0	23.3	39.0								
Approach LOS			C	E								
Intersection Summary												
Average Delay			3.4									
Intersection Capacity Utilization			80．5\％	ICU Level of Service					D			
Analysis Period（min）			15									

Year 2025 －AM Peak（No Action Alt）
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	$\stackrel{ }{ }$							\dagger	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow	F	${ }_{1}$	\uparrow	F		个个年			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4925	
FIt Permitted	0.58	1.00	1.00	0.23	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1058	1756	1492	397	1756	1492		5012			4925	
Volume（vph）	253	447	32	65	182	137	0	2605	85	0	2266	390
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	258	456	33	66	186	140	0	2658	87	0	2312	398
RTOR Reduction（vph）	0	0	3	0	0	1	0	4	0	0	28	
Lane Group Flow（vph）	258	456	30	66	186	139	0	2741	0	0	2682	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	349	578	491	131	578	491		2889			2839	
v／s Ratio Prot		c0．26			0.11			c0．55			0.54	
v／s Ratio Perm	0.24		0.02	0.17		0.09						
v／c Ratio	0.74	0.79	0.06	0.50	0.32	0.28		0.95			0.94	
Uniform Delay，d1	25.3	25.8	19.5	22.9	21.4	21.1		16.8			16.7	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.65			1.00	
Incremental Delay，d2	13.1	10.5	0.2	13.2	1.5	1.4		4.0			8.1	
Delay（s）	38.4	36.3	19.7	36.1	22.8	22.5		14.9			24.9	
Level of Service	D	D	B	D	C	C		B			C	
Approach Delay（s）		36.3			25.0			14.9			24.9	
Approach LOS		D			C			B			C	
Intersection Summary												
HCM Average Control Delay			22.0		HCM Leva	el of Se	vice		C			
HCM Volume to Capacity ratio			0.89									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			89．6\％		ICU Leve	of Ser			E			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025－AM Peak（No Action Alt）	Synchro 6 Report
Page 4	

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Ave

Year 2025 - AM Peak (No Action Alt)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			\$			${ }_{\dagger}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	49	600	15	12	277	39	8	19	32	4	18	45
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	53	645	16	13	298	42	,	20	34	4	19	48
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					528							
pX, platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
vC , conflicting volume	340			661			1161	1124	653	1148	1111	319
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	280			661			1176	1135	653	1161	1121	257
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	96			99			93	88	93	97	89	93
cM capacity (veh/h)	1187			937			127	176	471	129	180	721
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	714	353	63	72								
Volume Left	53	13	9	4								
Volume Right	16	42	34	48								
cSH	1187	937	247	346								
Volume to Capacity	0.04	0.01	0.26	0.21								
Queue Length 95th (ft)	3	1	25	19								
Control Delay (s)	1.2	0.5	24.5	18.1								
Lane LOS	A	A	C	C								
Approach Delay (s)	1.2	0.5	24.5	18.1								
Approach LOS			C	C								
Intersection Summary												
Average Delay			3.2									
Intersection Capacity Utilization			65.1\%		U Leve	of Ser			C			
Analysis Period (min)			15									

Year 2025-AM Peak (No Action Alt)	Synchro 6 Report
Wilbur Smith Associates 6	

HCM Unsignalized Intersection Capacity Analysis

Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total	343	327	221	176	48	195	
Volume Left	31	0	58	0	5	166	
Volume Right	0	15	0	14	31	15	
cSH	1255	1700	954	1700	341	234	
Volume to Capacity	0.02	0.19	0.06	0.10	0.14	0.83	
Queue Length 95th（ft）	2	0	5	0	12	161	
Control Delay（s）	0.9	0.0	2.8	0.0	17.3	67.3	
Lane LOS	A		A		C	F	
Approach Delay（s）	0.5		1.6		17.3	67.3	
Approach LOS					C	F	
Intersection Summary							
Average Delay			11.4				
Intersection Capacity Utilization			55．2\％		CU Leve	of Service	B
Analysis Period（min）			15				

Year 2025 －AM Peak（No Action Alt）
Wilbur Smith Associates

Synchro 6 Report
Page 7

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	$\stackrel{ }{*}$							\dagger				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	个t		${ }_{1}$	个t			做			个个号	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3186			4960			5002	
FIt Permitted	0.44	1.00		0.22	1.00			1.00			1.00	
Satd．Flow（perm）	778	3318		388	3186			4960			5002	
Volume（vph）	104	653	24	102	270	115	0	2472	276	0	2255	107
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	107	673	25	105	278	119	0	2548	285	0	2325	110
RTOR Reduction（vph）	0	3	0	0	2	0	0	16	0	0	6	
Lane Group Flow（vph）	107	695	0	105	395	0	0	2817	0	0	2429	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	238	1015		119	975			2976			3001	
v／s Ratio Prot		0.21			0.12			c0．57			0.49	
v／s Ratio Perm	0.14			c0．27								
v／c Ratio	0.45	0.68		0.88	0.41			0.95			0.81	
Uniform Delay，d1	23.7	25.9		28.0	23.4			15.7			13.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.69	
Incremental Delay，d2	6.0	3.8		55.4	1.3			8.0			1.0	
Delay（s）	29.8	29.7		83.5	24.6			23.8			10.1	
Level of Service	C	C		F	C			C			B	
Approach Delay（s）		29.7			36.9			23.8			10.1	
Approach LOS		C			D			C			B	
Intersection Summary												
HCM Average Control Delay			20.4		HCM Leve	el of S	vice		C			
HCM Volume to Capacity ratio			0.93									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			88．4\％		ICU Leve	of Ser			E			
Analysis Period（min）			15									

Year 2025 －AM Peak（No Action Alt）
Wilbur Smith Associates
Synchro 6 Report

Year 2025
Alternative 1 (PTMP Alternative) One-way
Couplet
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	627	14	17	307	1	,	1	43	4	4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	682	15	18	334	1	3	1	47	4	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	335			697			1070	1065	689	1112	1072	334
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	335			697			1070	1065	689	1112	1072	334
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			98	100	90	97	98	100
cM capacity (veh/h)	1236			909			193	219	449	165	217	712
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	699	353	51	12								
Volume Left	2	18	3	4								
Volume Right	15	1	47	3								
cSH	1236	909	406	235								
Volume to Capacity	0.00	0.02	0.13	0.05								
Queue Length 95th (ft)	0	2	11	4								
Control Delay (s)	0.0	0.7	15.1	21.2								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.0	0.7	15.1	21.2								
Approach LOS			C	C								
Intersection Summary												
Average Delay			1.2									
Intersection Capacity Utilization			44.5\%		CU Leve	of Se	vice		A			
Analysis Period (min)			15									

Year 2025 - AM Peak (Alt 1)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	60	710	6	177	301	130	4	86	44	3	2	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate（vph）	62	732	6	182	310	134	4	89	45	3	2	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
VC ，conflicting volume	444			738			1606	1668	735	1691	1604	377
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	399			738			1656	1722	735	1747	1653	327
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	94			79			93	0	89	0	97	99
cM capacity（veh／h）	1082			877			57	62	423	0	69	665
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	800	627	138	9								
Volume Left	62	182	4	3								
Volume Right	6	134	45	4								
cSH	1082	877	86	0								
Volume to Capacity	0.06	0.21	1.60	Err								
Queue Length 95th（ft）	5	20	279	Err								
Control Delay（s）	1.5	5.0	403.4	Err								
Lane LOS	A	A	F	F								
Approach Delay（s）	1.5	5.0	403.4	Err								
Approach LOS			F	F								
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utilization			92．1\％	ICU Level of Service					F			
Analysis Period（min）			15									

Year 2025－AM Peak（Alt 1）
Wilbur Smith Associates

Synchro 6 Report
Page

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\rangle			7			4	\dagger	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{*}$	\uparrow	F		惺家			个蚛	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4919	
Flt Permitted	0.57	1.00	1.00	0.22	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1029	1756	1492	382	1756	1492		5012			4919	
Volume（vph）	271	454	32	65	193	137	0	2605	85	0	2266	415
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	277	463	33	66	197	140	0	2658	87	0	2312	423
RTOR Reduction（vph）	0	0	3	0	0	1	0	4	0	0	31	
Lane Group Flow（vph）	277	463	30	66	197	139	0	2741	0	0	2704	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	339	578	491	126	578	491		2889			2836	
v／s Ratio Prot		0.26			0.11			0.55			c0．55	
v／s Ratio Perm	c0． 27		0.02	0.17		0.09						
v／c Ratio	0.82	0.80	0.06	0.52	0.34	0.28		0.95			0.95	
Uniform Delay，d1	26.2	26.0	19.5	23.1	21.5	21.1		16.8			16.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.65			1.00	
Incremental Delay，d2	19.2	11.1	0.2	14.7	1.6	1.4		4.0			9.1	
Delay（s）	45.4	37.1	19.7	37.8	23.1	22.5		14.9			26.0	
Level of Service	D	D	B	D	C	C		B			C	
Approach Delay（s）		39.3			25.3			14.9			26.0	
Approach LOS		D			C			B			C	
Intersection Summary												
HCM Average Control Delay			22.9		HCM Leve	el of Se	rvice		C			
			0.90									
Actuated Cycle Length（s）			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			90．5\％		CU Leve	of Ser	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025－AM Peak（Alt 1）Synchro 6 Repor

Wilbur Smith Associates

Synchro 6 Repor

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Ave

Year 2025-AM Peak (Alt 1)
Wilbur Smith Associates

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

	$\stackrel{ }{ }$							\dagger	7			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			¢			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	19	647	15	12	277	20	8	7	32	4	19	57
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	20	696	16	13	298	22	9	8	34	4	20	61
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					528							
pX, platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
vC , conflicting volume	319			712			1151	1090	704	1117	1087	309
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	263			712			1163	1097	704	1127	1094	252
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	98			99			93	96	92	97	89	92
CM capacity (veh/h)	1213			897			132	192	441	148	193	732
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	732	332	51	86								
Volume Left	20	13	9	4								
Volume Right	16	22	34	61								
cSH	1213	897	277	393								
Volume to Capacity	0.02	0.01	0.18	0.22								
Queue Length 95th (ft)	1	.	16	21								
Control Delay (s)	0.4	0.5	20.9	16.7								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.4	0.5	20.9	16.7								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.5									
Intersection Capacity Utilization			54.5\%		CU Leve	of Ser	vice		A			
Analysis Period (min)			15									

Year 2025-AM Peak (Alt 1)	Synchro 6 Report
Wilbur Smith Associates 6	

CM Unsignalized Intersection Capacity Analysis

2／20／2006												
	\rangle			\dagger			4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ ${ }^{\text {a }}$			ब $\hat{\square}$			${ }_{4}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	75	594	14	55	294	28	，	31	29	158	13	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	79	625	15	58	309	29	1	33	31	166	14	15
Pedestrians												
Lane Width（ft）												
Walking Speed（fts）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					228							
pX，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
VC，conflicting volume	339			640			1083	1245	320	957	1238	169
$\mathrm{vC1}$ ，stage 1 conf vol												
vC2，stage 2 conf vol												
vCu, unblocked vol	265			640			1042	1211	320	911	1204	88
tC ，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	94			94			99	79	96	0	91	98
cM capacity（veh／h）	1255			954			149	155	682	162	156	919

Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total	392	327	213	184	64	195	
Volume Left	79	0	58	0	1	166	
Volume Right	0	15	0	29	31	15	
cSH	1255	1700	954	1700	245	173	
Volume to Capacity	0.06	0.19	0.06	0.11	0.26	1.13	
Queue Length 95th（ft）	5	0	5	0	26	251	
Control Delay（s）	2.1	0.0	2.9	0.0	24.9	161.5	
Lane LOS	A		A		C	F	
Approach Delay（s）	1.2		1.6		24.9	161.5	
Approach LOS					C	F	
Intersection Summary							
Average Delay			25.1				
Intersection Capacity Utilization			56．6\％		CU Leve	l of Service	B
Analysis Period（min）			15				

Year 2025－AM Peak（Alt 1 ）
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	$\stackrel{ }{*}$							\dagger				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	个t		${ }_{1}$	个t			做			个个号	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3186			4960			5002	
FIt Permitted	0.44	1.00		0.22	1.00			1.00			1.00	
Satd．Flow（perm）	778	3318		388	3186			4960			5002	
Volume（vph）	104	653	24	102	270	115	0	2472	276	0	2255	107
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	107	673	25	105	278	119	0	2548	285	0	2325	110
RTOR Reduction（vph）	0	3	0	0	2	0	0	16	0	0	6	
Lane Group Flow（vph）	107	695	0	105	395	0	0	2817	0	0	2429	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	238	1015		119	975			2976			3001	
v／s Ratio Prot		0.21			0.12			c0．57			0.49	
v／s Ratio Perm	0.14			c0．27								
v／c Ratio	0.45	0.68		0.88	0.41			0.95			0.81	
Uniform Delay，d1	23.7	25.9		28.0	23.4			15.7			13.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.70	
Incremental Delay，d2	6.0	3.8		55.4	1.3			8.0			1.0	
Delay（s）	29.8	29.7		83.5	24.6			23.8			10.2	
Level of Service	C	C		F	C			C			B	
Approach Delay（s）		29.7			36.9			23.8			10.2	
Approach LOS		C			D			C			B	
Intersection Summary												
HCM Average Control Delay			20.5		HCM Leve	el of S	vice		C			
HCM Volume to Capacity ratio			0.93									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			88．4\％		ICU Leve	of Ser			E			
Analysis Period（min）			15									

Year 2025－AM Peak（Alt 1）	Synchro 6 Report
Wilbur Smith Associates	Page 8

Synchro 6 Report

Alternative 2 (Wings Retained/Trust Revised) Alternative) One-way Couplet

AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			¢			${ }_{4}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	613	14	17	301	1	3	1	43	4	4	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	666	15	18	327	1	3	1	47	4	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	328			682			1048	1043	674	1090	1051	328
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	328			682			1048	1043	674	1090	1051	328
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			98	100	90	97	98	100
cM capacity (veh/h)	1243			921			200	226	458	171	224	718
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	684	347	51	12								
Volume Left	2	18	3	4								
Volume Right	15	1	47	3								
cSH	1243	921	415	242								
Volume to Capacity	0.00	0.02	0.12	0.05								
Queue Length 95th (ft)	0	2	10	4								
Control Delay (s)	0.0	0.7	14.9	20.6								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.0	0.7	14.9	20.6								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.2									
Intersection Capacity Utilization			43.7\%		CU Leve	of Ser			A			
Analysis Period (min)			15									

Year 2025 - AM Peak (Alt 2)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Synchro 6 Report
Page

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	46	690	6	177	301	82	4	59	44	3	2	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate（vph）	47	711	6	182	310	85	4	61	45	3	2	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX ，platoon unblocked	0.93						0.93	0.93		0.93	0.93	0.93
vC，conflicting volume	395			718			1532	1569	714	1603	1530	353
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	351			718			1571	1610	714	1646	1568	306
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	96			80			94	19	90	83	97	99
cM capacity（veh／h）	1137			893			67	75	434	18	80	689
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	765	577	110	9								
Volume Left	47	182	4	3								
Volume Right	6	85	45	4								
cSH	1137	893	113	47								
Volume to Capacity	0.04	0.20	0.98	0.20								
Queue Length 95th（ft）	3	19	157	16								
Control Delay（s）	1.1	5.0	149.9	100.5								
Lane LOS	A	A	F	F								
Approach Delay（s）	1.1	5.0	149.9	100.5								
Approach LOS			F	F								
Intersection Summary												
Average Delay			14.5									
Intersection Capacity Utilization			86．0\％	ICU Level of Service					E			
Analysis Period（min）			15									

Year 2025 －AM Peak（Alt 2）
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow							4	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow	F	${ }_{1}$	\uparrow	F		个个年			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4927	
FIt Permitted	0.59	1.00	1.00	0.22	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1065	1756	1492	395	1756	1492		5012			4927	
Volume（vph）	256	448	32	65	179	137	0	2605	85	0	2266	381
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	261	457	33	66	183	140	0	2658	87	0	2312	389
RTOR Reduction（vph）	0	－	3	0	0	1	0	4	0	0	28	
Lane Group Flow（vph）	261	457	30	66	183	139	0	2741	0	0	2673	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	351	578	491	130	578	491		2889			2840	
v／s Ratio Prot		c0．26			0.10			c0．55			0.54	
v／s Ratio Perm	0.24		0.02	0.17		0.09						
v／c Ratio	0.74	0.79	0.06	0.51	0.32	0.28		0.95			0.94	
Uniform Delay，d1	25.3	25.8	19.5	22.9	21.3	21.1		16.8			16.7	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.65			1.00	
Incremental Delay，d2	13.3	10.6	0.2	13.5	1.4	1.4		4.0			7.8	
Delay（s）	38.6	36.4	19.7	36.4	22.8	22.5		14.9			24.5	
Level of Service	D	D	B	D	C	C		B			C	
Approach Delay（s）		36.5			25.0			14.9			24.5	
Approach LOS		D			C			B			C	
Intersection Summary												
HCM Average Control Delay			21.9		HCM Leva	el of Se	vice		C			
HCM Volume to Capacity ratio			0.89									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			89．5\％		ICU Leve	of Ser			E			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Ave

Year 2025-AM Peak (Alt 2)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

Year 2025-AM Peak (Alt 2)	Synchro 6 Report
Wilbur Smith Associates 6	

HCM Unsignalized Intersection Capacity Analysis

2／20／2006												
	\rangle							\uparrow	7		\downarrow	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow			¢f			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	53	594	14	55	294	28	1	27	29	158	13	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	56	625	15	58	309	29	1	28	31	166	14	15
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					228							
pX ，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC ，conflicting volume	339			640			1036	1199	320	909	1192	169
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	265			640			993	1163	320	860	1155	88
tC，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	96			94			99	83	96	11	92	98
cM capacity（veh／h）	1255			954			165	169	682	186	170	919
Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	368	327	213	184	60	195						
Volume Left	56	0	58	0	1	166						
Volume Right	0	15	0	29	31	15						
cSH	1255	1700	954	1700	273	197						
Volume to Capacity	0.04	0.19	0.06	0.11	0.22	0.99						
Queue Length 95th（ft）	3	0	5	0	20	211						
Control Delay（s）	1.6	0.0	2.9	0.0	21.8	111.6						
Lane LOS	A		A		C	F						
Approach Delay（s）	0.8		1.6		21.8	111.6						
Approach LOS					C	F						
Intersection Summary												
Average Delay			18.0									
Intersection Capacity Utilization			56．0\％		CU Leve	of Se	vice		B			
Analysis Period（min）			15									

Year 2025－AM Peak（Alt 2）
Wilbur Smith Associates

Synchro 6 Report
Page 7

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	$\stackrel{ }{ }$						4	\dagger				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个		${ }^{7}$	个t			个个全			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3186			4960			5002	
FIt Permitted	0.44	1.00		0.22	1.00			1.00			1.00	
Satd．Flow（perm）	778	3318		388	3186			4960			5002	
Volume（vph）	104	653	24	102	270	115	0	2472	276	0	2255	107
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	107	673	25	105	278	119	，	2548	285	0	2325	110
RTOR Reduction（vph）	0	3	0	0	2	0	0	16	0	0	6	
Lane Group Flow（vph）	107	695	0	105	395	0	0	2817	0	0	2429	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	238	1015		119	975			2976			3001	
v／s Ratio Prot		0.21			0.12			c0．57			0.49	
v／s Ratio Perm	0.14			c0．27								
v／c Ratio	0.45	0.68		0.88	0.41			0.95			0.81	
Uniform Delay，d1	23.7	25.9		28.0	23.4			15.7			13.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.69	
Incremental Delay，d2	6.0	3.8		55.4	1.3			8.0			1.0	
Delay（s）	29.8	29.7		83.5	24.6			23.8			10.1	
Level of Service	C	C		F	C			C			B	
Approach Delay（s）		29.7			36.9			23.8			10.1	
Approach LOS		C			D			C			B	
Intersection Summary												
HCM Average Control Delay			20.4		HCM Leve	el of Se	rvice		C			
HCM Volume to Capacity ratioActuated Cycle Length（s）			0.93									
			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			88．4\％		ICU Leve	of Ser	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025－AM Peak（Alt 2）
Wilbur Smith Associates
Synchro 6 Report

Year 2025
Alternative 3 (Wings Removed Alternative)
One-way Couplet
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\dagger			¢			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	609	14	17	302	1	3	1	43	4	4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	662	15	18	328	1	3	1	47	4	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	329			677			1045	1040	670	1087	1047	329
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	329			677			1045	1040	670	1087	1047	329
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			98	100	90	97	98	100
cM capacity (veh/h)	1242			924			201	227	461	172	225	717
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	679	348	51	12								
Volume Left	2	18	3	4								
Volume Right	15	1	47	3								
cSH	1242	924	417	243								
Volume to Capacity	0.00	0.02	0.12	0.05								
Queue Length 95th (ft)	0	2	10	4								
Control Delay (s)	0.0	0.7	14.8	20.6								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.0	0.7	14.8	20.6								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.2									
Intersection Capacity Utilization			43.5\%		CU Leve	of Se			A			
Analysis Period (min)			15									

Year 2025 - AM Peak (Alt 3)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Synchro 6 Report
Page

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	42	693	6	177	301	70	4	53	44	3	2	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate（vph）	43	714	6	182	310	72	4	55	45	3	2	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.93						0.93	0.93		0.93	0.93	0.93
vC ，conflicting volume	382			721			1521	1552	718	1588	1519	346
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	339			721			1557	1590	718	1629	1555	301
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	96			80			94	30	90	88	97	99
cM capacity（veh／h）	1151			890			69	78	433	25	82	695
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	764	565	104	9								
Volume Left	43	182	4	3								
Volume Right	6	72	45	4								
cSH	1151	890	120	60								
Volume to Capacity	0.04	0.20	0.87	0.15								
Queue Length 95th（ft）	3	19	133	13								
Control Delay（s）	1.0	5.1	117.5	75.7								
Lane LOS	A	A	F	F								
Approach Delay（s）	1.0	5.1	117.5	75.7								
Approach LOS			F	F								
Intersection Summary												
Average Delay			11.5									
Intersection Capacity Utilization			84．8\％		CU Leve	of Se	vice		E			
Analysis Period（min）			15									

Year 2025 －AM Peak（Alt 3）
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	$\stackrel{ }{ }$							\dagger	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow	F	${ }_{1}$	\uparrow	F		个个年			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4929	
FIt Permitted	0.59	1.00	1.00	0.22	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1076	1756	1492	393	1756	1492		5012			4929	
Volume（vph）	259	449	32	65	175	137	0	2605	85	0	2266	373
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	264	458	33	66	179	140	0	2658	87	0	2312	381
RTOR Reduction（vph）	0	0	3	0	0	1	0	4	0	0	27	
Lane Group Flow（vph）	264	458	30	66	179	139	0	2741	0	0	2666	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	354	578	491	129	578	491		2889			2841	
v／s Ratio Prot		c0．26			0.10			c0．55			0.54	
v／s Ratio Perm	0.25		0.02	0.17		0.09						
v／c Ratio	0.75	0.79	0.06	0.51	0.31	0.28		0.95			0.94	
Uniform Delay，d1	25.3	25.9	19.5	23.0	21.3	21.1		16.8			16.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.65			1.00	
Incremental Delay，d2	13.4	10.7	0.2	13.8	1.4	1.4		4.0			7.6	
Delay（s）	38.7	36.5	19.7	36.7	22.7	22.5		14.9			24.2	
Level of Service	D	D	B	D	C	C		B			C	
Approach Delay（s）		36.6			25.0			14.9			24.2	
Approach LOS		D			C			B			C	
Intersection Summary												
HCM Average Control Delay			21.8		HCM Leva	el of Se	vice		C			
HCM Volume to Capacity ratio			0.89									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			89．5\％		ICU Leve	of Ser			E			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025－AM Peak（Alt 3）	Synchro 6 Report
Wilbur Smith Associates	Page 4

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Ave

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			¢			${ }^{\dagger}$			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	1	519	14	3	363	4	12	3	18	3	2	2
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (vph)	1	535	14	3	374	4	12	3	19	3	2	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		69										
pX, platoon unblocked				0.76			0.76	0.76	0.76	0.76	0.76	
vC , conflicting volume	378			549			930	929	542	947	934	376
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	378			410			908	907	400	930	914	376
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			94	99	96	98	99	100
cM capacity (veh/h)	1186			881			194	211	499	181	209	675
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	551	381	34	7								
Volume Left	1	3	12	3								
Volume Right	14	4	19	2								
cSH	1186	881	295	240								
Volume to Capacity	0.00	0.00	0.12	0.03								
Queue Length 95th (ft)	0	0	10	2								
Control Delay (s)	0.0	0.1	18.8	20.4								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.0	0.1	18.8	20.4								
Approach LOS			C	C								
Intersection Summary												
Average Delay			0.9									
Intersection Capacity Utilization			38.8\%	ICU Level of Service					A			
Analysis Period (min)			15									

Year 2025-AM Peak (Alt 3)
Wilbur Smith Associates

HCM Unsignalized Intersection Capacity Analysis

105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow			${ }^{4}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	19	619	15	12	277	20	8	7	32	4	19	49
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	20	666	16	13	298	22	9	8	34	4	20	53
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					528							
pX, platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
vC , conflicting volume	319			682			1112	1060	674	1087	1057	309
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	263			682			1121	1065	674	1094	1062	252
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	98			99			94	96	92	97	90	93
cM capacity (veh/h)	1213			920			143	201	458	157	202	732
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	702	332	51	77								
Volume Left	20	13	9	4								
Volume Right	16	22	34	53								
cSH	1213	920	293	386								
Volume to Capacity	0.02	0.01	0.17	0.20								
Queue Length 95th (ft)	1	1	15	18								
Control Delay (s)	0.5	0.5	19.8	16.7								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.5	0.5	19.8	16.7								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.4									
Intersection Capacity Utilization			52.8\%		CU Leve	of Ser	vice		A			
Analysis Period (min)			15									

Year 2025-AM Peak (Alt 3)	Synchro 6 Report
Wilbur Smith Associates 6	

CM Unsignalized Intersection Capacity Analysis

2／20												
	\rangle			\checkmark		4	4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		AT			¢ $\uparrow+$			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	47	594	14	55	294	28	1	26	29	158	13	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	49	625	15	58	309	29	1	27	31	166	14	15
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					228							
pX，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC，conflicting volume	339			640			1024	1186	320	896	1179	169
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	265			640			980	1150	320	846	1142	88
tC ，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	96			94			99	84	96	14	92	98
cM capacity（veh／h）	1255			954			170	173	682	193	174	919

Year 2025－AM Peak（Alt 3）
Wilbur Smith Associates

Synchro 6 Report
Page 7

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	$\stackrel{ }{ }$						4	\dagger				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个		${ }^{7}$	个t			个个全			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3186			4960			5002	
FIt Permitted	0.44	1.00		0.22	1.00			1.00			1.00	
Satd．Flow（perm）	778	3318		388	3186			4960			5002	
Volume（vph）	104	653	24	102	270	115	0	2472	276	0	2255	107
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	107	673	25	105	278	119	，	2548	285	0	2325	110
RTOR Reduction（vph）	0	3	0	0	2	0	0	16	0	0	6	
Lane Group Flow（vph）	107	695	0	105	395	0	0	2817	0	0	2429	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	238	1015		119	975			2976			3001	
v／s Ratio Prot		0.21			0.12			c0．57			0.49	
v／s Ratio Perm	0.14			c0．27								
v／c Ratio	0.45	0.68		0.88	0.41			0.95			0.81	
Uniform Delay，d1	23.7	25.9		28.0	23.4			15.7			13.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.68	
Incremental Delay，d2	6.0	3.8		55.4	1.3			8.0			1.0	
Delay（s）	29.8	29.7		83.5	24.6			23.8			10.1	
Level of Service	C	C		F	C			C			B	
Approach Delay（s）		29.7			36.9			23.8			10.1	
Approach LOS		C			D			C			B	
Intersection Summary												
HCM Average Control Delay			20.4		HCM Leve	el of Se	rvice		C			
HCM Volume to Capacity ratioActuated Cycle Length（s）			0.93									
			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			88．4\％		ICU Leve	of Ser	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025 －AM Peak（Alt 3）
Wilbur Smith Associates
Synchro 6 Report

Alternative 4 (Battery Caulfield Alternative)
One-way Couplet
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	608	14	17	298	1	,	1	43	4	4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	661	15	18	324	1	3	1	47	4	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	325			676			1040	1035	668	1082	1042	324
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	325			676			1040	1035	668	1082	1042	324
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			98	100	90	97	98	100
cM capacity (veh/h)	1246			925			203	229	461	173	227	721
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	678	343	51	12								
Volume Left	2	18	3	4								
Volume Right	15	1	47	3								
cSH	1246	925	418	245								
Volume to Capacity	0.00	0.02	0.12	0.05								
Queue Length 95th (ft)	0	2	10	4								
Control Delay (s)	0.0	0.7	14.8	20.4								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.0	0.7	14.8	20.4								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.2									
Intersection Capacity Utilization			43.5\%		CU Leve	of Se	vice		A			
Analysis Period (min)			15									

Year 2025-AM Peak (Alt 4)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			4			¢			¢	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	639	14	14	292	3	2	3	41	46	37	22
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	2	666	15	15	304	3	2	3	43	48	39	23
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	682	322	48	109								
Volume Left (vph)	2	15	2	48								
Volume Right (vph)	15	3	43	23								
Hadj (s)	-0.01	0.00	-0.53	-0.04								
Departure Headway (s)	4.9	5.3	6.1	6.4								
Degree Utilization, x	0.92	0.47	0.08	0.19								
Capacity (veh/h)	730	660	539	525								
Control Delay (s)	38.5	13.0	9.7	11.0								
Approach Delay (s)	38.5	13.0	9.7	11.0								
Approach LOS	E	B	A	B								
Intersection Summary												
Delay			27.6									
HCM Level of Service			D									
Intersection Capacity Utilization			54.3\%		ICU Leve	of Se			A			
Analysis Period (min)			15									

Synchro 6 Report
Page

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			${ }_{4}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	41	679	6	177	301	66	4	50	44	3	2	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate（vph）	42	700	6	182	310	68	4	52	45	3	，	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ ft ）					300							
pX，platoon unblocked	0.94						0.94	0.94		0.94	0.94	0.94
vC ，conflicting volume	378			706			1502	1531	703	1568	1500	344
vC 1 ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	335			706			1537	1568	703	1607	1535	299
tC ，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	96			80			94	36	90	89	98	99
cM capacity（veh／h）	1155			901			72	81	441	29	84	697
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	748	561	101	9								
Volume Left	42	182	4	3								
Volume Right	6	68	45	4								
cSH	1155	901	126	69								
Volume to Capacity	0.04	0.20	0.80	0.14								
Queue Length 95th（ft）	3	19	119	11								
Control Delay（s）	1.0	5.0	99.4	65.6								
Lane LOS	A	A	F	F								
Approach Delay（s）	1.0	5.0	99.4	65.6								
Approach LOS			F	F								
Intersection Summary												
Average Delay			10.0									
Intersection Capacity Utilization			83．7\％		CU Leve	of Se	vice		E			
Analysis Period（min）			15									

Year 2025 －AM Peak（Alt 4）
Wilbur Smith Associates

Synchro 6 Report
Page

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow						4	\dagger	p			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow	F	\％	\uparrow	F		个个A			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4930	
FIt Permitted	0.59	1.00	1.00	0.23	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1078	1756	1492	401	1756	1492		5012			4930	
Volume（vph）	249	445	32	65	174	137	0	2605	85	0	2266	370
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	254	454	33	66	178	140	0	2658	87	0	2312	378
RTOR Reduction（vph）	0	0	3	0	0	1	0	4	0	0	26	
Lane Group Flow（vph）	254	454	30	66	178	139	0	2741	0	0	2664	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	355	578	491	132	578	491		2889			2842	
v／s Ratio Prot		c0．26			0.10			c0．55			0.54	
v / s Ratio Perm	0.24		0.02	0.16		0.09						
v／c Ratio	0.72	0.79	0.06	0.50	0.31	0.28		0.95			0.94	
Uniform Delay，d1	25.0	25.8	19.5	22.9	21.3	21.1		16.8			16.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.65			1.00	
Incremental Delay，d2	11.7	10.3	0.2	12.9	1.4	1.4		4.0			7.5	
Delay（s）	36.7	36.1	19.7	35.8	22.6	22.5		14.9			24.1	
Level of Service	D	D	B	D	C	C		B			C	
Approach Delay（s）		35.6			24.9			14.9			24.1	
Approach LOS		D			C			B			C	
Intersection Summary												
HCM Average Control Delay			21.6		HCM Leve	el of Se	vice		C			
HCM Volume to Capacity ratio			0.89									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			89．2\％		ICU Leve	of Ser			E			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025 －AM Peak（A

Wilbur Smith Associates

Synchro 6 Repor

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Ave

Year 2025-AM Peak (Alt 4)
Wilbur Smith Associates

HCM Unsignalized Intersection Capacity Analysis

105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow			${ }^{4}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	19	617	15	12	277	20	8	7	32	4	18	43
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	20	663	16	13	298	22	9	8	34	4	19	46
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					528							
pX, platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
vC , conflicting volume	319			680			1103	1058	672	1085	1055	309
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	263			680			1111	1062	672	1092	1059	252
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	98			99			94	96	93	97	90	94
cM capacity (veh/h)	1213			922			147	202	460	157	202	732
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	700	332	51	70								
Volume Left	20	13	9	4								
Volume Right	16	22	34	46								
cSH	1213	922	296	375								
Volume to Capacity	0.02	0.01	0.17	0.19								
Queue Length 95th (ft)	1	1	15	17								
Control Delay (s)	0.5	0.5	19.6	16.8								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.5	0.5	19.6	16.8								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.3									
Intersection Capacity Utilization			52.5\%		CU Leve	of Ser	vice		A			
Analysis Period (min)			15									

Year 2025-AM Peak (Alt 4)	Synchro 6 Report
Wilbur Smith Associates 6	

CM Unsignalized Intersection Capacity Analysis

2／20												
	\rangle			\dagger			4	\uparrow			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow			А $\hat{\square}$			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	45	594	14	55	294	28	，	26	29	158	13	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	47	625	15	58	309	29	1	27	31	166	14	15
Pedestrians												
Lane Width（ft）												
Walking Speed（fts）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					228							
pX，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
VC，conflicting volume	339			640			1019	1182	320	892	1175	169
$\mathrm{vC1}$ ，stage 1 conf vol												
vC2，stage 2 conf vol												
vCu, unblocked vol	265			640			976	1146	320	842	1138	88
tC ，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	96			94			99	84	96	15	92	98
cM capacity（veh／h）	1255			954			171	174	682	195	176	919

Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total	360	327	213	184	59	195	
Volume Left	47	0	58	0	1	166	
Volume Right	0	15	0	29	31	15	
cSH	1255	1700	954	1700	283	205	
Volume to Capacity	0.04	0.19	0.06	0.11	0.21	0.95	
Queue Length 95th（ft）	3	0	5	0	19	198	
Control Delay（s）	1.4	0.0	2.9	0.0	21.0	98.3	
Lane LOS	A		A		C	F	
Approach Delay（s）	0.7		1.6		21.0	98.3	
Approach LOS					C	F	
Intersection Summary							
Average Delay			16.1				
Intersection Capacity Utilization			55．7\％		CU Lev	of Service	B
Analysis Period（min）			15				

Year 2025－AM Peak（Alt 4）
Wilbur Smith Associates

Synchro 6 Report
Page 7

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	$\stackrel{ }{*}$							\dagger				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	个t		${ }_{1}$	个t			做			个个号	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3186			4960			5002	
FIt Permitted	0.44	1.00		0.22	1.00			1.00			1.00	
Satd．Flow（perm）	778	3318		388	3186			4960			5002	
Volume（vph）	104	653	24	102	270	115	0	2472	276	0	2255	107
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	107	673	25	105	278	119	0	2548	285	0	2325	110
RTOR Reduction（vph）	0	3	0	0	2	0	0	16	0	0	6	
Lane Group Flow（vph）	107	695	0	105	395	0	0	2817	0	0	2429	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	238	1015		119	975			2976			3001	
v／s Ratio Prot		0.21			0.12			c0．57			0.49	
v／s Ratio Perm	0.14			c0．27								
v／c Ratio	0.45	0.68		0.88	0.41			0.95			0.81	
Uniform Delay，d1	23.7	25.9		28.0	23.4			15.7			13.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.68	
Incremental Delay，d2	6.0	3.8		55.4	1.3			8.0			1.0	
Delay（s）	29.8	29.7		83.5	24.6			23.8			10.1	
Level of Service	C	C		F	C			C			B	
Approach Delay（s）		29.7			36.9			23.8			10.1	
Approach LOS		C			D			C			B	
Intersection Summary												
HCM Average Control Delay			20.4		HCM Leve	el of S	vice		C			
HCM Volume to Capacity ratio			0.93									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			88．4\％		ICU Leve	of Ser			E			
Analysis Period（min）			15									

Year 2025－AM Peak（Alt 4）Synchro 6 Repor

Wilbur Smith Associates
Synchro 6 Repo

Year 2025
Requested No Action Alternative
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Street

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢			${ }_{\dagger}$			${ }_{\text {¢ }}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	356	11	28	491	4	4	1	28	8	3	2
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	379	12	30	522	4	4	1	30	9	3	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	527			390			977	975	385	1003	979	524
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	527			390			977	975	385	1003	979	524
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			97			98	100	96	96	99	100
cM capacity (veh/h)	1051			1179			224	247	667	208	245	557

Year 2025 - PM Peak (No Action Alt)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Year 2025 - PM Peak (No Action Alt)

Synchro 6 Report
Page

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			¢			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	2	441	4	228	567	6	2	2	55	6	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate（vph）	2	469	4	243	603	6	2	2	59	6	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.84						0.84	0.84		0.84	0.84	0.84
vC ，conflicting volume	610			473			1569	1570	471	1627	1569	606
vC1，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	533			473			1681	1683	471	1750	1681	529
tC ，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	100			78			96	97	90	85	98	100
cM capacity（veh／h）	873			1099			52	62	597	41	62	463
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	476	852	63	9								
Volume Left	2	243	2	6								
Volume Right	4	6	59	1								
cSH	873	1099	362	49								
Volume to Capacity	0.00	0.22	0.17	0.17								
Queue Length 95th（ft）	O	21	15	14								
Control Delay（s）	0.1	4.9	17.0	93.6								
Lane LOS	A	A	C	F								
Approach Delay（s）	0.1	4.9	17.0	93.6								
Approach LOS			C	F								
Intersection Summary												
Average Delay			4.3									
Intersection Capacity Utilization			80．0\％		CU Leve	of Se			D			
Analysis Period（min）			15									

Year 2025 －PM Peak（No Action Alt）
Wilbur Smith Associates

Synchro 6 Report

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	$\stackrel{ }{ }$							4	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow	F	${ }_{1}$	\uparrow	F		个个年			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4919	
FIt Permitted	0.36	1.00	1.00	0.45	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	651	1756	1492	785	1756	1492		5012			4919	
Volume（vph）	201	272	29	81	337	187	0	2466	80	0	2521	463
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	209	283	30	84	351	195	0	2569	83	0	2626	482
RTOR Reduction（vph）	0	0	1	0	0	1	0	4	0	0	31	
Lane Group Flow（vph）	209	283	29	84	351	194	0	2648	0	0	3077	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	214	578	491	259	578	491		2889			2836	
v／s Ratio Prot		0.16			0.20			0.53			c0．63	
v／s Ratio Perm	c0．32		0.02	0.11		0.13						
v／c Ratio	0.98	0.49	0.06	0.32	0.61	0.39		0.92			1.09	
Uniform Delay，d1	28.2	22.8	19.5	21.4	23.9	22.0		16.2			18.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.74			1.00	
Incremental Delay，d2	55.8	2.9	0.2	3.3	4.7	2.4		2.0			45.1	
Delay（s）	83.9	25.7	19.7	24.7	28.6	24.3		13.9			63.1	
Level of Service	F	C	B	C	C	C		B			E	
Approach Delay（s）		48.7			26.7			13.9			63.1	
Approach LOS		D			C			B			E	
Intersection Summary												
HCM Average Control Delay			39.8		HCM Leva	el of Se	vice		D			
HCM Volume to Capacity ratio			1.04									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			97．9\％		ICU Leve	of Ser			F			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025 －PM Peak（No Action Alt）	Synchro 6 Report
Page 4	

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Year 2025 - PM Peak (No Action Alt)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

	$\stackrel{ }{ }$							\dagger	7			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	57	470	8	18	433	22	9	17	33	20	22	34
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	58	480	8	18	442	22	9	17	34	20	22	35
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					524							
pX, platoon unblocked	0.87						0.87	0.87		0.87	0.87	0.87
vC , conflicting volume	464			488			1136	1101	484	1132	1094	453
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	382			488			1157	1117	484	1152	1108	369
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	94			98			92	90	94	84	87	94
CM capacity (veh/h)	1029			1086			121	168	587	125	170	590
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	546	483	60	78								
Volume Left	58	18	9	20								
Volume Right	8	22	34	35								
cSH	1029	1086	255	219								
Volume to Capacity	0.06	0.02	0.24	0.35								
Queue Length 95th (ft)	4	,	22	38								
Control Delay (s)	1.5	0.5	23.4	30.1								
Lane LOS	A	A	C	D								
Approach Delay (s)	1.5	0.5	23.4	30.1								
Approach LOS			C	D								
Intersection Summary												
Average Delay			4.1									
Intersection Capacity Utilization			62.7\%		ICU Leve	of Ser	vice		B			
Analysis Period (min)			15									

Year 2025 - PM Peak (No Action Alt)	Synchro 6 Report
Wilbur Smith Associates 6	

CM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue 2／20／2006

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＊\uparrow			¢ \uparrow			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	34	482	7	69	461	16	5	10	33	200	25	8
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate（vph）	37	524	8	75	501	17	5	11	36	217	27	9
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					224							
pX，platoon unblocked	0.91						0.91	0.91		0.91	0.91	0.91
vC ，conflicting volume	518			532			1024	1270	266	1037	1265	259
vC 1 ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	370			532			927	1197	266	941	1192	85
tC ，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			93			97	93	95	0	82	99
cM capacity（veh／h）	1090			1046			163	153	739	167	154	876

Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total	299	270	326	268	52	253	
Volume Left	37	0	75	0	5	217	
Volume Right	0	8	0	17	36	9	
cSH	1090	1700	1046	1700	341	170	
Volume to Capacity	0.03	0.16	0.07	0.16	0.15	1.49	
Queue Length 95th（ft）	3	0	6	0	13	406	
Control Delay（s）	1.3	0.0	2.6	0.0	17.5	298.8	
Lane LOS	A		A		C	F	
Approach Delay（s）	0.7		1.4		17.5	298.8	
Approach LOS					C	F	
Intersection Summary							
Average Delay			53.0				
Intersection Capacity Utilization			59．3\％		CU Leve	I of Service	B
Analysis Period（min）			15				

Year 2025 －PM Peak（No Action Alt）
Wilbur Smith Associates

Synchro 6 Report
Page 7

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	\rangle						4	\dagger	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个官		\％	个 ${ }_{\text {a }}$			个中家			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frpb，ped／bikes	1.00	1.00		1.00	1.00			1.00			1.00	
Flpb，ped／bikes	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3309		1668	3196			4968			4999	
Flt Permitted	0.34	1.00		0.32	1.00			1.00			1.00	
Satd．Flow（perm）	597	3309		556	3196			4968			4999	
Volume（vph）	97	585	34	170	418	163	0	2287	227	0	2503	128
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	100	603	35	175	431	168	0	2358	234	0	2580	132
RTOR Reduction（vph）	0	1	0	0	1	0	0	14	0	0	6	
Lane Group Flow（vph）	100	637	0	175	598	0	0	2578	0	0	2706	
Confl．Peds．（\＃／hr）												
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	34.0	34.0		34.0	34.0			43.0			43.0	
Effective Green，g（s）	34.0	34.0		34.0	34.0			43.0			43.0	
Actuated g／C Ratio	0.40	0.40		0.40	0.40			0.51			0.51	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	239	1324		222	1278			2513			2529	
v／s Ratio Prot		0.19			0.19			0.52			c0．54	
v／s Ratio Perm	0.17			c0．31								
v／c Ratio	0.42	0.48		0.79	0.47			1.03			1.07	
Uniform Delay，d1	18.4	18.9		22.3	18.8			21.0			21.0	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.79	
Incremental Delay，d2	5.3	1.3		24.1	1.2			24.9			32.4	
Delay（s）	23.7	20.2		46.4	20.1			45.9			48.9	
Level of Service	C	C		D	C			D			D	
Approach Delay（s）		20.7			26.0			45.9			48.9	
Approach LOS		C			C			D			D	
Intersection Summary												
HCM Average Control Delay			42.1		HCM Leve	el of S	rvice		D			
HCM Volume to Capacity ratio			0.94									
Actuated Cycle Length（s）			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			87．9\％		CU Leve	of Se			E			
Analysis Period（min）			15									
c Critical Lane Group												

Yar 2025 －PM Peak（No Action Alt）
Wilbur Smith Associates

Synchro 6 Report
Page 8

Year 2025
Alternative 1 (PTMP Alternative) One-way
Couplet
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Street

Year 2025 - PM Peak (Alt 1)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\dagger}$			\uparrow			${ }^{\text {¢ }}$			${ }_{\dagger}$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	405	6	20	481	4	9	4	19	147	81	50
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	431	6	21	512	4	10	4	20	156	86	53
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	439	537	34	296								
Volume Left (vph)	2	21	10	156								
Volume Right (vph)	6	4	20	53								
Hadj (s)	-0.01	0.00	-0.30	0.00								
Departure Headway (s)	6.1	5.9	7.5	6.8								
Degree Utilization, x	0.74	0.88	0.07	0.55								
Capacity (veh/h)	573	594	405	505								
Control Delay (s)	24.5	37.9	11.1	17.8								
Approach Delay (s)	24.5	37.9	11.1	17.8								
Approach LOS	C	E	B	C								
Intersection Summary												
Delay			28.2									
HCM Level of Service			D									
Intersection Capacity Utilization			68.6\%		CU Leve	of Se			C			
Analysis Period (min)			15									

Synchro 6 Report
Page

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	59	508	4	228	502	154	2	106	55	6	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate（vph）	63	540	4	243	534	164	2	113	59	6	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.82						0.82	0.82		0.82	0.82	0.82
VC ，conflicting volume	698			545			1771	1851	543	1884	1771	616
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	632			545			1939	2036	543	2077	1939	532
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	92			77			93	0	89	0	97	100
cM capacity（veh／h）	789			1035			31	33	544	0	38	453
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	607	940	173	9								
Volume Left	63	243	2	6								
Volume Right	4	164	59	1								
cSH	789	1035	49	0								
Volume to Capacity	0.08	0.23	3.57	Err								
Queue Length 95th（ft）	6	23	Err	Err								
Control Delay（s）	2.1	5.3	Err	Err								
Lane LOS	A	A	F	F								
Approach Delay（s）	2.1	5.3	Err	Err								
Approach LOS			F	F								
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utilization			97．6\％	ICU Level of Service					F			
Analysis Period（min）			15									

Year 2025－PM Peak（Alt 1）
Wilbur Smith Associates

Synchro 6 Report
Page

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\rangle							4	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow	F	${ }_{1}$	\uparrow	F		个个年			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.97	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4906	
FIt Permitted	0.33	1.00	1.00	0.42	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	599	1756	1492	738	1756	1492		5012			4906	
Volume（vph）	249	291	29	81	358	187	0	2466	80	0	2521	526
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	259	303	30	84	373	195	0	2569	83	0	2626	548
RTOR Reduction（vph）	0	0	1	0	0	1	0	4	0	0	38	
Lane Group Flow（vph）	259	303	29	84	373	194	0	2648	0	0	3136	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	197	578	491	243	578	491		2889			2828	
v／s Ratio Prot		0.17			0.21			0.53			c0．64	
v／s Ratio Perm	c0．43		0.02	0.11		0.13						
v／c Ratio	1.31	0.52	0.06	0.35	0.65	0.39		0.92			1.11	
Uniform Delay，d1	28.5	23.1	19.5	21.6	24.3	22.0		16.2			18.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.74			1.00	
Incremental Delay，d2	172.9	3.4	0.2	3.9	5.5	2.4		2.0			54.8	
Delay（s）	201.4	26.5	19.7	25.4	29.7	24.3		13.9			72.8	
Level of Service	F	C	B	C	C	C		B			E	
Approach Delay（s）		102.7			27.6			13.9			72.8	
Approach LOS		F			C			B			E	
Intersection Summary												
HCM Average Control Delay			49.1		HCM Leva	el of Se	vice		D			
HCM Volume to Capacity ratio			1.18									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			03．1\％		ICU Leve	of Ser			G			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025－PM Peak（Alt 1）	Synchro 6 Report
Wilbur Smith Associates	Page 4

Synchro 6 Repor

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Year 2025 - PM Peak (Alt 1)
Wilbur Smith Associates

HCM Unsignalized Intersection Capacity Analysis

105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	10	551	8	18	433	15	9	7	33	28	24	55
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	10	562	8	18	442	15	9	7	34	29	24	56
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					524							
pX, platoon unblocked	0.87						0.87	0.87		0.87	0.87	0.87
vC, conflicting volume	457			570			1141	1081	566	1110	1077	449
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	375			570			1163	1093	566	1127	1089	366
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			98			92	96	94	80	87	91
cM capacity (veh/h)	1038			1012			120	182	527	142	184	594
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	581	476	50	109								
Volume Left	10	18	9	29								
Volume Right	8	15	34	56								
cSH	1038	1012	278	254								
Volume to Capacity	0.01	0.02	0.18	0.43								
Queue Length 95th (ft)	1	1	16	51								
Control Delay (s)	0.3	0.5	20.7	29.4								
Lane LOS	A	A	C	D								
Approach Delay (s)	0.3	0.5	20.7	29.4								
Approach LOS			C	D								
Intersection Summary												
Average Delay			3.8									
Intersection Capacity Utilization			49.6\%	ICU Level of Service					A			
Analysis Period (min)			15									

Year 2025- PM Peak (Alt 1)	Synchro 6 Report
Wilbur Smith Associates	Page 6

HCM Unsignalized Intersection Capacity Analysis
106: California Street \& 14th Avenue 2/20/2006

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		* \uparrow			¢ \uparrow			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	114	490	7	69	457	20	2	29	33	200	25	8
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	124	533	8	75	497	22	2	32	36	217	27	9
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					224							
pX, platoon unblocked	0.91						0.91	0.91		0.91	0.91	0.91
vC , conflicting volume	518			540			1205	1453	270	1223	1446	259
vC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	370			540			1125	1398	270	1146	1390	85
tC , single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	89			93			98	70	95	0	75	99
cM capacity (veh/h)	1090			1038			102	106	734	91	107	876

Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total	390	274	323	270	70	253	
Volume Left	124	0	75	0	2	217	
Volume Right	0	8	0	22	36	9	
cSH	1090	1700	1038	1700	190	95	
Volume to Capacity	0.11	0.16	0.07	0.16	0.37	2.65	
Queue Length 95th (ft)	10	0	6	0	39	593	
Control Delay (s)	3.6	0.0	2.6	0.0	34.6	843.7	
Lane LOS	A		A		D	F	
Approach Delay (s)	2.1		1.4		34.6	843.7	
Approach LOS					D	F	
Intersection Summary							
Average Delay			138.1				
			61.9\%	ICU Level of Service			B
Analysis Period (min)			15				

Year 2025-PM Peak (Alt 1)
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107: California Street \& Park Presidio Boulevard
2/20/2006

Year 2025 - PM Peak (Alt 1)
Wilbur Smith Associates

Synchro 6 Repor

Alternative 2 (Wings Retained/Trust Revised
Alternative) One-way Couplet
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Street

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\dagger}$			\dagger			¢			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	357	11	28	487	4	4	1	28	8	3	2
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	380	12	30	518	4	4	1	30	9	3	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX , platoon unblocked												
vC , conflicting volume	522			391			973	972	386	1000	976	520
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	522			391			973	972	386	1000	976	520
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			97			98	100	96	96	99	100
cM capacity (veh/h)	1054			1178			225	248	667	209	246	560

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1		
Volume Total	394	552	35	14		
Volume Left	2	30	4	9		
Volume Right	12	4	30	2		
cSH	1054	1178	517	240		
Volume to Capacity	0.00	0.03	0.07	0.06		
Queue Length 95th (ft)	0	2	5	5		
Control Delay (s)	0.1	0.7	12.5	20.9		
Lane LOS	A	A	B	C		
Approach Delay (s)	0.1	0.7	12.5	20.9		
Approach LOS			B	C		
Intersection Summary						
Average Delay			1.2			
Intersection Capacity Utilization			55.7\%		ICU Level of Service	B
Analysis Period (min)			15			

Year 2025 - PM Peak (Alt 2)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Synchro 6 Report
Page

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	39	427	4	228	502	73	2	67	55	6	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate（vph）	41	454	4	243	534	78	2	71	59	6	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.83						0.83	0.83		0.83	0.83	0.83
VC ，conflicting volume	612			459			1599	1636	456	1691	1599	573
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	535			459			1718	1762	456	1829	1718	488
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	95			78			95	0	90	0	98	100
cM capacity（veh／h）	871			1113			47	53	608	0	56	487
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	500	854	132	9								
Volume Left	41	243	2	6								
Volume Right	4	78	59	1								
cSH	871	1113	89	0								
Volume to Capacity	0.05	0.22	1.49	Err								
Queue Length 95th（ft）	4	21	256	Err								
Control Delay（s）	1.3	4.8	353.4	Err								
Lane LOS	A	A	F	F								
Approach Delay（s）	1.3	4.8	353.4	Err								
Approach LOS			F	F								
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utilization			85．3\％	ICU Level of Service					E			
Analysis Period（min）			15									

Year 2025 －PM Peak（Alt 2）
Wilbur Smith Associates

Synchro 6 Report

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	$\stackrel{ }{ }$							\uparrow	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow	${ }^{7}$	${ }_{7}$	\uparrow	${ }^{\prime}$		个中䎟			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4918	
FIt Permitted	0.36	1.00	1.00	0.45	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	648	1756	1492	795	1756	1492		5012			4918	
Volume（vph）	191	268	29	81	338	187	0	2466	80	0	2521	465
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	199	279	30	84	352	195	0	2569	83	－	2626	484
RTOR Reduction（vph）	0	0	1	0	0	1	0	4	0	0	31	
Lane Group Flow（vph）	199	279	29	84	352	194	0	2648	0	0	3079	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	213	578	491	262	578	491		2889			2835	
v／s Ratio Prot		0.16			0.20			0.53			c0．63	
v／s Ratio Perm	c0．31		0.02	0.11		0.13						
v／c Ratio	0.93	0.48	0.06	0.32	0.61	0.39		0.92			1.09	
Uniform Delay，d1	27.6	22.7	19.5	21.4	23.9	22.0		16.2			18.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.74			1.00	
Incremental Delay，d2	46.6	2.9	0.2	3.2	4.7	2.4		2.0			45.5	
Delay（s）	74.2	25.6	19.7	24.6	28.6	24.3		13.9			63.5	
Level of Service	E	C	B	C	C	C		B			E	
Approach Delay（s）		44.3			26.8			13.9			63.5	
Approach LOS		D			C			B			E	
Intersection Summary												
			39.7		HCM Lev	el of Se	vice		D			
HCM Average Control Delay HCM Volume to Capacity ratio			1.03									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			97．4\％		ICU Leve	of Ser			F			
Analysis Period（min）			15									

Year 2025 －PM Peak（Alt 2）
Wilbur Smith Associates
Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			\dagger			${ }_{\text {¢ }}$			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	14	327	7	8	582	6	20	1	18	1	1	4
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	14	334	7	8	594	6	20	1	18	1	1	4
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		79										
pX , platoon unblocked				0.88			0.88	0.88	0.88	0.88	0.88	
vC , conflicting volume	600			341			984	982	337	998	983	597
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	600			247			981	980	243	998	980	597
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			90	100	97	99	100	99
cM capacity (veh/h)	982			1160			196	216	701	188	216	507

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1		
Volume Total	355	608	40	6		
Volume Left	14	8	20	1		
Volume Right	7	6	18	4		
cSH	982	1160	295	336		
Volume to Capacity	0.01	0.01	0.13	0.02		
Queue Length 95th (ft)	1	1	12	1		
Control Delay (s)	0.5	0.2	19.1	15.9		
Lane LOS	A	A	C	C		
Approach Delay (s)	0.5	0.2	19.1	15.9		
Approach LOS			C	C		
Intersection Summary						
Average Delay			1.1			
Intersection Capacity Utilization			46.1\%		ICU Level of Service	A
Analysis Period (min)			15			

Year 2025 - PM Peak (Alt 2)
Wilbur Smith Associates
Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

	$\stackrel{ }{ }$							\dagger	7			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	10	518	8	18	433	15	9	7	33	18	21	29
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	10	529	8	18	442	15	9	7	34	18	21	30
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					524							
pX, platoon unblocked	0.87						0.87	0.87		0.87	0.87	0.87
vC , conflicting volume	457			537			1080	1047	533	1077	1043	449
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	375			537			1092	1054	533	1088	1050	366
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			98			94	96	94	88	89	95
CM capacity (veh/h)	1038			1042			143	192	551	151	194	594
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	547	476	50	69								
Volume Left	10	18	9	18								
Volume Right	8	15	34	30								
cSH	1038	1042	308	246								
Volume to Capacity	0.01	0.02	0.16	0.28								
Queue Length 95th (ft)	1	,	14	28								
Control Delay (s)	0.3	0.5	18.9	25.3								
Lane LOS	A	A	C	D								
Approach Delay (s)	0.3	0.5	18.9	25.3								
Approach LOS			C	D								
Intersection Summary												
Average Delay			2.7									
Intersection Capacity Utilization			45.9\%		ICU Leve	of Ser	vice		A			
Analysis Period (min)			15									

Year 2025- PM Peak (Alt 2)	Synchro 6 Report
Wilbur Smith Associates 6	

CM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue 2／20／2006

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ ${ }_{\text {a }}$			¢ \uparrow			¢			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	81	481	7	69	457	20	2	23	33	200	25	8
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate（vph）	88	523	8	75	497	22	2	25	36	217	27	9
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					224							
pX，platoon unblocked	0.91						0.91	0.91		0.91	0.91	0.91
vC，conflicting volume	518			530			1123	1371	265	1143	1364	259
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	370			530			1036	1308	265	1058	1301	85
tC ，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	92			93			98	80	95	0	78	99
cM capacity（veh／h）	1090			1047			126	125	739	119	126	876

Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total	349	269	323	270	63	253	
Volume Left	88	0	75	0	2	217	
Volume Right	0	8	0	22	36	9	
cSH	1090	1700	1047	1700	237	123	
Volume to Capacity	0.08	0.16	0.07	0.16	0.27	2.06	
Queue Length 95th（ft）	7	0	6	0	26	521	
Control Delay（s）	2.8	0.0	2.6	0.0	25.6	562.4	
Lane LOS	A		A		D	F	
Approach Delay（s）	1.6		1.4		25.6	562.4	
Approach LOS					D	F	
Intersection Summary							
Average Delay			95.4				
Intersection Capacity Utilization			60．7\％		CU Leve	I of Service	B
Analysis Period（min）			15				

Year 2025 －PM Peak（Alt 2）
Wilbur Smith Associates

Synchro 6 Report
Page 7

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	\rangle						4	\dagger	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个官		\％	个 ${ }_{\text {a }}$			个中家			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frpb，ped／bikes	1.00	1.00		1.00	1.00			1.00			1.00	
Flpb，ped／bikes	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3308		1668	3196			4968			4999	
Flt Permitted	0.34	1.00		0.32	1.00			1.00			1.00	
Satd．Flow（perm）	597	3308		558	3196			4968			4999	
Volume（vph）	97	583	34	170	418	163	0	2287	227	0	2503	128
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	100	601	35	175	431	168	0	2358	234	0	2580	132
RTOR Reduction（vph）	0	1	0	0	1	－	0	14	－	0	6	
Lane Group Flow（vph）	100	635	0	175	598	0	0	2578	0	0	2706	
Confl．Peds．（\＃／hr）												
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	34.0	34.0		34.0	34.0			43.0			43.0	
Effective Green，g（s）	34.0	34.0		34.0	34.0			43.0			43.0	
Actuated g／C Ratio	0.40	0.40		0.40	0.40			0.51			0.51	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	239	1323		223	1278			2513			2529	
v／s Ratio Prot		0.19			0.19			0.52			c0．54	
v／s Ratio Perm	0.17			c0．31								
v／c Ratio	0.42	0.48		0.78	0.47			1.03			1.07	
Uniform Delay，d1	18.4	18.9		22.3	18.8			21.0			21.0	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.79	
Incremental Delay，d2	5.3	1.3		23.7	1.2			24.9			32.4	
Delay（s）	23.7	20.2		46.0	20.1			45.9			49.0	
Level of Service	C	C		D	C			D			D	
Approach Delay（s）		20.7			25.9			45.9			49.0	
Approach LOS		C			C			D			D	
Intersection Summary												
HCM Average Control Delay			42.1		HCM Leve	el of S	rvice		D			
HCM Volume to Capacity ratio			0.94									
Actuated Cycle Length（s）			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			87．8\％		CU Leve	of Se			E			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025 －PM Peak（Alt 2）
Wilbur Smith Associates

Synchro 6 Repor

Year 2025
Alternative 3 (Wings Removed Alternative)
One-way Couplet
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Street

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			${ }_{\text {¢ }}$			¢			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	358	11	28	485	4	4	1	28	8	3	2
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	381	12	30	516	4	4	1	30	9	3	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	520			393			972	971	387	999	974	518
vC1, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	520			393			972	971	387	999	974	518
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tc}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			97			98	100	96	96	99	100
cM capacity (veh/h)	1056			1177			226	248	666	209	247	561

Direction, Lane \# EB 1	WB 1	NB 1	SB 1	
Volume Total 395	550	35	14	
Volume Left	30	4	9	
Volume Right 12	4	30	2	
cSH 1056	1177	517	241	
Volume to Capacity 0.00	0.03	0.07	0.06	
Queue Length 95th (ft)	2	5	5	
Control Delay (s) 0.1	0.7	12.5	20.9	
Lane LOS A	A	B	C	
Approach Delay (s) 0.1	0.7	12.5	20.9	
Approach LOS		B	C	
Intersection Summary				
Average Delay		1.2		
Intersection Capacity Utilization		55.6\%	ICU Level of Service	B
Analysis Period (min)		15		

Year 2025-PM Peak (Alt 3)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			¢			¢			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	386	6	20	481	4	9	4	19	59	40	27
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	411	6	21	512	4	10	4	20	63	43	29
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	419	537	34	134								
Volume Left (vph)	2	21	10	63								
Volume Right (vph)	6	4	20	29								
Hadj (s)	-0.01	0.00	-0.30	-0.03								
Departure Headway (s)	5.2	5.0	6.3	6.3								
Degree Utilization, x	0.60	0.75	0.06	0.23								
Capacity (veh/h)	669	701	476	511								
Control Delay (s)	15.7	21.7	9.7	11.2								
Approach Delay (s)	15.7	21.7	9.7	11.2								
Approach LOS	C	C	A	B								
Intersection Summary												
Delay			17.8									
HCM Level of Service			C									
Intersection Capacity Utilization			58.2\%		ICU Leve	of Ser			B			
Analysis Period (min)			15									

Synchro 6 Report
Page

HCM Unsignalized Intersection Capacity Analysis

Year 2025－PM Peak（Alt 3）
Wilbur Smith Associates

Synchro 6 Report

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	$\stackrel{ }{ }$							\dagger	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow	F	${ }_{1}$	\uparrow	F		个个年			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4918	
FIt Permitted	0.36	1.00	1.00	0.46	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	646	1756	1492	799	1756	1492		5012			4918	
Volume（vph）	186	266	29	81	339	187	0	2466	80	0	2521	467
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	194	277	30	84	353	195	0	2569	83	0	2626	486
RTOR Reduction（vph）	0	0	1	0	0	1	0	4	0	0	31	
Lane Group Flow（vph）	194	277	29	84	353	194	0	2648	0	0	3081	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	213	578	491	263	578	491		2889			2835	
v／s Ratio Prot		0.16			0.20			0.53			c0．63	
v／s Ratio Perm	c0．30		0.02	0.11		0.13						
v／c Ratio	0.91	0.48	0.06	0.32	0.61	0.39		0.92			1.09	
Uniform Delay，d1	27.3	22.7	19.5	21.4	23.9	22.0		16.2			18.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.74			1.00	
Incremental Delay，d2	42.1	2.8	0.2	3.2	4.8	2.4		2.0			45.8	
Delay（s）	69.4	25.5	19.7	24.5	28.7	24.3		13.9			63.8	
Level of Service	E	C	B	C	C	C		B			E	
Approach Delay（s）		42.2			26.8			13.9			63.8	
Approach LOS		D			C			B			E	
Intersection Summary												
HCM Average Control Delay			39.6		HCM Leva	el of Se	vice		D			
HCM Volume to Capacity ratio			1.02									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			97．3\％		ICU Leve	of Ser			F			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025－PM Peak（Alt 3）	Synchro 6 Report
Wilbur Smith Associates	Page 4

Synchro 6 Repor

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	14	325	7	8	583	6	20	1	18	1	1	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	14	332	7	8	595	6	20	1	18	1	1	4
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		79										
pX, platoon unblocked				0.88			0.88	0.88	0.88	0.88	0.88	
vC , conflicting volume	601			339			983	981	335	997	982	598
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	601			246			980	978	242	997	979	598
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			90	100	97	99	100	99
cM capacity (veh/h)	981			1163			197	216	703	188	216	506

Year 2025 - PM Peak (Alt 3)
Wilbur Smith Associates
Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis

105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow			${ }^{4}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	10	519	8	18	433	15	9	7	33	18	21	27
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	10	530	8	18	442	15	9	7	34	18	21	28
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					524							
pX, platoon unblocked	0.87						0.87	0.87		0.87	0.87	0.87
vC , conflicting volume	457			538			1079	1048	534	1078	1044	449
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	375			538			1090	1055	534	1089	1051	366
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			98			94	96	94	88	89	95
cM capacity (veh/h)	1038			1041			144	192	550	151	193	594
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	548	476	50	67								
Volume Left	10	18	9	18								
Volume Right	8	15	34	28								
cSH	1038	1041	309	241								
Volume to Capacity	0.01	0.02	0.16	0.28								
Queue Length 95th (ft)	1	1	14	28								
Control Delay (s)	0.3	0.5	18.9	25.6								
Lane LOS	A	A	C	D								
Approach Delay (s)	0.3	0.5	18.9	25.6								
Approach LOS			C	D								
Intersection Summary												
Average Delay			2.7									
Intersection Capacity Utilization			45.8\%		U Leve	of Ser			A			
Analysis Period (min)			15									

Year 2025- PM Peak (Alt 3)	Synchro 6 Report
Wilbur Smith Associates 6	

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue 2／20／2006

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＊\uparrow			¢ \uparrow			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	83	480	7	69	457	20	2	24	33	200	25	8
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate（vph）	90	522	8	75	497	22	2	26	36	217	27	9
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					224							
pX，platoon unblocked	0.91						0.91	0.91		0.91	0.91	0.91
vC ，conflicting volume	518			529			1127	1374	265	1148	1367	259
vC 1 ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	370			529			1039	1312	265	1063	1304	85
tC ，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	92			93			98	79	95	0	78	99
cM capacity（veh／h）	1090			1048			125	124	740	116	125	876

Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total	351	268	323	270	64	253	
Volume Left	90	0	75	0	2	217	
Volume Right	0	8	0	22	36	9	
cSH	1090	1700	1048	1700	232	121	
Volume to Capacity	0.08	0.16	0.07	0.16	0.28	2.10	
Queue Length 95th（ft）	7	0	6	0	27	527	
Control Delay（s）	2.8	0.0	2.6	0.0	26.3	579.4	
Lane LOS	A		A		D	F	
Approach Delay（s）	1.6		1.4		26.3	579.4	
Approach LOS					D	F	
Intersection Summary							
Average Delay			98.2				
Intersection Capacity Utilization			60．7\％		CU Leve	I of Service	B
Analysis Period（min）			15				

[^2]Synchro 6 Report
Page 7

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	\rangle						4	\dagger	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个官		\％	个 ${ }_{\text {a }}$			个中家			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frpb，ped／bikes	1.00	1.00		1.00	1.00			1.00			1.00	
Flpb，ped／bikes	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3308		1668	3196			4968			4999	
Flt Permitted	0.34	1.00		0.32	1.00			1.00			1.00	
Satd．Flow（perm）	597	3308		558	3196			4968			4999	
Volume（vph）	97	583	34	170	418	163	0	2287	227	0	2503	128
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	100	601	35	175	431	168	0	2358	234	0	2580	132
RTOR Reduction（vph）	0	1	0	0	1	－	0	14	－	0	6	
Lane Group Flow（vph）	100	635	0	175	598	0	0	2578	0	0	2706	
Confl．Peds．（\＃／hr）												
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	34.0	34.0		34.0	34.0			43.0			43.0	
Effective Green，g（s）	34.0	34.0		34.0	34.0			43.0			43.0	
Actuated g／C Ratio	0.40	0.40		0.40	0.40			0.51			0.51	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	239	1323		223	1278			2513			2529	
v／s Ratio Prot		0.19			0.19			0.52			c0．54	
v／s Ratio Perm	0.17			c0．31								
v／c Ratio	0.42	0.48		0.78	0.47			1.03			1.07	
Uniform Delay，d1	18.4	18.9		22.3	18.8			21.0			21.0	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.79	
Incremental Delay，d2	5.3	1.3		23.7	1.2			24.9			32.4	
Delay（s）	23.7	20.2		46.0	20.1			45.9			49.0	
Level of Service	C	C		D	C			D			D	
Approach Delay（s）		20.7			25.9			45.9			49.0	
Approach LOS		C			C			D			D	
Intersection Summary												
HCM Average Control Delay			42.1		HCM Leve	el of S	rvice		D			
HCM Volume to Capacity ratio			0.94									
Actuated Cycle Length（s）			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			87．8\％		CU Leve	of Se			E			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025 －PM Peak（Alt 3）
Wilbur Smith Associates

Synchro 6 Repor

Year 2025
Alternative 4 (Battery Caulfield Alternative)
One-way Couplet
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Street

Year 2025-PM Peak (Alt 4)
Wilbur Smith Associates

Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			¢			¢			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	382	6	20	481	4	9	4	19	51	36	25
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	406	6	21	512	4	10	4	20	54	38	27
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	415	537	34	119								
Volume Left (vph)	2	21	10	54								
Volume Right (vph)	6	4	20	27								
Hadj (s)	-0.01	0.00	-0.30	-0.04								
Departure Headway (s)	5.1	5.0	6.2	6.2								
Degree Utilization, x	0.59	0.74	0.06	0.21								
Capacity (veh/h)	678	711	485	512								
Control Delay (s)	15.1	20.7	9.6	10.9								
Approach Delay (s)	15.1	20.7	9.6	10.9								
Approach LOS	C	C	A	B								
Intersection Summary												
Delay			17.2									
HCM Level of Service			C									
Intersection Capacity Utilization			56.7\%		ICU Leve	of Ser			B			
Analysis Period (min)			15									

Synchro 6 Report
Page

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		A			\＄			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	36	412	4	228	502	62	2	62	55	6	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate（vph）	38	438	4	243	534	66	2	66	59	6	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.84						0.84	0.84		0.84	0.84	0.84
vC ，conflicting volume	600			443			1571	1602	440	1661	1571	567
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	522			443			1682	1720	440	1790	1683	482
tC ，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	96			79			96	0	91	0	98	100
cM capacity（veh／h）	882			1128			50	57	621	0	60	492
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	481	843	127	9								
Volume Left	38	243	2	6								
Volume Right	4	66	59	1								
cSH	882	1128	98	0								
Volume to Capacity	0.04	0.21	1.30	Err								
Queue Length 95th（ft）	3	20	223	Err								
Control Delay（s）	1.2	4.8	270.1	Err								
Lane LOS	A	A	F	F								
Approach Delay（s）	1.2	4.8	270.1	Err								
Approach LOS			F	F								
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utilization			83．4\％		U Leve	of Se	vice		E			
Analysis Period（min）			15									

Year 2025 －PM Peak（Alt 4）
Wilbur Smith Associates

Synchro 6 Report

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	$\stackrel{ }{ }$							\uparrow	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow	${ }^{7}$	${ }_{7}$	\uparrow	${ }^{\prime}$		个中䎟			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4920	
FIt Permitted	0.36	1.00	1.00	0.46	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	655	1756	1492	804	1756	1492		5012			4920	
Volume（vph）	180	264	29	81	335	187	0	2466	80	0	2521	457
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	188	275	30	84	349	195	0	2569	83	－	2626	476
RTOR Reduction（vph）	0	0	1	0	0	1	0	4	0	0	30	
Lane Group Flow（vph）	188	275	29	84	349	194	0	2648	0	0	3072	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	216	578	491	265	578	491		2889			2836	
v／s Ratio Prot		0.16			0.20			0.53			c0．62	
v／s Ratio Perm	c0． 29		0.02	0.10		0.13						
v／c Ratio	0.87	0.48	0.06	0.32	0.60	0.39		0.92			1.08	
Uniform Delay，d1	26.8	22.7	19.5	21.3	23.9	22.0		16.2			18.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.74			1.00	
Incremental Delay，d2	35.0	2.8	0.2	3.1	4.6	2.4		2.0			44.3	
Delay（s）	61.8	25.5	19.7	24.5	28.5	24.3		13.9			62.3	
Level of Service	E	C	B	C	C	C		B			E	
Approach Delay（s）		39.0			26.7			13.9			62.3	
Approach LOS		D			C			B			E	
Intersection Summary												
			38.7		HCM Lev	el of Se	rvice		D			
HCM Average Control Delay HCM Volume to Capacity ratio			1.01									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			96．5\％		ICU Leve	of Ser	vice		F			
			15									
Analysis Period（min） c Critical Lane Group												

Year 2025－PM Peak（Alt 4）Synchro 6 Report

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow			${ }_{\text {¢ }}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	14	323	7	8	579	6	20	1	18	1	1	4
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	14	330	7	8	591	6	20	1	18	1	1	4
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		79										
pX, platoon unblocked				0.88			0.88	0.88	0.88	0.88	0.88	
vC , conflicting volume	597			337			977	975	333	991	976	594
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	597			244			973	972	240	990	972	594
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			90	100	97	99	100	99
cM capacity (veh/h)	985			1165			199	219	705	191	219	509

Year 2025-PM Peak (Alt 4)
Wilbur Smith Associates
Synchro 6 Repor

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

	\rangle							\dagger	7			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			4			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	10	514	8	18	433	15	9	7	33	17	21	25
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	10	524	8	18	442	15	9	7	34	17	21	26
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					524							
pX, platoon unblocked	0.87						0.87	0.87		0.87	0.87	0.87
vC , conflicting volume	457			533			1071	1043	529	1072	1039	449
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	375			533			1082	1049	529	1083	1045	366
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			98			94	96	94	89	89	96
cM capacity (veh/h)	1038			1045			147	194	554	152	195	594
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	543	476	50	64								
Volume Left	10	18	9	17								
Volume Right	8	15	34	26								
cSH	1038	1045	312	241								
Volume to Capacity	0.01	0.02	0.16	0.27								
Queue Length 95th (ft)	1	1	14	26								
Control Delay (s)	0.3	0.5	18.7	25.3								
Lane LOS	A	A	C	D								
Approach Delay (s)	0.3	0.5	18.7	25.3								
Approach LOS			C	D								
Intersection Summary												
Average Delay			2.6									
Intersection Capacity Utilization			45.4\%	ICU Level of Service					A			
Analysis Period (min)			15									

Year 2025-PM Peak (Alt 4)	Synchro 6 Report
Wilbur Smith Associates	Page 6

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue 2／20／2006

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＊\uparrow			¢ \uparrow			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	77	479	7	69	457	20	2	23	33	200	25	8
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate（vph）	84	521	8	75	497	22	2	25	36	217	27	9
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					224							
pX，platoon unblocked	0.91						0.91	0.91		0.91	0.91	0.91
vC ，conflicting volume	518			528			1112	1360	264	1134	1353	259
vC 1 ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	370			528			1024	1296	264	1047	1289	85
tC ，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	92			93			98	80	95	0	79	99
cM capacity（veh／h）	1090			1049			130	127	740	122	129	876

Year 2025－PM Peak（Alt 4）
Wilbur Smith Associates

Synchro 6 Report
Page 7

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	\rangle						4	\dagger	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个官		\％	个 ${ }_{\text {a }}$			个中家			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frpb，ped／bikes	1.00	1.00		1.00	1.00			1.00			1.00	
Flpb，ped／bikes	1.00	1.00		1.00	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3308		1668	3196			4968			4999	
Flt Permitted	0.34	1.00		0.32	1.00			1.00			1.00	
Satd．Flow（perm）	597	3308		559	3196			4968			4999	
Volume（vph）	97	582	34	170	418	163	0	2287	227	0	2503	128
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	100	600	35	175	431	168	0	2358	234	0	2580	132
RTOR Reduction（vph）	0	1	0	0	1	0	0	14	0	0	6	
Lane Group Flow（vph）	100	634	0	175	598	0	0	2578	0	0	2706	
Confl．Peds．（\＃／hr）												
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	34.0	34.0		34.0	34.0			43.0			43.0	
Effective Green，g（s）	34.0	34.0		34.0	34.0			43.0			43.0	
Actuated g／C Ratio	0.40	0.40		0.40	0.40			0.51			0.51	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	239	1323		224	1278			2513			2529	
v／s Ratio Prot		0.19			0.19			0.52			c0．54	
v／s Ratio Perm	0.17			c0．31								
v／c Ratio	0.42	0.48		0.78	0.47			1.03			1.07	
Uniform Delay，d1	18.4	18.9		22.3	18.8			21.0			21.0	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.79	
Incremental Delay，d2	5.3	1.2		23.2	1.2			24.9			32.4	
Delay（s）	23.7	20.2		45.5	20.1			45.9			49.0	
Level of Service	C	C		D	C			D			D	
Approach Delay（s）		20.7			25.8			45.9			49.0	
Approach LOS		C			C			D			D	
Intersection Summary												
HCM Average Control Delay			42.1		HCM Leve	el of S	rvice		D			
HCM Volume to Capacity ratio			0.94									
Actuated Cycle Length（s）			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			87．8\％		CU Leve	of Se	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Year 2025 －PM Peak（Alt 4）
Wilbur Smith Associates

Synchro 6 Repor

Alternative 1 (PTMP Alternative) Park
Presidio Boulevard Access Variant
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue
Year 2025 Variant AM Peak Alt 1

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	627	14	17	295	1	3	1	43	4	4	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	682	15	18	321	1	3	1	47	4	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX , platoon unblocked												
vC , conflicting volume	322			697			1057	1052	689	1099	1059	321
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	322			697			1057	1052	689	1099	1059	321
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			98	100	90	97	98	100
cM capacity (veh/h)	1250			909			197	223	449	168	221	724
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	699	340	51	12								
Volume Left	2	18	3	4								
Volume Right	15	1	47	3								
cSH	1250	909	407	239								
Volume to Capacity	0.00	0.02	0.13	0.05								
Queue Length 95th (ft)	0	2	11	4								
Control Delay (s)	0.0	0.7	15.1	20.8								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.0	0.7	15.1	20.8								
Approach LOS			C	C								
Intersection Summary												
Average Delay			1.2									
Intersection Capacity Utilization			44.5\%		U Lev	of Se			A			
Analysis Period (min)			15									

Presidio of SF PHSH EA
Wilbur Smith Associates

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\stackrel{ }{\text { F }}$			¢			${ }_{\text {¢ }}$			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	33	639	6	183	343	28	4	44	44	3	2	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate（vph）	34	652	6	187	350	29	4	45	45	3	2	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ ft ）					300							
pX，platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
vC ，conflicting volume	379			658			1465	1474	655	1528	1463	364
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	328			658			1503	1513	655	1571	1501	312
tC ，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			80			95	48	90	92	98	99
cM capacity（veh／h）	1149			939			76	87	470	38	88	677
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	692	565	94	9								
Volume Left	34	187	4	3								
Volume Right	6	29	45	4								
cSH	1149	939	141	84								
Volume to Capacity	0.03	0.20	0.67	0.11								
Queue Length 95th（ft）	2	18	92	9								
Control Delay（s）	0.8	4.9	70.7	53.3								
Lane LOS	A	A	F	F								
Approach Delay（s）	0.8	4.9	70.7	53.3								
Approach LOS			F	F								
Intersection Summary												
Average Delay			7.7									
Intersection Capacity Utilization			81．0\％		CU Leve	of Ser			D			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow							\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个中t			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4935	
FIt Permitted	0.56	1.00	1.00	0.23	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1019	1756	1492	399	1756	1492		5012			4935	
Volume（vph）	217	437	32	65	193	137	0	2605	85	0	2338	362
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	226	455	33	68	201	143	0	2714	89	0	2435	377
RTOR Reduction（vph）	0	0	2	0	0	1	0	4	0	0	25	
Lane Group Flow（vph）	226	455	31	68	201	142	0	2799	0	0	2787	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	336	578	491	131	578	491		2889			2845	
v／s Ratio Prot		c0．26			0.11			0.56			c0．56	
v／s Ratio Perm	0.22		0.02	0.17		0.10						
v／c Ratio	0.67	0.79	0.06	0.52	0.35	0.29		0.97			0.98	
Uniform Delay，d1	24.6	25.8	19.5	23.1	21.6	21.1		17.3			17.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.65			0.60	
Incremental Delay，d2	10.3	10.4	0.2	13.9	1.7	1.5		5.8			10.0	
Delay（s）	34.8	36.2	19.8	37.0	23.2	22.6		17.0			20.5	
Level of Service	C	D	B	D	C	C		B			C	
Approach Delay（s）		35.0			25.3			17.0			20.5	
Approach LOS		D			C			B			C	
Intersection Summary												
HCM Average Control Delay			20.9		HCM Le	el of Se	rvice		C			
			0.91									
HCM Volume to Capacity ratioActuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			89．8\％		CU Lev	of Ser	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			${ }_{\text {¢ }}$			${ }_{\text {¢ }}$			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	1	507	14	3	381	4	12	3	18	3	2	2
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	1	576	16	3	433	5	14	3	20	3	2	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		71										
pX , platoon unblocked				0.77			0.77	0.77	0.77	0.77	0.77	
vC , conflicting volume	438			592			1032	1031	584	1051	1036	435
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	438			467			1042	1040	456	1066	1048	435
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			91	98	96	98	99	100
cM capacity (veh/h)	1128			842			158	177	465	145	175	625
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	593	441	38	8								
Volume Left	1	3	14	3								
Volume Right	16	5	20	2								
cSH	1128	842	250	198								
Volume to Capacity	0.00	0.00	0.15	0.04								
Queue Length 95th (ft)	0	0	13	3								
Control Delay (s)	0.0	0.1	21.9	23.9								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.0	0.1	21.9	23.9								
Approach LOS			C	C								
Intersection Summary												
Average Delay			1.0									
Intersection Capacity Utilization			38.2\%		CU Lev	of Se	vice		A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow			¢ ${ }_{\text {¢ }}$			\＄			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	38	594	14	57	316	23	1	32	29	164	13	14
Peak Hour Factor	0.91	0.91	0.25	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate（vph）	42	653	56	63	347	25	1	35	32	180	14	15
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					231							
pX，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
VC ，conflicting volume	373			709			1086	1262	354	945	1277	18
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	301			709			1046	1230	354	898	1246	107
tC，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			93			99	77	95	0	91	98
cM capacity（veh／h）	1218			899			150	154	648	165	151	894

Direction，Lane \＃EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total 368	382	236	199	68	210	
Volume Left 42	0	63	0	1	180	
Volume Right 0	56	0	25	32	15	
cSH 1218	1700	899	1700	239	174	
Volume to Capacity 0.03	0.22	0.07	0.12	0.28	1.20	
Queue Length 95th（ft）	0	6	0	28	284	
Control Delay（s） 1.2	0.0	3.0	0.0	25.9	187.1	
Lane LOS A		A		D	F	
Approach Delay（s） 0.6		1.6		25.9	187.1	
Approach LOS				D	F	
Intersection Summary						
Average Delay		28.8				
Intersection Capacity Utilization		56．4\％	ICU Level of Service			B
Analysis Period（min）		15				

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant AM Peak Alt 1

	$\stackrel{ }{ }$							\uparrow	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个施		${ }^{7}$	个施			个中家			个个年	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3186			4960			4996	
Flt Permitted	0.44	1.00		0.22	1.00			1.00			1.00	
Satd．Flow（perm）	778	3318		381	3186			4960			4996	
Volume（vph）	104	659	24	102	270	115	0	2472	276	0	2307	127
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	107	679	25	105	278	119	0	2548	285	0	2378	131
RTOR Reduction（vph）	0	3	0	0	2	0	0	16	0	0	7	0
Lane Group Flow（vph）	107	701	0	105	395	0	0	2817	0	0	2502	0
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	238	1015		117	975			2976			2998	
v／s Ratio Prot		0.21			0.12			c0．57			0.50	
v／s Ratio Perm	0.14			c0．28								
v／c Ratio	0.45	0.69		0.90	0.41			0.95			0.83	
Uniform Delay，d1	23.7	26.0		28.2	23.4			15.7			13.6	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.69	
Incremental Delay，d2	6.0	3.9		59.1	1.3			8.0			0.9	
Delay（s）	29.8	29.8		87.3	24.6			23.8			10.4	
Level of Service	C	C		F	C			C			B	
Approach Delay（s）		29.8			37.7			23.8			10.4	
Approach LOS		C			D			C			B	
Intersection Summary												
HCM Average Control Delay			20.5		HCM Lev	el of S	rvice		C			
HCM Volume to Capacity ratio			0.93									
Actuated Cycle Length（s）			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			88．5\％		ICU Leve	of Se	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard Year 2025 Variant AM Peak Alt 1

Year 2025
Alternative 2 (Wings Retained/Trust Revised
Alternative) Park Presidio Boulevard Access
Variant
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue
Year 2025 Variant AM Peak Alt 2

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard
Year 2025 Variant AM Peak Alt 2

	\Rightarrow						4	\uparrow			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个中家			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4936	
Flt Permitted	0.58	1.00	1.00	0.23	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1058	1756	1492	399	1756	1492		5012			4936	
Volume（vph）	217	437	32	65	179	137	0	2605	85	0	2324	354
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	226	455	33	68	186	143	0	2714	89	0	2421	369
RTOR Reduction（vph）	0	0	2	0	0	1	0	4	0	0	24	
Lane Group Flow（vph）	226	455	31	68	186	142	0	2799	0	0	2766	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	349	578	491	131	578	491		2889			2845	
v／s Ratio Prot		c0． 26			0.11			0.56			c0．56	
v／s Ratio Perm	0.21		0.02	0.17		0.10						
v／c Ratio	0.65	0.79	0.06	0.52	0.32	0.29		0.97			0.97	
Uniform Delay，d1	24.3	25.8	19.5	23.1	21.4	21.1		17.3			17.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.65			0.58	
Incremental Delay，d2	9.0	10.4	0.2	13.9	1.5	1.5		5.8			9.0	
Delay（s）	33.3	36.2	19.8	37.0	22.8	22.6		17.0			19.1	
Level of Service	C	D	B	D	C	C		B			B	
Approach Delay（s）		34.5			25.2			17.0			19.1	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			20.2		HCM Lev	el of S	rvice		C			
HCM Volume to Capacity ratio			0.90									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			89．4\％		ICU Leve	of Se	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			${ }_{\text {¢ }}$			${ }_{\text {¢ }}$			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	1	507	14	3	367	4	12	3	18	3	2	2
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	1	576	16	3	417	5	14	3	20	3	2	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		71										
pX , platoon unblocked				0.77			0.77	0.77	0.77	0.77	0.77	
vC , conflicting volume	422			592			1016	1015	584	1035	1020	419
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	422			467			1021	1019	456	1045	1027	419
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			92	98	96	98	99	100
cM capacity (veh/h)	1143			842			163	182	465	150	180	638
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	593	425	38	8								
Volume Left	1	3	14	3								
Volume Right	16	5	20	2								
cSH	1143	842	256	204								
Volume to Capacity	0.00	0.00	0.15	0.04								
Queue Length 95th (ft)	0	0	13	3								
Control Delay (s)	0.0	0.1	21.4	23.3								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.0	0.1	21.4	23.3								
Approach LOS			C	C								
Intersection Summary												
Average Delay			1.0									
Intersection Capacity Utilization			38.2\%		CU Lev	of Se	vice		A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Presidio of SF PHSH EA
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant AM Peak Alt 2

	$\stackrel{ }{ }$						4	\uparrow	P		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个 ${ }_{\text {¢ }}$		${ }^{7}$	个 ${ }_{\text {a }}$			个个家			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3186			4960			4997	
Flt Permitted	0.44	1.00		0.22	1.00			1.00			1.00	
Satd．Flow（perm）	778	3318		383	3186			4960			4997	
Volume（vph）	104	657	24	102	270	115	0	2472	276	0	2296	124
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	107	677	25	105	278	119	0	2548	285	0	2367	128
RTOR Reduction（vph）	0	3	0	0	2	0	0	16		0	7	
Lane Group Flow（vph）	107	699	0	105	395	0	0	2817	0	0	2488	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	238	1015		117	975			2976			2998	
v / s Ratio Prot		0.21			0.12			c0．57			0.50	
v／s Ratio Perm	0.14			c0．27								
v／c Ratio	0.45	0.69		0.90	0.41			0.95			0.83	
Uniform Delay，d1	23.7	25.9		28.2	23.4			15.7			13.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.69	
Incremental Delay，d2	6.0	3.8		59.1	1.3			8.0			0.9	
Delay（s）	29.8	29.8		87.3	24.6			23.8			10.4	
Level of Service	C	C		F	C			C			B	
Approach Delay（s）		29.8			37.7			23.8			10.4	
Approach LOS		C			D			C			B	
Intersection Summary												
HCM Average Control Delay			20.5		HCM Le	el of S	rvice		C			
HCM Volume to Capacity ratio			0.93									
Actuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			88．5\％		ICU Lev	of Se	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant AM Peak Alt 2

Year 2025
Alternative 3 (Wings Removed Alternative)
Park Presidio Boulevard Access Variant
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue
Year 2025 Variant AM Peak Alt 3

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	609	14	17	290	1	3	1	43	4	4	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	662	15	18	315	1	3	1	47	4	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX , platoon unblocked												
vC , conflicting volume	316			677			1032	1027	670	1074	1034	316
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	316			677			1032	1027	670	1074	1034	316
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			98	100	90	98	98	100
cM capacity (veh/h)	1255			924			205	231	461	176	229	729
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	679	335	51	12								
Volume Left	2	18	3	4								
Volume Right	15	1	47	3								
cSH	1255	924	419	248								
Volume to Capacity	0.00	0.02	0.12	0.05								
Queue Length 95th (ft)	0	2	10	4								
Control Delay (s)	0.0	0.7	14.8	20.3								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.0	0.7	14.8	20.3								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.2									
Intersection Capacity Utilization			43.5\%		U Lev	of Se			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow							\dagger	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个中家			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4936	
FIt Permitted	0.59	1.00	1.00	0.23	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1068	1756	1492	399	1756	1492		5012			4936	
Volume（vph）	217	437	32	65	175	137	0	2605	85	0	2326	355
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	226	455	33	68	182	143	0	2714	89	0	2423	370
RTOR Reduction（vph）	0	0	2	0	0	1	0	4	0	0	24	
Lane Group Flow（vph）	226	455	31	68	182	142	0	2799	0	0	2769	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	352	578	491	131	578	491		2889			2845	
v／s Ratio Prot		c0．26			0.10			0.56			c0．56	
v／s Ratio Perm	0.21		0.02	0.17		0.10						
v／c Ratio	0.64	0.79	0.06	0.52	0.31	0.29		0.97			0.97	
Uniform Delay，d1	24.2	25.8	19.5	23.1	21.3	21.1		17.3			17.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.65			0.59	
Incremental Delay，d2	8.7	10.4	0.2	13.9	1.4	1.5		5.8			9.2	
Delay（s）	32.9	36.2	19.8	37.0	22.7	22.6		17.0			19.3	
Level of Service	C	D	B	D	C	C		B			B	
Approach Delay（s）		34.4			25.2			17.0			19.3	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			20.3		HCM Le	el of Se	rvice		C			
			0.91									
HCM Volume to Capacity ratioActuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			89．5\％		CU Lev	of Ser	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			${ }_{\text {¢ }}$			${ }_{\text {¢ }}$			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	1	507	14	3	363	4	12	3	18	3	2	2
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	1	576	16	3	412	5	14	3	20	3	2	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		71										
pX , platoon unblocked				0.77			0.77	0.77	0.77	0.77	0.77	
vC , conflicting volume	417			592			1011	1010	584	1030	1016	415
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	417			467			1015	1013	456	1039	1021	415
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			92	98	96	98	99	100
cM capacity (veh/h)	1147			842			164	183	465	151	181	642
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	593	420	38	8								
Volume Left	1	3	14	3								
Volume Right	16	5	20	2								
cSH	1147	842	258	206								
Volume to Capacity	0.00	0.00	0.15	0.04								
Queue Length 95th (ft)	0	0	13	3								
Control Delay (s)	0.0	0.1	21.3	23.2								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.0	0.1	21.3	23.2								
Approach LOS			C	C								
Intersection Summary												
Average Delay			1.0									
Intersection Capacity Utilization			38.2\%		CU Lev	of Se	vice		A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＊\uparrow			ब1）			${ }_{4}$			${ }_{*}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	26	594	14	57	315	23	1	26	29	163	13	14
Peak Hour Factor	0.91	0.91	0.25	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate（vph）	29	653	56	63	346	25	1	29	32	179	14	15
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					231							
pX，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC，conflicting volume	371			709			1059	1235	354	914	1250	186
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	300			709			1018	1201	354	866	1217	106
tC，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tc}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	98			93			99	82	95	3	91	98
cM capacity（veh／h）	1219			899			159	162	648	184	159	895

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant AM Peak Alt 3

	$\stackrel{ }{ }$						4	\uparrow	P		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	个 ${ }_{\text {¢ }}$		${ }^{7}$	个 ${ }_{\text {a }}$			个个家			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3186			4960			4997	
Flt Permitted	0.44	1.00		0.22	1.00			1.00			1.00	
Satd．Flow（perm）	778	3318		382	3186			4960			4997	
Volume（vph）	104	658	24	102	270	115	0	2472	276	0	2298	124
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	107	678	25	105	278	119	0	2548	285	0	2369	128
RTOR Reduction（vph）	0	3	0	0	2	0	0	16		0	7	
Lane Group Flow（vph）	107	700	0	105	395	0	0	2817	0	0	2490	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	238	1015		117	975			2976			2998	
v / s Ratio Prot		0.21			0.12			c0．57			0.50	
v／s Ratio Perm	0.14			c0．27								
v／c Ratio	0.45	0.69		0.90	0.41			0.95			0.83	
Uniform Delay，d1	23.7	26.0		28.2	23.4			15.7			13.6	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.69	
Incremental Delay，d2	6.0	3.8		59.1	1.3			8.0			0.9	
Delay（s）	29.8	29.8		87.3	24.6			23.8			10.4	
Level of Service	C	C		F	C			C			B	
Approach Delay（s）		29.8			37.7			23.8			10.4	
Approach LOS		C			D			C			B	
Intersection Summary												
HCM Average Control Delay			20.5		HCM Le	el of S	rvice		C			
HCM Volume to Capacity ratio			0.93									
Actuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			88．5\％		ICU Lev	of Se	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant AM Peak Alt 3

Alternative 4 (Battery Caulfield Alternative)
Park Presidio Boulevard Access Variant
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue
Year 2025 Variant AM Peak Alt 4

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	608	14	17	287	1	3	1	43	4	4	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	661	15	18	312	1	3	1	47	4	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX , platoon unblocked												
vC , conflicting volume	313			676			1028	1023	668	1070	1030	312
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	313			676			1028	1023	668	1070	1030	312
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			98	100	90	98	98	100
cM capacity (veh/h)	1259			925			207	232	461	177	230	732
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	678	332	51	12								
Volume Left	2	18	3	4								
Volume Right	15	1	47	3								
cSH	1259	925	420	249								
Volume to Capacity	0.00	0.02	0.12	0.05								
Queue Length 95th (ft)	0	2	10	4								
Control Delay (s)	0.0	0.7	14.8	20.2								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.0	0.7	14.8	20.2								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.2									
Intersection Capacity Utilization			43.4\%		U Lev	of Se			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\dagger}$			\dagger			${ }_{4}$			${ }_{\dagger}$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	19	621	14	14	301	18	2	28	41	6	2	2
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	20	647	15	15	314	19	2	29	43	6	2	2
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	681	347	74	10								
Volume Left (vph)	20	15	2	6								
Volume Right (vph)	15	19	43	2								
Hadj (s)	-0.01	-0.02	-0.34	0.00								
Departure Headway (s)	4.6	4.9	5.9	6.4								
Degree Utilization, x	0.87	0.47	0.12	0.02								
Capacity (veh/h)	771	710	567	506								
Control Delay (s)	29.4	12.3	9.7	9.6								
Approach Delay (s)	29.4	12.3	9.7	9.6								
Approach LOS	D	B	A	A								
Intersection Summary												
Delay			22.6									
HCM Level of Service			C									
Intersection Capacity Utilization			51.2\%		CU Leve	of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		今			¢			\dagger			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	23	639	6	180	325	18	4	26	44	3	2	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate（vph）	23	652	6	184	332	18	4	27	45	3	2	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.94						0.94	0.94		0.94	0.94	0.94
vC ，conflicting volume	350			658			1415	1419	655	1468	1413	341
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	305			658			1444	1448	655	1501	1442	295
tC ，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	98			80			95	73	90	95	98	99
cM capacity（veh／h）	1185			939			85	98	470	57	99	700
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	682	534	76	9								
Volume Left	23	184	4	3								
Volume Right	6	18	45	4								
cSH	1185	939	182	115								
Volume to Capacity	0.02	0.20	0.42	0.08								
Queue Length 95th（ft）	2	18	47	6								
Control Delay（s）	0.5	4.9	38.2	39.1								
Lane LOS	A	A	E	E								
Approach Delay（s）	0.5	4.9	38.2	39.1								
Approach LOS			E	E								
Intersection Summary												
Average Delay			4.8									
Intersection Capacity Utilization			77．8\％		CU Leve	of Se			D			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow						4	\uparrow			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个中t			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4937	
Flt Permitted	0.59	1.00	1.00	0.23	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1071	1756	1492	399	1756	1492		5012			4937	
Volume（vph）	217	437	32	65	174	137	0	2605	85	0	2318	350
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	226	455	33	68	181	143	0	2714	89	0	2415	365
RTOR Reduction（vph）	0	0	2	0	0	1	0	4	0	0	24	
Lane Group Flow（vph）	226	455	31	68	181	142	0	2799	0	0	2756	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	353	578	491	131	578	491		2889			2846	
v／s Ratio Prot		c0． 26			0.10			c0．56			0.56	
v／s Ratio Perm	0.21		0.02	0.17		0.10						
v／c Ratio	0.64	0.79	0.06	0.52	0.31	0.29		0.97			0.97	
Uniform Delay，d1	24.2	25.8	19.5	23.1	21.3	21.1		17.3			17.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.65			0.57	
Incremental Delay，d2	8.6	10.4	0.2	13.9	1.4	1.5		5.8			8.5	
Delay（s）	32.8	36.2	19.8	37.0	22.7	22.6		17.0			18.4	
Level of Service	C	D	B	D	C	C		B			B	
Approach Delay（s）		34.4			25.2			17.0			18.4	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			19.9		HCM Leve	el of S	rvice		B			
HCM Volume to Capacity ratio			0.90									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			89．2\％		CU Leve	of Se	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			${ }_{\text {¢ }}$			${ }_{\text {¢ }}$			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	1	507	14	3	362	4	12	3	18	3	2	2
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	1	576	16	3	411	5	14	3	20	3	2	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		71										
pX , platoon unblocked				0.77			0.77	0.77	0.77	0.77	0.77	
vC , conflicting volume	416			592			1010	1009	584	1029	1015	414
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	416			467			1013	1012	456	1038	1019	414
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			92	98	96	98	99	100
cM capacity (veh/h)	1148			842			165	184	465	152	182	643
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	593	419	38	8								
Volume Left	1	3	14	3								
Volume Right	16	5	20	2								
cSH	1148	842	258	206								
Volume to Capacity	0.00	0.00	0.15	0.04								
Queue Length 95th (ft)	0	0	13	3								
Control Delay (s)	0.0	0.1	21.3	23.1								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.0	0.1	21.3	23.1								
Approach LOS			C	C								
Intersection Summary												
Average Delay			1.0									
Intersection Capacity Utilization			38.2\%		CU Lev	of Se	vice		A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow			А $\hat{\square}$			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	26	594	14	56	314	23	1	26	29	161	13	14
Peak Hour Factor	0.91	0.91	0.25	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
$\begin{array}{llllllllll}\text { Hourly flow rate（vph）} & 29 & 653 & 56 & 62 & 345 & 25 & 1 & \\ \text { Pedestrians }\end{array}$												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft） 231												
pX，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC，conflicting volume	370			709			1056	1231	354	910	1247	185
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked voltC, single（s）	299			709			1015	1198	354	863	1214	106
	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％ cM capacity（veh／h）	98			93			99	82	95	4	91	98
	1220			899			160	163	648	185	160	895

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant AM Peak Alt 4

	\rangle							\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个t		${ }^{7}$	个t			个个曻			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3186			4960			4997	
Flt Permitted	0.44	1.00		0.22	1.00			1.00			1.00	
Satd．Flow（perm）	778	3318		385	3186			4960			4997	
Volume（vph）	104	656	24	102	270	115	0	2472	276	0	2291	123
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	107	676	25	105	278	119	0	2548	285	0	2362	127
RTOR Reduction（vph）	0	3	0	0	2	0	0	16	0	0	7	
Lane Group Flow（vph）	107	698	0	105	395	0	0	2817	0	0	2482	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	238	1015		118	975			2976			2998	
v / s Ratio Prot		0.21			0.12			c0．57			0.50	
v／s Ratio Perm	0.14			c0．27								
v／c Ratio	0.45	0.69		0.89	0.41			0.95			0.83	
Uniform Delay，d1	23.7	25.9		28.1	23.4			15.7			13.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.69	
Incremental Delay，d2	6.0	3.8		57.2	1.3			8.0			0.9	
Delay（s）	29.8	29.7		85.3	24.6			23.8			10.3	
Level of Service	C	C		F	C			C			B	
Approach Delay（s）		29.7			37.3			23.8			10.3	
Approach LOS		C			D			C			B	
Intersection Summary												
HCM Average Control Delay			20.5		HCM Lev	el of S	rvice		C			
HCM Volume to Capacity ratio			0.93									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			88．5\％		ICU Leve	of Se	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant AM Peak Alt 4

Year 2025

Alternative 1 (PTMP Alternative) Park
Presidio Boulevard Access Variant
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			${ }_{\dagger}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	376	11	28	490	4	4	1	28	8	3	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	2	404	12	30	527	4	4	1	30	9	3	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	531			416			1008	1006	410	1034	1010	529
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	531			416			1008	1006	410	1034	1010	529
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			97			98	100	95	96	99	100
cM capacity (veh/h)	1046			1154			213	236	646	197	235	554

cM capacity (veh/h)	1046		1154	213	236	646	197	235	554

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1		
Volume Total	418	561	35	14		
Volume Left	2	30	4	9		
Volume Right	12	4	30	2		
cSH	1046	1154	497	228		
Volume to Capacity	0.00	0.03	0.07	0.0	5	
Queue Length 95th (ft)	0	2	6	5		
Control Delay (s)	0.1	0.7	12.8	21.8		
Lane LOS	A	A	B	C		
Approach Delay (s)	0.1	0.7	12.8	21.8		
Approach LOS			B	C		
Intersection Summary						
Average Delay		1.2				
Intersection Capacity Utilization	56.0%	ICU Level of Service				
Analysis Period (min)		15				

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

$\rightarrow \rightarrow \downarrow \rightarrow \downarrow \downarrow \downarrow$

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\hat{\beta}$			${ }_{4}$			${ }_{\dagger}$			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	28	368	4	236	545	32	2	51	55	6	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate（vph）	30	396	4	254	586	34	2	55	59	6	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.82						0.82	0.82		0.82	0.82	0.82
vC ，conflicting volume	620			400			1570	1586	398	1655	1571	603
vC1，stage 1 conf vol												
vC2，stage 2 conf vol												
vCu ，unblocked vol	540			400			1692	1711	398	1795	1693	519
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	96			78			96	4	91	0	98	100
M capacity（veh／4）	57			70			49	57	56		59	

Presidio of SF PHSH EA
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\rangle						4	\dagger	1		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow	F	\％	\uparrow	F		个中t			个中t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5015			4939	
Flt Permitted	0.34	1.00	1.00	0.47	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	611	1756	1492	828	1756	1492		5015			4939	
Volume（vph）	143	257	29	81	357	187	0	2466	80	0	2644	456
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	147	265	30	84	368	193	0	2542	82	0	2726	470
RTOR Reduction（vph）	0	0	1	－	0	1	0	4	0	0	28	
Lane Group Flow（vph）	147	265	29	84	368	192	0	2620	0	0	3168	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	1\％	3\％	1\％	1\％	3\％	\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	201	578	491	273	578	491		2891			2847	
v / s Ratio Prot		0.15			0.21			0.52			c0．64	
v／s Ratio Perm	c0．24		0.02	0.10		0.13						
v／c Ratio	0.73	0.46	0.06	0.31	0.64	0.39		0.91			1.11	
Uniform Delay，d1	25.2	22.5	19.5	21.3	24.2	21.9		16.0			18.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.21			0.52	
Incremental Delay，d2	20.8	2.6	0.2	2.9	5.3	2.3		1.7			53.4	
Delay（s）	46.0	25.1	19.7	24.2	29.5	24.3		21.0			62.6	
Level of Service	D	C	B	C	C	C		C			E	
Approach Delay（s）		31.7			27.2			21.0			62.6	
Approach LOS		C			C			C			E	
Intersection Summary												
HCM Average Control Delay			41.5		HCM Le	el of Sersid	rvice		D			
HCM Volume to Capacity ratio			0.97									
Actuated Cycle Length（s）			85.0		Sum of	ost time			8.0			
Intersection Capacity Utilization			98．0\％		ICU Lev	of Ser	vice		F			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			${ }^{\dagger}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	14	316	7	8	601	6	20	1	18	1	1	4
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	16	363	8	9	691	7	23	1	21	1	1	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		68										
pX, platoon unblocked				0.88			0.88	0.88	0.88	0.88	0.88	
VC , conflicting volume	698			371			1117	1116	367	1133	1116	694
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	698			287			1133	1131	283	1151	1132	694
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	98			99			85	99	97	99	99	99
cM capacity (veh/h)	903			1130			155	176	671	147	176	446

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1		
Volume Total	387	707	45	7		
Volume Left	16	9	23	1		
Volume Right	8	7	21	5		
cSH	903	1130	241	280		
Volume to Capacity	0.02	0.01	0.19	0.02		
Queue Length 95th (ft)	1	1	17	2		
Control Delay (s)	0.6	0.2	23.3	18.2		
Lane LOS	A	A	C	C		
Approach Delay (s)	0.6	0.2	23.3	18.2		
Approach LOS			C	C		
Intersection Summary						
Average Delay		1.4				
Intersection Capacity Utilization	47.1%	ICU Level of Service	A			
Analysis Period (min)		15				

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow			А $\hat{*}$			${ }_{4}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	74	470	7	69	480	15	2	19	33	208	25	8
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	78	495	7	73	505	16	2	20	35	219	26	8
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					231							
pX ，platoon unblocked	0.90						0.90	0.90		0.90	0.90	0.90
vC ，conflicting volume	521			502			1074	1321	251	1106	1316	261
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	364			502			976	1249	251	1012	1244	76
tC ，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	93			93			99	85	95	0	81	99
cM capacity（veh／h）	1090			1073			143	137	755	135	138	882

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant PM Peak Alt 1

	\rangle						4	4			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个t		${ }^{7}$	个 \uparrow			个中t			个中t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3308		1668	3195			4968			4996	
Flt Permitted	0.33	1.00		0.31	1.00			1.00			1.00	
Satd．Flow（perm）	574	3308		537	3195			4968			4996	
Volume（vph）	97	580	34	170	418	163	0	2287	227	0	2608	146
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj．Flow（vph）	102	611	36	179	440	172	0	2407	239	0	2745	154
RTOR Reduction（vph）	0	1	0	0	1	0	0	14	0	0	7	
Lane Group Flow（vph）	102	646	0	179	611	0	0	2632	0	0	2892	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Effective Green，g（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Actuated g／C Ratio	0.39	0.39		0.39	0.39			0.52			0.52	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	223	1284		208	1240			2572			2586	
v／s Ratio Prot		0.20			0.19			0.53			c0．58	
v／s Ratio Perm	0.18			c0．33								
v／c Ratio	0.46	0.50		0.86	0.49			1.02			1.12	
Uniform Delay，d1	19.3	19.8		23.9	19.7			20.5			20.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.43	
Incremental Delay，d2	6.6	1.4		34.5	1.4			24.0			53.8	
Delay（s）	26.0	21.2		58.4	21.1			44.5			62.7	
Level of Service	C	C		E	C			D			E	
Approach Delay（s）		21.8			29.5			44.5			62.7	
Approach LOS		C			C			D			E	
Intersection Summary												
HCM Average Control Delay			47.9		HCM Le	el of Se	rvice		D			
HCM Volume to Capacity ratioActuated Cycle Length（s）			1.01									
			85.0		Sum of	ost time			8.0			
Actuated Cycle Length（s）Intersection Capacity Utilization			90．2\％		ICU Lev	of Ser	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant PM Peak Alt 1

Year 2025
Alternative 2 (Wings Retained/Trust Revised
Alternative) Park Presidio Boulevard Access
Variant
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			\dagger			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	357	11	28	469	4	4	1	28	8	3	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	2	384	12	30	504	4	4	1	30	9	3	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	509			396			965	963	390	991	967	506
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	509			396			965	963	390	991	967	506
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			97			98	100	95	96	99	100
cM capacity (veh/h)	1067			1174			228	251	663	211	249	570

Direction, Lane \# EB 1	WB 1	NB 1	SB 1	
Volume Total 398	539	35	14	
Volume Left	30	4	9	
Volume Right 12	4	30	2	
cSH 1067	1174	518	243	
Volume to Capacity 0.00	0.03	0.07	0.06	
Queue Length 95th (ft)	2	5	5	
Control Delay (s) 0.1	0.7	12.5	20.7	
Lane LOS A	A	B	C	
Approach Delay (s) 0.1	0.7	12.5	20.7	
Approach LOS		B	C	
Intersection Summary				
Average Delay		1.2		
Intersection Capacity Utilization		54.8\%	ICU Level of Service	A
Analysis Period (min)		15		

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

| | | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SBR

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\stackrel{ }{\text { F }}$			\dagger			${ }_{\text {¢ }}$			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	28	368	4	231	524	13	2	32	55	6	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate（vph）	30	396		248	563	14	2	34	59	6	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.84						0.84	0.84		0.84	0.84	0.84
vC ，conflicting volume	577			400			1527	1532	398	1602	1527	570
vC1，stage 1 conf vol												
vC2，stage 2 conf vol												
vCu ，unblocked vol	495			400			1629	1636	398	1719	1630	487
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	． 2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			79			96	47	91	76	98	100
cM capacity（veh／h）	903			1170			56	65	656	26	65	489

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard
Year 2025 Variant PM Peak Alt 2

	\Rightarrow							\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个中t			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5015			4942	
FIt Permitted	0.36	1.00	1.00	0.47	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	658	1756	1492	828	1756	1492		5015			4942	
Volume（vph）	143	257	29	81	338	187	0	2466	80	0	2588	430
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	147	265	30	84	348	193	0	2542	82	0	2668	443
RTOR Reduction（vph）	0	0	1	0	0	1	0	4	0	0	27	
Lane Group Flow（vph）	147	265	29	84	348	192	0	2620	0	0	3084	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	1\％	3\％	1\％	1\％	3\％	\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	217	578	491	273	578	491		2891			2849	
v／s Ratio Prot		0.15			0.20			0.52			c0．62	
v／s Ratio Perm	c0．22		0.02	0.10		0.13						
v／c Ratio	0.68	0.46	0.06	0.31	0.60	0.39		0.91			1.08	
Uniform Delay，d1	24.6	22.5	19.5	21.3	23.8	21.9		16.0			18.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.21			0.55	
Incremental Delay，d2	15.7	2.6	0.2	2.9	4.6	2.3		1.7			41.3	
Delay（s）	40.3	25.1	19.7	24.2	28.4	24.3		21.0			51.2	
Level of Service	D	C	B	C	C	C		C			D	
Approach Delay（s）		29.8			26.6			21.0			51.2	
Approach LOS		C			C			C			D	
Intersection Summary												
HCM Average Control Delay			35.9		HCM Le	el of Se	rvice		D			
			0.94									
HCM Volume to Capacity ratioActuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			95．3\％		CU Lev	of Ser	vice		F			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			¢			${ }_{4}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	14	316	7	8	582	6	20	1	18	1	1	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	16	363	8	9	669	7	23	1	21	1	1	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		68										
pX, platoon unblocked				0.88			0.88	0.88	0.88	0.88	0.88	
vC , conflicting volume	676			371			1095	1094	367	1111	1094	672
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	676			287			1108	1106	283	1126	1107	672
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	98			99			86	99	97	99	99	99
cM capacity (veh/h)	920			1130			161	182	671	153	182	459

| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 | | |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| Volume Total | 387 | 685 | 45 | 7 | | |
| Volume Left | 16 | 9 | 23 | 1 | | |
| Volume Right | 8 | 7 | 21 | 5 | | |
| cSH | 920 | 1130 | 249 | 289 | | |
| Volume to Capacity | 0.02 | 0.01 | 0.18 | 0.02 | | |
| Queue Length 95th (ft) | 1 | 1 | 16 | 2 | | |
| Control Delay (s) | 0.6 | 0.2 | 22.6 | 17.7 | | |
| Lane LOS | A | A | C | C | | |
| Approach Delay (s) | 0.6 | 0.2 | 22.6 | 17.7 | | |
| Approach LOS | | | C | C | | |
| Intersection Summary | | | | | | |
| Average Delay | | 1.3 | | | | |
| Intersection Capacity Utilization | 46.1% | ICU Level of Service | A | | | |
| Analysis Period (min) | | 15 | | | | |
| | | | | | | |

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant PM Peak Alt 2

	\rangle						4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	个 ${ }_{\text {a }}$		\％	个 ${ }_{\text {P }}$			个中家			晀	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3308		1668	3195			4968			4995	
Flt Permitted	0.33	1.00		0.31	1.00			1.00			1.00	
Satd．Flow（perm）	574	3308		543	3195			4968			4995	
Volume（vph）	97	575	34	170	418	163	0	2287	227	0	2552	146
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj．Flow（vph）	102	605	36	179	440	172	0	2407	239	0	2686	154
RTOR Reduction（vph）	0	1	0	0	1	0	0	14	，	0	7	
Lane Group Flow（vph）	102	640	0	179	611	0	0	2632	0	0	2833	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Effective Green，g（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Actuated g／C Ratio	0.39	0.39		0.39	0.39			0.52			0.52	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	223	1284		211	1240			2572			2586	
v／s Ratio Prot		0.19			0.19			0.53			c0．57	
v／s Ratio Perm	0.18			c0．33								
v／c Ratio	0.46	0.50		0.85	0.49			1.02			1.10	
Uniform Delay，d1	19.3	19.7		23.7	19.7			20.5			20.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.43	
Incremental Delay，d2	6.6	1.4		32.4	1.4			24.0			43.6	
Delay（s）	26.0	21.1		56.1	21.1			44.5			52.5	
Level of Service	C	C		E	C			D			D	
Approach Delay（s）		21.8			29.0			44.5			52.5	
Approach LOS		C			C			D			D	
Intersection Summary												
HCM Average Control Delay			43.6		HCM Lev	el of Se	rvice		D			
HCM Volume to Capacity ratio			0.99									
Actuated Cycle Length（s）			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			89．0\％		ICU Leve	of Ser	vice		E			
Analysis Period（min）			15									

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant PM Peak Alt 2

Year 2025
Alternative 3 (Wings Removed Alternative)
Park Presidio Boulevard Access Variant
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			${ }_{\text {¢ }}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	357	11	28	467	4	4	1	28	8	3	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	2	384	12	30	502	4	4	1	30	9	3	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	506			396			962	961	390	989	965	504
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	506			396			962	961	390	989	965	504
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			97			98	100	95	96	99	100
cM capacity (veh/h)	1069			1174			229	251	663	212	250	572

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow			\dagger			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	28	368	4	230	522	13	2	32	55	6	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate（vph）	30	396	4	247	561	14	2	34	59	6	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.84						0.84	0.84		0.84	0.84	0.84
vC ，conflicting volume	575			400			1523	1528	398	1597	1523	568
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	493			400			1624	1631	398	1714	1625	484
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			79			96	47	91	76	98	100
cM capacity（veh／h）	905			1170			56	65	656	27	66	491
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	430	823	96	9								
Volume Left	30	247	2	6								
Volume Right	4	14	59	1								
cSH	905	1170	146	33								
Volume to Capacity	0.03	0.21	0.65	0.26								
Queue Length 95th（ft）	3	20	90	21								
Control Delay（s）	1.0	4.7	67.1	148.1								
Lane LOS	A	A	F	F								
Approach Delay（s）	1.0	4.7	67.1	148.1								
Approach LOS			F	F								
Intersection Summary												
Average Delay			8.8									
Intersection Capacity Utilization			77．3\％		CU Leve	of Se	vice		D			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow							\dagger	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个中家			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5015			4942	
FIt Permitted	0.36	1.00	1.00	0.47	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	658	1756	1492	828	1756	1492		5015			4942	
Volume（vph）	143	257	29	81	338	187	0	2466	80	0	2583	427
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	147	265	30	84	348	193	0	2542	82	0	2663	440
RTOR Reduction（vph）	0	0	1	0	0	1	0	4	0	0	27	
Lane Group Flow（vph）	147	265	29	84	348	192	0	2620	0	0	3076	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	1\％	3\％	1\％	1\％	3\％	\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	217	578	491	273	578	491		2891			2849	
v／s Ratio Prot		0.15			0.20			0.52			c0．62	
v／s Ratio Perm	c0．22		0.02	0.10		0.13						
v／c Ratio	0.68	0.46	0.06	0.31	0.60	0.39		0.91			1.08	
Uniform Delay，d1	24.6	22.5	19.5	21.3	23.8	21.9		16.0			18.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.21			0.54	
Incremental Delay，d2	15.7	2.6	0.2	2.9	4.6	2.3		1.7			40.2	
Delay（s）	40.3	25.1	19.7	24.2	28.4	24.3		21.0			49.9	
Level of Service	D	C	B	C	C	C		C			D	
Approach Delay（s）		29.8			26.6			21.0			49.9	
Approach LOS		C			C			C			D	
Intersection Summary												
HCM Average Control Delay			35.3		HCM Le	el of Se	rvice		D			
			0.93									
HCM Volume to Capacity ratioActuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			95．1\％		CU Lev	of Ser	vice		F			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			¢			${ }_{4}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	14	316	7	8	582	6	20	1	18	1	1	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	16	363	8	9	669	7	23	1	21	1	1	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		68										
pX, platoon unblocked				0.88			0.88	0.88	0.88	0.88	0.88	
vC , conflicting volume	676			371			1095	1094	367	1111	1094	672
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	676			287			1108	1106	283	1126	1107	672
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	98			99			86	99	97	99	99	99
cM capacity (veh/h)	920			1130			161	182	671	153	182	459

| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 | | |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| Volume Total | 387 | 685 | 45 | 7 | | |
| Volume Left | 16 | 9 | 23 | 1 | | |
| Volume Right | 8 | 7 | 21 | 5 | | |
| cSH | 920 | 1130 | 249 | 289 | | |
| Volume to Capacity | 0.02 | 0.01 | 0.18 | 0.02 | | |
| Queue Length 95th (ft) | 1 | 1 | 16 | 2 | | |
| Control Delay (s) | 0.6 | 0.2 | 22.6 | 17.7 | | |
| Lane LOS | A | A | C | C | | |
| Approach Delay (s) | 0.6 | 0.2 | 22.6 | 17.7 | | |
| Approach LOS | | | C | C | | |
| Intersection Summary | | | | | | |
| Average Delay | | 1.3 | | | | |
| Intersection Capacity Utilization | 46.1% | ICU Level of Service | A | | | |
| Analysis Period (min) | | 15 | | | | |
| | | | | | | |

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant PM Peak Alt 3

	\rangle						4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	个 ${ }_{\text {a }}$		\％	个 ${ }_{\text {P }}$			个中家			晀	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3308		1668	3195			4968			4995	
Flt Permitted	0.33	1.00		0.31	1.00			1.00			1.00	
Satd．Flow（perm）	574	3308		544	3195			4968			4995	
Volume（vph）	97	574	34	170	418	163	0	2287	227	0	2547	146
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj．Flow（vph）	102	604	36	179	440	172	0	2407	239	0	2681	154
RTOR Reduction（vph）	0	1	0	0	1	0	0	14	，	0	7	
Lane Group Flow（vph）	102	639	0	179	611	0	0	2632	0	0	2828	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Effective Green，g（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Actuated g／C Ratio	0.39	0.39		0.39	0.39			0.52			0.52	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	223	1284		211	1240			2572			2586	
v／s Ratio Prot		0.19			0.19			0.53			c0．57	
v／s Ratio Perm	0.18			c0．33								
v／c Ratio	0.46	0.50		0.85	0.49			1.02			1.09	
Uniform Delay，d1	19.3	19.7		23.7	19.7			20.5			20.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.43	
Incremental Delay，d2	6.6	1.4		32.4	1.4			24.0			42.8	
Delay（s）	26.0	21.1		56.1	21.1			44.5			51.7	
Level of Service	C	C		E	C			D			D	
Approach Delay（s）		21.8			29.0			44.5			51.7	
Approach LOS		C			C			D			D	
Intersection Summary												
HCM Average Control Delay			43.2		HCM Lev	el of Se	rvice		D			
HCM Volume to Capacity ratio			0.99									
Actuated Cycle Length（s）			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			88．8\％		ICU Leve	of Ser	vice		E			
Analysis Period（min）			15									

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant PM Peak Alt 3

Alternative 4 (Battery Caulfield Alternative)
Park Presidio Boulevard Access Variant
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	354	11	28	265	4	4	1	28	8	3	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	2	381	12	30	285	4	4	1	30	9	3	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
VC , conflicting volume	289			392			742	740	387	769	744	287
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	289			392			742	740	387	769	744	287
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			97			99	100	95	97	99	100
cM capacity (veh/h)	1284			1177			324	337	666	299	336	757

Direction, Lane \# EB 1	WB 1	NB 1	SB 1		
Volume Total 395	319	35	14		
Volume Left	30	4	9		
Volume Right 12	4	30	2		
cSH 1284	1177	575	339		
Volume to Capacity 0.00	0.03	0.06	0.04		
Queue Length 95th (ft)	2	5	3		
Control Delay (s) 0.1	1.0	11.7	16.1		
Lane LOS A	A	B	C		
Approach Delay (s) 0.1	1.0	11.7	16.1		
Approach LOS		B	C		
Intersection Summary					
Average Delay		1.3			
Intersection Capacity Utilization		44.5\%		ICU Level of Service	A
Analysis Period (min)		15			

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

| | | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SBR

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	28	368	4	230	520	10	2	29	55	6	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate（vph）	30	396	4	247	559	11	2	31	59	6	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.84						0.84	0.84		0.84	0.84	0.84
vC ，conflicting volume	570			400			1519	1523	398	1592	1519	565
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	487			400			1618	1623	398	1706	1619	481
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			79			96	53	91	78	98	100
cM capacity（veh／h）	911			1170			57	66	656	29	67	494
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	430	817	92	9								
Volume Left	30	247	2	6								
Volume Right	4	11	59	1								
cSH	911	1170	155	36								
Volume to Capacity	0.03	0.21	0.60	0.24								
Queue Length 95th（ft）	3	20	79	19								
Control Delay（s）	1.0	4.7	58.0	133.9								
Lane LOS	A	A	F	F								
Approach Delay（s）	1.0	4.7	58.0	133.9								
Approach LOS			F	F								
Intersection Summary												
Average Delay			8.0									
Intersection Capacity Utilization			76．8\％		CU Leve	l of Se	vice		D			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow						4	\uparrow			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个中家			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5015			4943	
Flt Permitted	0.37	1.00	1.00	0.47	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	665	1756	1492	828	1756	1492		5015			4943	
Volume（vph）	143	257	29	81	335	187	0	2466	80	0	2578	425
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	147	265	30	84	345	193	0	2542	82	0	2658	438
RTOR Reduction（vph）	0	0	1	0	0	1	0	4	0	0	27	
Lane Group Flow（vph）	147	265	29	84	345	192	0	2620	0	0	3069	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	1\％	3\％	1\％	1\％	3\％	1\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	219	578	491	273	578	491		2891			2849	
v / s Ratio Prot		0.15			0.20			0.52			c0．62	
v／s Ratio Perm	c0．22		0.02	0.10		0.13						
v／c Ratio	0.67	0.46	0.06	0.31	0.60	0.39		0.91			1.08	
Uniform Delay，d1	24.5	22.5	19.5	21.3	23.8	21.9		16.0			18.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.21			0.59	
Incremental Delay，d2	15.2	2.6	0.2	2.9	4.5	2.3		1.7			39.4	
Delay（s）	39.8	25.1	19.7	24.2	28.3	24.3		21.0			50.0	
Level of Service	D	C	B	C	C	C		C			D	
Approach Delay（s）		29.6			26.5			21.0			50.0	
Approach LOS		C			C			C			D	
Intersection Summary												
HCM Average Control Delay			35.3		HCM Lev	el of S	rvice		D			
HCM Volume to Capacity ratio			0.93									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			94．8\％		ICU Leve	of Se	vice		F			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			${ }_{*}$			\dagger			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	14	316	7	8	579	6	20	1	18	1	1	4
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	16	363	8	9	666	7	23	1	21	1	1	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		68										
pX, platoon unblocked				0.88			0.88	0.88	0.88	0.88	0.88	
vC, conflicting volume	672			371			1092	1090	367	1108	1091	669
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	672			287			1104	1102	283	1122	1103	669
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	98			99			86	99	97	99	99	99
cM capacity (veh/h)	923			1130			162	183	671	154	183	461

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1		
Volume Total	387	682	45	7		
Volume Left	16	9	23	1		
Volume Right	8	7	21	5		
cSH	923	1130	250	291		
Volume to Capacity	0.02	0.01	0.18	0.02		
Queue Length 95th (ft)	1	1	16	2		
Control Delay (s)	0.6	0.2	22.5	17.7		
Lane LOS	A	A	C	C		
Approach Delay (s)	0.6	0.2	22.5	17.7		
Approach LOS			C	C		
Intersection Summary						
Average Delay		1.3				
Intersection Capacity Utilization	45.9%	ICU Level of Service	A			
Analysis Period (min)		15				

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow			¢ ${ }^{\text {a }}$			\dagger			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	55	470	7	69	480	15	2	16	33	202	25	8
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	58	495	7	73	505	16	2	17	35	213	26	8
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					231							
pX，platoon unblocked	0.90						0.90	0.90		0.90	0.90	0.90
vC ，conflicting volume	521			502			1034	1281	251	1065	1276	261
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	364			502			931	1204	251	966	1200	76
tC，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	95			93			99	89	95	0	82	99
cM capacity（veh／h）	1090			1073			159	148	755	152	149	882

Direction，Lane \＃EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total 305	255	325	268	54	247	
Volume Left 58	0	73	0	2	213	
Volume Right	7	0	16	35	8	
cSH 1090	1700	1073	1700	310	156	
Volume to Capacity 0.05	0.15	0.07	0.16	0.17	1.58	
Queue Length 95th（ft）	0	5	0	15	422	
Control Delay（s） 2.0	0.0	2.5	0.0	19.0	342.2	
Lane LOS A		A		C	F	
Approach Delay（s） 1.1		1.3		19.0	342.2	
Approach LOS				C	F	
Intersection Summary						
Average Delay		59.9				
Intersection Capacity Utilization		60．2\％		CU Leve	l of Service	B
Analysis Period（min）		15				

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant PM Peak Alt 4

	\rangle						4	4			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个t		${ }^{7}$	个 \uparrow			个中t			个中t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3308		1668	3195			4968			4995	
Flt Permitted	0.33	1.00		0.31	1.00			1.00			1.00	
Satd．Flow（perm）	574	3308		544	3195			4968			4995	
Volume（vph）	97	574	34	170	418	163	0	2287	227	0	2542	146
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj．Flow（vph）	102	604	36	179	440	172	0	2407	239	0	2676	154
RTOR Reduction（vph）	0	1	0	0	1	0	0	14	0	0	7	
Lane Group Flow（vph）	102	639	0	179	611	0	0	2632	0	0	2823	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Effective Green，g（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Actuated g／C Ratio	0.39	0.39		0.39	0.39			0.52			0.52	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	223	1284		211	1240			2572			2586	
v／s Ratio Prot		0.19			0.19			0.53			c0．57	
v／s Ratio Perm	0.18			c0．33								
v／c Ratio	0.46	0.50		0.85	0.49			1.02			1.09	
Uniform Delay，d1	19.3	19.7		23.7	19.7			20.5			20.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.43	
Incremental Delay，d2	6.6	1.4		32.4	1.4			24.0			41.9	
Delay（s）	26.0	21.1		56.1	21.1			44.5			50.8	
Level of Service	C	C		E	C			D			D	
Approach Delay（s）		21.8			29.0			44.5			50.8	
Approach LOS		C			C			D			D	
Intersection Summary												
HCM Average Control Delay			42.9		HCM Le	el of Se	rvice		D			
HCM Volume to Capacity ratioActuated Cycle Length（s）			0.99									
			85.0		Sum of	ost time			8.0			
Intersection Capacity Utilization			88．7\％		ICU Lev	of Ser	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant PM Peak Alt 4

$\begin{array}{r}1: 53 \mathrm{PM} \\ \text { PHSH Only } \\ \hline\end{array}$						
AM Peak Hour	PHSH	No Act．	Alt． 1	Alt． 2	Alt． 3	Alt． 4
Total Transit Trips	92	41	114	58	48	34
Total External Transit Trips	76	37	96	53	44	31
Total Internal Transit Trips	16	4	18	5	3	4
Total Muni Ridership	71	35	90	50	42	29
Muni Ridership on Lines Near PHSH（1，1AX，1BX，28，28L）	71	35	90	50	42	29
Other Muni Ridership	0	0	0	0	0	0
GGT Route 10 Bus Ridership	8	4	10	5	4	3
PresidiGo Ridership	8	1	8	0	－1	1
Total Transit Ridership	87	39	108	55	45	33
PM Peak Hour	PHSH	No Act．	Alt． 1	Alt． 2	Alt． 3	Alt． 4
Total Transit Trips	206	45	212	64	57	42
Total External Transit Trips	173	41	180	59	52	37
Total Internal Transit Trips	33	5	32	5	4	5
Total Muni Ridership	163	38	169	55	49	35
Muni Ridership on Lines Near PHSH（1，1AX，1BX，28，28L）	163	38	169	55	49	35
Other Muni Ridership	0	0	0	0	0	0
GGT Route 10 Bus Ridership	17	4	18	6	5	4
PresidiGo Ridership	15	1	14	－1	－1	1
Total Transit Ridership	195	43	202	60	53	40

Presidio－wide Ridership（Area B）						
AM Peak Hour	PHSH	No Act．	Alt． 1	Alt． 2	Alt． 3	Alt． 4
Muni	1，117	1，080	1，136	1，096	1，087	1，074
AC Transit	21	20	21	20	20	20
BART	68	66	70	67	67	66
GGT Buses	119	115	121	117	116	114
GGT Ferries	0	0	0	0	0	0
Caltrain	30	29	30	29	29	29
Subtotal	1，355	1，310	1，378	1，329	1，319	1，303
PresidiGo	242	231	244	231	230	230
TOTAL	1，597	1，541	1，622	1，561	1，549	1，533
PM Peak Hour	PHSH	No Act．	Alt． 1	Alt． 2	Alt． 3	Alt． 4
Muni	1，621	1，496	1，627	1，513	1，507	1，493
AC Transit	30	28	30	28	28	28
BART	99	92	100	93	92	91
GGT Buses	173	159	173	161	161	159
GGT Ferries	0	0	0	0	0	0
Caltrain	43	40	43	40	40	40
Subtotal	1，966	1，815	1，974	1，836	1，829	1，811
PresidiGo	369	341	369	342	341	342
TOTAL	2，336	2，156	2，343	2，177	2，169	2，153

Figure 4C-101. Traffic Signal Warrants Worksheet (Sheet 1 of 4)

$\overline{\text { DIST }} \overline{\mathrm{CO}_{1}} \overline{\mathrm{RTE}} \overline{\mathrm{KPM}}$
Malor st \qquad CALC \qquad DATE \qquad Minor St \qquad Crtheal Approvich Soeed \qquad $\xrightarrow{\mathrm{km} / \mathrm{m} / \mathrm{h}}$
Critimal speed of mejor ureet tratio $>64 \mathrm{~km} / \mathrm{h}(40 \mathrm{mph})$ (n) or RURAL(R) urban (u)
In oult up area of isolitied community of < 10,000 popuiation.....

WARRANT 3 - Peak Hour PARTA OT PARTE SATISFIED YES \square NO \mathbb{X} PAPTA SATISFIED YES \square NO
Ali parts 1,2, and 3 below must be satiffied
The total dotiay experienced for rrafic on one minor street approach controlied

PARTB
SATISFIED VES \square NO $/ 8$

Thn plotued pointis ior vehber per hour on majo streas (ooth ppproaches)

Figure 4C-3. Warrant 3, Peak Hour

MAJOR STREET-TOTAL OF BOTH APPROACHESVEHICLES PER HOUR (VPH)
Note: 150 vph applies as the lower throenoid volume tor a minor-atree
throshold volume for a minor street approach with ane inc.

Technical Memorandum No. 5, Sensitivity Analysis for Trip Generation and Assignment, was written in response to comments on the Environmental Assessment and is available in the Presidio Trust library.

SAN FRANCISCO OFFICE

April 19, 2006

Project Number:
395900

To:
Amy Marshall, The Presidio Trust

From:
José I. Farrán, Project Manager
Nate Chanchareon, Senior Transportation Engineer
Subject: The Presidio of San Francisco
Public Health Service Hospital Site Supplemental Environmental Impact Statement
Draft Technical Memorandum No. 4 - Existing (Year 2005) + Project Transportation Impact Analysis of Alternatives

1. INTRODUCTION

This Technical Memorandum estimates and describes potential traffic and transit impacts and parameters associated with four land use alternatives for rehabilitation and reuse of the Presidio of San Francisco's Public Health Service Hospital (PHSH) development site as they compare against existing (Year 2005) conditions with respect to

- Traffic levels in and adjacent to the Presidio,
- Traffic at adjacent intersections,
- On/Off-site pedestrian and bicycle facilities,
- Public transportation, and
\bullet Parking.

2. TRAFFIC OPERATIONS

2.1 Existing Roadway Network

Currently, the $15^{\text {th }}$ Avenue Gate is open to vehicular and pedestrian traffic while the $14^{\text {th }}$ Avenue Gate is open only to pedestrians. Although this configuration functions adequately with the existing level of traffic, future occupancy of the PHSH and other Presidio buildings is expected to warrant improved access and circulation. The NPS 1994 General Management Plan Amendment for the Presidio recognized such access needs and recommended reopening the $14^{\text {th }}$ Avenue Gate to vehicular traffic and operating the $14^{\text {th }}$ Avenue and $15^{\text {th }}$ Avenue Gates as a oneway couplet with the $14^{\text {th }}$ Avenue Gate accommodating northbound traffic entering the Presidio and the $15^{\text {th }}$ Avenue Gate accommodating southbound traffic exiting the Presidio. This one-way couplet was assumed in the analysis of transportation-related impacts of land use alternatives in

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.2 of B-4.38
the Presidio Trust Management Plan - Background Transportation Report for the Final EIS, prepared by Wilbur Smith Associates (WSA) in May 2002 and has also been assumed for the assessment of traffic impacts related to the PHSH Final EIS Alternatives 1, 2, 3, and 4.

In addition, Alternatives 1, 2, 3, and 4 have also been analyzed assuming direct vehicular access to Park Presidio Boulevard via a new intersection north of Lake Street, as described in the Public Health Service Hospital Transportation Study: Additional Alternatives Analysis (WSA, December 2003). This access variant would allow traffic leaving the PHSH site to turn left or right on Highway 1, and allow southbound traffic on Highway 1 to enter the PHSH site directly from Highway 1. Both the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates would be open to inbound (northbound traffic only.

2.2 Intersection Andysis

Intersection operating conditions have been evaluated for weekday AM and PM peak period conditions under existing conditions at eight key intersections in the vicinity of the PHSH site. These are the intersections that would most likely experience the greatest change in traffic volumes due to changes in land uses at the PHSH site. Further basis for identifying these eight intersections for analysis is set forth in Technical Memorandum \#1. The eight study intersections are:

- Lake Street $/ 17^{\text {th }}$ Avenue
- Lake Street $/ 15^{\text {th }}$ Avenue
- Lake Street $/ 14^{\text {th }}$ Avenue
- Lake Street/Park Presidio Boulevard
- Lake Street/Funston Avenue
- California Street $/ 15^{\text {th }}$ Avenue
- California Street $/ 14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

The AM and PM peak hour intersection operations analysis was conducted according to the methodology described in the 2000 Highway Capacity Manual (HCM 2000) (Transportation Research Board, 2000). The HCM methodology calculates the average delay experienced by a vehicle traveling through the intersection, and assigns a corresponding level of service (LOS). The levels of service range from LOS A, indicating volumes well below capacity with vehicles experiencing little or no delay, to LOS F , indicating volumes near capacity with vehicle experiencing extremely high delays ${ }^{1}$. Appendix A contains the HCM 2000 LOS definitions.

[^3]Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.3 of B-4.38

For signalized intersections, the HCM 2000 methodology determines the average delay per vehicle for each lane group based on the particular movement, and traffic volume and capacity associated with that lane group. The average delay per vehicle is then aggregated for each approach and for the intersection as a whole. A combined weighted average delay and LOS is then presented for the intersection as a whole. For unsignalized intersections, average delay and LOS operating conditions are calculated by approach (e.g., northbound) and movement (e.g., northbound left-turn). For two-way stop-controlled intersections, delay and LOS are calculated for each of the stop-controlled approaches and operating conditions are reported for the worst approach. For all-way stop-controlled intersections, average delay per vehicle is averaged across all approaches, and operating conditions are reported for the average delay and LOS for the intersection as a whole.

2.2.1 One-Way Couplet at $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates

Tables 1 and 2 present the results of the intersection LOS analysis for the Existing (Year 2005) + Project weekday AM and PM peak hour conditions assuming that the $14^{\text {th }}$ Avenue and $15^{\text {th }}$ Avenue Gates operate as a one-way couplet with the $14^{\text {th }}$ Avenue Gate accommodating northbound traffic entering the Presidio and the $15^{\text {th }}$ Avenue Gate accommodating southbound traffic exiting the Presidio (Appendix A contains the detailed calculations of the intersection LOS analysis).

Alternative 1: PTMP Alternative - As Table 1 indicates, under Alternative 1 in the AM peak hour, all but two intersections would operate at LOS D or better. The minor approaches to the two-way stop-controlled intersections of Lake Street $/ 14^{\text {th }}$ Avenue and California $/ 14^{\text {th }}$ Avenue would operate at LOS F and E, respectively. The levels of service at the rest of the study intersections would remain the same as under existing conditions.

As shown in Table 2, in the PM peak hour, the minor approaches to the two-way stop-controlled intersections of Lake Street $/ 14^{\text {th }}$ Avenue and California Street $/ 14^{\text {th }}$ Avenue would operate at LOS F with Alternative 1 compared to LOS D and E under existing conditions. While the lowvolume traffic on one or both of the minor approaches to these intersections would incur delay, the majority of the traffic on the uncontrolled approaches (California Street or Lake Street) would not have to stop; therefore, would not incur any delay. Of the remaining six study intersections, four intersections would continue to operate at LOS C, and two intersections would fall from LOS B under existing conditions to LOS C with Alternative 1.

Intersection	Traffic Control Device	$\begin{gathered} \hline \text { Existing } \\ \text { Conditions } \\ \hline \end{gathered}$		Alt. 1		Alt. 2		Alt. 3		Alt. 4	
		Delay ${ }^{1}$	LOS	Delay ${ }^{1}$	Los	Delay ${ }^{\text { }}$	LOS	Delay ${ }^{1}$	LOS	Delay ${ }^{1}$	LOS
Lake St/ $17^{\text {th }} \mathrm{Ave}^{2}$	$\begin{aligned} & \hline \text { 2-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 17.5 \\ & (\mathrm{SB}) \end{aligned}$	C	$\begin{aligned} & 18.3 \\ & (\mathrm{SB}) \end{aligned}$	c	$\begin{aligned} & 17.9 \\ & (\mathrm{SB}) \end{aligned}$	c	$\begin{aligned} & 17.8 \\ & (\mathrm{SB}) \end{aligned}$	C	$\begin{aligned} & 17.7 \\ & (\mathrm{SB}) \end{aligned}$	c
Lake St/ $15^{\text {th }}$ Ave	$\begin{aligned} & \text { 4-Way } \\ & \text { Stop } \end{aligned}$	17.2	C	22.3	C	19.2	C	19.1	C	18.0	C
Lake St $14^{\text {th }} \mathrm{Ave}^{2}$	$\begin{aligned} & \text { 2-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 21.4 \\ & \text { (SB) } \end{aligned}$	C	$\begin{gathered} >50 \\ \text { (NB) } \end{gathered}$	F	$\begin{gathered} 48.6 \\ (\mathrm{NB}) \end{gathered}$	E	$\begin{aligned} & 41.4 \\ & \text { (NB) } \end{aligned}$	E	$\begin{gathered} 37.3 \\ (\mathrm{NB}) \end{gathered}$	E
Lake St/ Park Presidio Blvd.	$\begin{aligned} & \text { Traffic } \\ & \text { Signal } \end{aligned}$	16.4	B	17.3	B	16.8	B	16.8	B	16.7	B
Lake StFunston Ave ${ }^{2}$	$\begin{aligned} & \text { 2-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 16.9 \\ & (\mathrm{SB}) \end{aligned}$	C	$\begin{aligned} & 18.0 \\ & \text { (SB) } \end{aligned}$	C	$\begin{aligned} & 17.5 \\ & \text { (SB) } \end{aligned}$	C	$\begin{aligned} & 17.4 \\ & \text { (SB) } \end{aligned}$	C	$\begin{aligned} & 17.3 \\ & \text { (SB) } \end{aligned}$	C
California St/ $15^{\text {th }} \mathrm{Ave}^{2}$	$\begin{aligned} & \text { 2-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 20.8 \\ & (\mathrm{SB}) \end{aligned}$	c	$\begin{aligned} & 18.0 \\ & (\mathrm{SB}) \end{aligned}$	c	$\begin{aligned} & 18.2 \\ & \text { (SB) } \end{aligned}$	c	$\begin{aligned} & 18.0 \\ & \text { (SB) } \end{aligned}$	c	$\begin{aligned} & 18.4 \\ & \text { (SB) } \end{aligned}$	C
California St/ $14^{\text {di }} \mathrm{Ave}^{2}$	$\begin{aligned} & \text { 2-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 29.9 \\ & (\mathrm{SB}) \end{aligned}$	D	$\begin{aligned} & 49.4 \\ & (\mathrm{SB}) \end{aligned}$	E	$\begin{aligned} & 38.5 \\ & \text { (SB) } \end{aligned}$	E	$\begin{aligned} & 36.6 \\ & \text { (SB) } \end{aligned}$	E	$\begin{aligned} & 36.0 \\ & (\mathrm{SB}) \end{aligned}$	E
California St/ Park Presidio Blvd.	Traffic Signal	16.2	B	16.3	B	16.3	B	16.2	B	16.2	B

$\frac{\text { Notes }}{\text { Delay }}$
Delay presented in seconds per vehicle based on the 2000 HCM methodology.
${ }^{2}$ Lolas and and delay shown in for worst minoro stop-controlled approach. Major approach is uncontrolled and without delay.

Table 2 Intersection Levels of Service - Existing-plus-Project Conditions Weekday PM Peak Hour											
Intersection	TrafficControl Device	Existing		Alt. 1		Alt. 2		Alt. 3		Alt. 4	
		Delay ${ }^{1}$	Los								
Lake St/ $17^{\text {th }} \mathrm{Ave}^{2}$	$\begin{aligned} & \text { 2-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 16.7 \\ & (\mathrm{SB}) \end{aligned}$	C	$\begin{aligned} & \hline 17.9 \\ & (\mathrm{SB}) \end{aligned}$	C	$\begin{aligned} & 17.1 \\ & (\mathrm{SB}) \end{aligned}$	C	$\begin{aligned} & 17.1 .1 \\ & (\mathrm{SB}) \end{aligned}$	C	$\begin{aligned} & \hline 17.0 \\ & (\mathrm{SB}) \end{aligned}$	c
Lake St/ $15^{\text {th }}$ Ave	$\begin{aligned} & \text { 4-Way } \\ & \text { Stop } \end{aligned}$	13.1	B	18.1	C	13.7	B	13.5	B	13.2	B
Lake St $14^{\text {th }} \mathrm{Ave}^{2}$	$\begin{aligned} & \text { 2-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 30.5 \\ & \text { (SB) } \end{aligned}$	D	$\begin{aligned} & >50 \\ & \text { (SB) } \end{aligned}$	F	$\begin{aligned} & >50 \\ & \text { (SB) } \end{aligned}$	F	$\begin{aligned} & >50 \\ & \text { (SB) } \end{aligned}$	F	$\begin{aligned} & 46.2 \\ & (\mathrm{SB}) \end{aligned}$	E
Lake St/ Park Presidio Blvd.	$\begin{aligned} & \text { Traffic } \\ & \text { Signal } \end{aligned}$	18.4	B	22.0	C	19.2	B	19.2	B	18.9	B
Lake StFunston Ave ${ }^{2}$	$\begin{aligned} & \text {-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 15.9 \\ & \text { (NB) } \end{aligned}$	C	$\begin{aligned} & 17.7 \\ & \text { (NB) } \end{aligned}$	C	$\begin{aligned} & 16.6 \\ & (\mathrm{NB}) \end{aligned}$	C	$\begin{aligned} & 16.6 \\ & \text { (NB) } \end{aligned}$	C	$\begin{aligned} & 16.5 \\ & \text { (NB) } \end{aligned}$	C
California St/ $15^{\text {th }} \mathrm{Ave}^{2}$	$\begin{aligned} & \text { 2-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 20.2 \\ & \text { (SB) } \end{aligned}$	c	$\begin{aligned} & 20.7 \\ & \text { (SB) } \end{aligned}$	c	$\begin{aligned} & 19.2 \\ & (\mathrm{SB}) \end{aligned}$	C	$\begin{aligned} & 19.4 \\ & (\mathrm{SB}) \end{aligned}$	C	$\begin{aligned} & 19.4 \\ & (\mathrm{SB}) \end{aligned}$	C
California St/ $14^{\text {th }} \mathrm{Ave}^{2}$	$\begin{aligned} & \text { 2-Way } \\ & \text { Stop } \end{aligned}$	$\begin{aligned} & 38.9 \\ & (\mathrm{SB}) \end{aligned}$	E	$\begin{aligned} & \mathbf{5 0} \\ & \text { (SB) } \end{aligned}$	F	$\begin{aligned} & \mathbf{5 0} \\ & \text { (SB) } \end{aligned}$	F	$\begin{aligned} & >50 \\ & (\mathrm{SB}) \end{aligned}$	F	$\begin{aligned} & \mathbf{5 0} \\ & \text { (SB) } \end{aligned}$	F
California St/ Park Presidio Blvd.	$\begin{aligned} & \text { Traffic } \\ & \text { Tignal } \\ & \hline \end{aligned}$	22.2	C	22.3	c	22.3	C	22.3	C	22.3	C

$\frac{\text { Notess }}{\text { Delay presented in seconds per vehicle based on the } 2000 \mathrm{HCM} \text { methodology }}$
Desh presented in seconds per vehicle based on the 2000HCM methodology.

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.6 of B-4.38

Comparison of Alternative 1 to Existing Conditions
Compared to the existing conditions, Alternative 1 would result in reduced delay at the following intersection during the AM peak hour:

- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 13%)

During the AM peak hour, Alternative 1 would result in increased delay at the following intersections compared to the existing conditions

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 5\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate increase of 30\%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of more than 100%)
- Lake Street/Park Presidio Boulevard (approximate increase of 5\%)
- Lake Street/Funston Avenue (approximate increase of 7\%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of 65\%)
- California Street/Park Presidio Boulevard (approximate increase of less than 1\%)

During the PM peak hour, Alternative 1 results in increased delays at all the study intersections compared to the existing conditions as follows:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 7%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate increase of 38%)
- Lake Street $/ 14^{\text {th }}$ Avenue (increase of at least 64%)
- Lake Street/Park Presidio Boulevard (approximate increase of 20\%)
- Lake Street/Funston Avenue (approximate increase of 11\%)
- California Street/ $15^{\text {th }}$ Avenue (approximate increase of 2\%)
- California Street $/ 14^{\text {th }}$ Avenue (increase of at least 29\%)
- California Street/Park Presidio Boulevard (approximate increase of less than 1\%)

Alternative 2: Wings Retained/Trust Revised Alternative - As shown in Table 1, in the AM peak hour under existing conditions with Alternative 2, all study intersections would operate at LOS D or better except the two intersections of Lake Street $/ 14^{\text {th }}$ Avenue and California Street $/ 14^{\text {th }}$ Avenue, which would operate at LOS E. The remaining six of the eight study intersections would operate at the same levels of service as Alternative 1 and existing conditions. In the PM peak hour, as shown in Table 2, all but two intersections under Alternative 2 would perate at LOS D or better. The minor approaches to the two-way stop-controlled intersections

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.7 of B-4.38
of Lake Street $/ 14^{\text {th }}$ Avenue and California Street $/ 14^{\text {th }}$ Avenue would operate at LOS F. Alternative 2 would result in the same delay or slight decreases in delay for all study intersections during the PM peak hour versus Alternative 1. Compared to existing conditions, the levels of service at six of the eight study intersections would remain the same under Alternative 2.

Comparison of Alternative 2 to Alternative 1
Compared to Alternative 1, Alternative 2 would result in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 2\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 14%)
- Lake Street/ $14^{\text {th }}$ Avenue (reduction of more than 3\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 3\%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street/14 ${ }^{\text {th }}$ Avenue (approximate reduction of 22\%)

Alternative 2 would result in no change to the delay compared to Alternative 1 at the following intersection during the AM peak hour:

- California Street/Park Presidio Boulevard

During the AM peak hour, Alternative 2 would result in increased delays at the following study intersection compared to Alternative 1:

- California Street/ $15^{\text {th }}$ Avenue (approximate increase of 1\%)

Compared to Alternative 1, Alternative 2 would result in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 4\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 24\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 13\%)
- Lake Street/Funston Avenue (approximate reduction of 6\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 7%)

Alternative 2 would result in no substantial changes to the delay compared to Alternative 1 at the following three intersections during the PM peak hour:

- Lake Street $/ 14^{\text {th }}$ Avenue

Amy Marshall, The Presidio Trust

April 19, 2006
Page B-4.8 of B-4.38

- California Street/ $14^{\text {th }}$ Avenue

- California Street/Park Presidio Boulevard

Comparison of Alternative 2 to Existing Conditions
Compared to the existing conditions, Alternative 2 would result in reduced delay at the following intersection during the AM peak hour:

- California Street/ $15^{\text {th }}$ Avenue (approximate reduction of 13\%)

During the AM peak hour, Alternative 2 would result in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 2%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate increase of 12\%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of more than 100\%)
- Lake Street/Park Presidio Boulevard (approximate increase of 2\%)
- Lake Street/Funston Avenue (approximate increase of 4\%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of 29%)
- California Street/Park Presidio Boulevard (approximate increase of less than 1\%)

Compared to the existing conditions, Alternative 2 would result in reduced delays at the following study intersection during the PM peak hour:

- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 5\%)

During the PM peak hour, Alternative 2 would result in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 2\%)
-Lake Street $/ 15^{\text {th }}$ Avenue (approximate increase of 5\%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate increase of more than 64%)
- Lake Street/Park Presidio Boulevard (approximate increase of 4\%)
- Lake Street/Funston Avenue (approximate increase of 4\%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of more than 29\%)
- California Street/Park Presidio Boulevard (approximate increase of less than 1\%)

Alternative 3: Wings Removed Alternative -Table 1 shows that in the AM peak hour under existing conditions with Alternative 3 six of the eight study intersections would operate at LOS D or better, and at the same levels of service as under existing conditions, or with Alternatives 1

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.9 of B-4.38

Amy Marshall, The Presidio Trust

April 19, 2006
Page B-4.10 of B-4.38

- California Street/ $14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

During the PM peak hour, Alternative 3 would result in increased delays at the following study intersection compared to Alternative 2:

- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 1%)

Comparison of Alternative 3 to Alternative 1
Compared to Alternative 1, Alternative 3 would result in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 3\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 14%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of more than 17\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 3\%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street/14 ${ }^{\text {th }}$ Avenue (approximate reduction of 26\%)
- California Street/Park Presidio Boulevard Avenue (approximate reduction of less than 1\%)

Alternative 3 would result in no change to the delay compared to Alternative 1 at the following intersection during the AM peak hour:

- California Street/15th Avenue

Compared to Alternative 1, Alternative 3 would result in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 5\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 25\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 13\%)
- Lake Street/Funston Avenue (approximate reduction of 6\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 6\%)

Alternative 3 would result in no substantive changes to the delays compared to Alternative 1 at the following intersections during the PM peak hour:

- Lake Street $/ 14^{\text {th }}$ Avenue
- California Street $/ 14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.11 of B-4.38

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.12 of B-4.38

Comparison of Alternative 3 to Existing Conditions
Compared to the existing conditions, Alternative 3 would result in reduced delay at the following intersection during the AM peak hour:

- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 14%)

Alternative 3 would result in no change to the delay compared to the existing conditions at the following study intersection during the AM peak hour:

- California Street/Park Presidio Boulevard

During the AM peak hour, Alternative 3 would result in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 2\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate increase of 11%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of 94\%)
- Lake Street/Park Presidio Boulevard (approximate increase of 2\%)
- Lake Street/Funston Avenue (approximate increase of 3\%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of 22%)

Compared to existing conditions, Alternative 3 would result in reduced delay at the following intersection during the PM peak hour:

- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 4\%)

Alternative 3 would result in increased delays compared to the existing conditions at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 2\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate increase of 3\%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate increase of more than 64\%)
- Lake Street/Park Presidio Boulevard (approximate increase of 4\%)
- Lake Street/Funston Avenue (approximate increase of 4\%)
- California Street/ $14^{\text {th }}$ Avenue (approximate increase of more than 29\%)
- California Street/Park Presidio Boulevard (approximate increase of less than 1\%)

Alternative 4: Battery Caulfield Alternative - Table 1 shows that Alternative 4 would result in similar levels of service and delays as the other alternatives and existing conditions during the AM peak hour, with all study intersections operating at LOS D or better except two intersections. During the AM peak hour, Alternative 4 would result in the same or reduced delays versus

Alternatives 1,2 and 3, with only the minor street approach of the intersection of California Street $/ 15^{\text {th }}$ Avenue operating at slightly increased delays. Compared to the existing conditions, Alternative 4 would result in reduced delays at six study intersections and increased delays at the other two study intersections.

Table 2 shows that during the PM peak hour, Alternative 4 would result in the lowest delays and best levels of service of Alternatives $1,2,3$, and 4 with the exception of California Street $/ 15^{\text {th }}$ Avenue intersection, which would operate with slightly higher delay than Alternative 2 . However, the minor approaches to the two-way stop-controlled intersections of Lake Street $/ 14^{\text {th }}$ Avenue and California Street $/ 14^{\text {th }}$ Avenue would operate at LOS E as with the other alternatives. Alternative 4 would result in the same levels of service for the remaining six of the eight study intersections versus existing conditions during the PM peak hour.

Comparison of Alternative 4 to Alternative 3
Compared to Alternative 3, Alternative 4 would result in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 6\%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 10%)
- Lake Street/Park Presidio Boulevard (approximate reduction of less than 1\%)
- Lake Street/Funston Avenue (approximate reduction of less than 1\%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 2\%)

Alternative 4 would result in no change to the delays compared to Alternative 3 at one study intersection during the AM peak hour:

- California Street/Park Presidio Boulevard

During the AM peak hour, Alternative 4 would result in increased delay at the following intersection compared to Alternative 3:

- California Street/ $15^{\text {th }}$ Avenue (approximate increase of 2\%)

Compared to Alternative 3, Alternative 4 would result in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of less than 1\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2\%)
- Lake Street $14^{\text {th }}$ Avenue (approximate reduction of at least 8%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 2\%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.13 of B-4.38

Alternative 4 would result in no substantive changes to the delays compared to Alternative 3 at the following intersections during the PM peak hour:

- California Street $/ 15^{\text {th }}$ Avenue
- California Street/ $14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

Comparison of Alternative 4 to Alternative 2
Compared to Alternative 2, Alternative 4 would result in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 6\%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 23\%)
- Lake Street/Park Presidio Boulevard (approximate reduction of less than 1%)
- Lake Street/Funston Avenue (approximate reduction of 1\%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 7\%)
- California Street/Park Presidio Boulevard (approximate reduction of less than 1\%)

During the AM peak hour, Alternative 4 would result in increased delay at one intersection compared to Alternative 2:

- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 1%)

Compared to Alternative 2, Alternative 4 would result in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 4\%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate reduction of at least 8%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 2\%)
- Lake Street/Funston Avenue (approximate reduction of less than 1\%)

Alternative 4 would result in no substantive changes to the delay compared to Alternative 2 at the following intersections during the PM peak hour:

- California Street $/ 14^{\text {th }}$ Avenue

Amy Marshall, The Presidio Trust

April 19, 2006
Page B-4.14 of B-4.38

- California Street/Park Presidio Boulevard

During the PM peak hour, Alternative 4 would result in increased delays at one study intersection compared to Alternative 2

- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 1%)

Comparison of Alternative 4 to Alternative 1
Compared to Alternative 1, Alternative 4 would result in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 3\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 19%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of at least 25%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 4\%)
- Lake Street/Funston Avenue (approximate reduction of 4\%)
- California Street/14 ${ }^{\text {th }}$ Avenue (approximate reduction of 27\%)
- California Street/Park Presidio Boulevard (approximate reduction of less than 1\%)

During the AM peak hour, Alternative 4 would result in increased delays at the following study intersection compared to Alternative 1:

- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 2%)

Compared to Alternative 1, Alternative 4 would result in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 5\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 27%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate reduction of at least 8%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 14\%)
- Lake Street/Funston Avenue (approximate reduction of 7\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 6\%)

Alternative 4 would result in no substantive changes to the delay compared to Alternative 1 at the following intersections during the PM peak hour:

- California Street $/ 14^{\text {th }}$ Avenue
- California Street/Park Presidio Boulevard

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.15 of B-4.38

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.16 of B-4.38

Comparison of Alternative 4 to Existing Conditions
Compared to the existing conditions, Alternative 4 results in reduced delay at the following intersection during the AM peak hour:

- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 12%)

Alternative 4 would result in no change to the delay compared to the existing conditions at the following study intersection during the AM peak hour:

- California Street/Park Presidio Boulevard

During the AM peak hour, Alternative 4 would result in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate increase of 5\%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of 74%)
- Lake Street/Park Presidio Boulevard (approximate increase of 2\%
- Lake Street/Funston Avenue (approximate increase of 2\%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of 20\%)

Compared to the existing conditions, Alternative 4 would result in reduced delay at one study intersection during the PM peak hour:

- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 4\%)

During the PM peak hour, Alternative 4 would result in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 2\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate increase of less than 1%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of 52\%)
- Lake Street/Park Presidio Boulevard (approximate increase of 3\%)
- Lake Street/Funston Avenue (approximate increase of 4\%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of at least 29%)
- California Street/Park Presidio Boulevard (approximate increase of less than 1\%)

2.2.2 Variant: New Park Presidio Blvd. Access with Inbound Only Traffic at $14^{\text {th }}$ and

 $15^{\text {th }}$ Avenue GatesTables 3 and 4 present the results of the intersection LOS analysis for the Existing Year 2000/2004 weekday AM and PM peak hour conditions for the four proposed land use build alternatives (Alternatives 1,2,3 and 4) assuming a new connection to Park Presidio Boulevard to and from the PHSH site north of Lake Street). The new intersection would allow traffic leaving the PHSH site to turn left or right on Highway 1, and allow southbound traffic on Highway 1 to enter the PHSH site directly from Highway 1. Both the 14th and 15th Avenue Gates would be open to inbound (northbound) traffic only.

Table 3
Table 3
Intersection Levels of Service - Weekday AM Peak Hour
Variant: New Park Presidio Blvd. Access with Inbound Only Traffic at $14^{\text {ti }}$ and $15^{\text {th }}$ Ave. Gates

Intersection	$\begin{aligned} & \text { Traffic Control } \\ & \text { Device } \end{aligned}$	Alt. 1		Alt. 2		Alt. 3		Alt. 4	
		Delay ${ }^{1}$	LOS						
Lake St/ $17^{\text {th }} \mathrm{Ave}^{2}$	2 -Way Stop	18.1 (SB)	C	17.7 (SB)	c	17.7 (SB)	c	17.6 (SB)	c
Lake St/ $15^{\text {th }}$ Ave	4 -Way Stop	18.0	C	16.5	C	16.1	c	16.0	c
Lake St/ $14^{\text {th }} \mathrm{Ave}^{2}$	2-Way Stop	34.7 (NB)	D	27.1 (SB)	D	26.5 (SB)	D	26.0 (SB)	D
Lake St/ Park Presidio Blvd.	Traffic Signal	14.8	B	14.5	B	14.5	B	14.3	B
Lake St/ Funston Ave ${ }^{2}$	2 -Way Stop	19.8 (SB)	C	19.4 (SB)	C	19.3 (SB)	c	19.2 (SB)	C
California St/ $15^{\text {th }} \mathrm{Ave}^{2}$	2 -Way Stop	24.2 (SB)	c	22.8 (SB)	c	22.5 (SB)	c	22.3 (SB)	C
California St $14^{\text {th }} \mathrm{Ave}^{2}$	2 -Way Stop	52.9 (SB)	F	44.0 (SB)	E	43.6 (SB)	E	41.8 (SB)	E
California St/ Park Presidio Blvd.	Traffic Signal	16.4	B	16.3	B	16.4	B	16.3	B
New Alternative Access/ Park Presidio Blvd.	Traffic Signal	4.8	A	4.4	A	4.4	A	4.3	A

Source: Notes:

Delay presented in seconds per vehicle based on the 2000 HCM methodolog
${ }^{2}$ LOS and d delay shown for worst minor stop-controlled approach. Major approa

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4. 18 of B-4.38

Table 4

Intersection Levels of Service - Weekday PM Peak Hour
Variant: New Park Presidio Blvd. Access with Inbound Only Traffic at $14^{\text {th }}$ and $15^{\text {th }}$ Ave. Gates

Intersection	Traffic ControlDevice	Alt. 1		Alt. 2		Alt. 3		Alt. 4	
		Delay ${ }^{1}$	LOS						
Lake St/ $17^{\mathrm{HI}} \mathrm{Ave}^{2}$	2 -Way Stop	17.7 (SB)	C	16.9 (SB)	C	16.9 (SB)	c	16.8 (SB)	C
Lake St/ $15^{\text {th }}$ Ave	4-Way Stop	14.0	B	12.8	B	12.7	B	12.6	B
Lake St/ $14^{\text {th }} \mathrm{Ave}^{2}$	2-Way Stop	46.2 (SB)	E	36.4 (SB)	E	36.1 (SB)	E	35.2 (SB)	E
Lake St/ Park Presidio Blvd.	Traffic Signal	19.0	B	17.9	B	17.8	B	18.0	B
Lake St/ Funston Ave ${ }^{2}$	2-Way Stop	18.8 (NB)	C	18.3 (NB)	C	18.3 (NB)	C	18.2 (NB)	C
California St $15^{\text {th }} \mathrm{Ave}^{2}$	2-Way Stop	24.2 (SB)	C	22.1	C	22.2 (SB)	C	21.8 (SB)	C
California St $14^{\text {th }} \mathrm{Ave}^{2}$	2-Way Stop	>50 (SB)	F	41.4 (SB)	E	41.4 (SB)	E	40.1 (SB)	E
California St/ Park Presidio Blvd.	Traffic Signal	22.8	C	20.9	C	20.7	C	20.6	C
New Alternative Access/ Park Presidio Blvd.	Traffic Signal	14.9	B	6.2	A	5.6	A	5.8	A
Source: Wilbur Smith Associates - April 2006.									
$\frac{\text { Notes: }}{{ }_{2} \text { Delay }}$ presented in seconds per ${ }^{2}$ LOS and delay shown for wor	le based on the 2000 or stop-controlled app	nethodology. Major appro	sucon	d and without					

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.19 of B-4.38

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.20 of B-4.38

Alternative 1: PTMP Alternative - For the Park Presidio Boulevard Access variant, Table 3 shows that all study intersections would operate at LOS D or better under Alternative 1 AM peak hour conditions except for the minor street approach to the two-way stop-controlled intersection of California Street $/ 14^{\text {th }}$ Avenue, which would operate at LOS F. As shown in Table 4, during the PM peak hour, the minor street approaches to the two-way stop-controlled intersections of Lake Street $/ 14^{\text {th }}$ Avenue and California Street $/ 14^{\text {th }}$ Avenue would operate at LOS E and LOS F, respectively; while the remaining study intersections operate at LOS D or better. Compared to existing conditions, Alternative 1 with the Park Presidio Boulevard Access variant results in reduced delays at one of the study intersections and increased delays at the remaining intersections during the AM peak hour; whereas it would result in increased delays at all the study intersections during the PM peak hour.

Comparison of Alternative 1 to Existing Conditions
Compared to the existing conditions, Alternative 1 results in reduced delays at the following intersection during the AM peak hour:

- Lake Street/Park Presidio Boulevard (approximate reduction of 10\%)

During the AM peak hour, Alternative 1 results in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 3\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate increase of 5\%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate increase of 62%)
- Lake Street/Funston Avenue (approximate increase of 17%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 16%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of 77\%)
- California Street/Park Park Presidio Boulevard (approximate increase of 1\%)

During the PM peak hour, Alternative 1 results in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 6\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate increase of 7%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate increase of 52\%)
- Lake Street/Park Presidio Boulevard (approximate increase of 3\%)
- Lake Street/Funston Avenue (approximate increase of 18\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 20\%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of at least 29\%)
- California Street/Park Presidio Boulevard (approximate increase of 3\%)

Alternative 2: Wings Retained/Trust Revised Alternative - As shown in Table 3, in the AM peak hour under existing plus project conditions, study intersections would operate at LOS D or better with the Park Presidio Boulevard Access variant except for the minor street approach to the two-way stop-controlled intersection of California Street $/ 14^{\text {th }}$ Avenue, which would operate at LOS E. Table 4 shows that during the PM peak hour, the minor street approaches to the twoway stop-controlled intersections of Lake Street $/ 14^{\text {th }}$ Avenue and California Street $/ 14^{\text {th }}$ Avenue would operate at LOS E, with the remaining study intersections operating at LOS D or better. Alternative 2 with the Park Presidio Boulevard Access variant results in slightly reduced delays at two of the study intersections along Lake Street and higher delays at all other intersections during the AM peak hour versus existing conditions, and increased delays for all but three study intersections during the PM peak hour versus existing conditions. Compared to Alternative 1, most of the study intersections would operate at slightly lower delays during both the AM peak and PM peak hours.

Comparison of Alternative 2 to Alternative 1
Compared to Alternative 1, Alternative 2 results in reduced delays at all study intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 2%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 8%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 22%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 2\%)
- Lake Street/Funston Avenue (approximate reduction of 2\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 6\%)
- California Street/ $14^{\text {th }}$ Avenue (approximate reduction of 17%)
- California Street/Park Presidio Boulevard (approximate reduction of less than 1\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 8\%)

Compared to Alternative 1, Alternative 2 results in reduced delays at all study intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 5\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction 9\%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate reduction of 21%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 6\%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.21 of B-4.38

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.22 of B-4.38

- California Street/ $15^{\text {th }}$ Avenue (approximate reduction of 9\%)
- California Street/14 ${ }^{\text {th }}$ Avenue (approximate reduction of 17%)
- California Street/Park Presidio Boulevard (approximate reduction of 8\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 58\%)

Comparison of Alternative 2 to Existing Conditions
Compared to the existing conditions, Alternative 2 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 4%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 12\%)

During the AM peak hour, Alternative 2 results in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 1%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate increase of 27%)
- Lake Street/Funston Avenue (approximate increase of 15%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 10%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of 47\%)
- California Street/Park Presidio Boulevard (approximate increase of less than 1\%)

Compared to the existing conditions, Alternative 2 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 3\%)
- California Street/Park Presidio Boulevard (approximate reduction of 6\%)

During the PM peak hour, Alternative 2 results in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 1%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of 19%)
- Lake Street/Funston Avenue (approximate increase of 15%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 9%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of 6\%)

Alternative 3: Wings Removed Alternative - As Table 3 indicates, in the AM peak hour under existing plus project conditions, Alternative 3 with the Park Presidio Boulevard Access variant would result in slightly reduced or comparable delays for all study intersections versus Alternative 2 Park Presidio Boulevard Access variant conditions. Similar to Alternative 2, all study intersections would operate at LOS D or better under Alternative 3 with the Park Presidio Boulevard Access variant conditions except for the minor street approach to the two-way stopcontrolled intersection of California Street $/ 14^{\text {th }}$ Avenue, which would operate at LOS E. During the PM peak hour, as shown on Table 4, Alternative 3 with the Park Presidio Boulevard Access variant would again result in slightly reduced delays for most of the study intersections versus Alternative 2. Like Alternative 2 PM peak hour conditions, the minor street approaches to the two-way stop-controlled intersections of Lake Street/ $14^{\text {th }}$ Avenue and California Street/14 ${ }^{\text {th }}$ Avenue would operate at LOS E, with the remaining study intersections operating at LOS D or better. As with Alternative 2, Alternative 3 with the Park Presidio Boulevard Access variant results in reduced delays at two of the intersections along Lake Street and increased delays for all other study intersections during the AM peak hour versus existing conditions, and increased delays for all but three study intersections during the PM peak hour versus existing conditions.

Comparison of Alternative 3 to Alternative 2
Compared to Alternative 2, Alternative 3 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate reduction of 2%)
- Lake Street/Funston Avenue (approximate reduction of less than 1%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 1%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate reduction of less than 1\%)

Alternative 3 results in no change to the delay compared to Alternative 2 at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue
- Lake Street/Park Presidio Boulevard
- New Alternative Access/Park Presidio Boulevard

During the PM peak hour, Alternative 3 results in increased delays at the following study intersection compared to Alternative 2:

- California Street/Park Presidio Boulevard (approximate increase of less than 1\%)

Compared to Alternative 2, Alternative 3 results in reduced delays at the following intersections during the PM peak hour:

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.23 of B-4.38

Amy Marshall, The Presidio Trust

 April 19, 2006Page B-4.24 of B-4.38

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- Lake Street/Funston Avenue (approximate reduction of less than 1%)
- California Street/Park Presidio Boulevard (approximate reduction of 1\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 10\%)

Alternative 3 results in no changes to the delay compared to Alternative 2 at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$
- Lake Street/Funston Avenue
- California Street $/ 14^{\text {th }}$ Avenue

During the PM peak hour, Alternative 3 results in increased delay at the following study intersection compared to Alternative 2;

- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of less than 1%)

Comparison of Alternative 3 to Alternative 1

Compared to Alternative 1, Alternative 3 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of 2%)
- Lake Street/ $15^{\text {th }}$ Avenue (approximate reduction of 11%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate reduction of 24%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 2\%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 7\%)
- California Street/ $14^{\text {th }}$ Avenue (approximate reduction of 18%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 8\%)

Alternative 3 results in no change to the delay compared to Alternative 1 at the following intersection during the AM peak hour:

- California Street/Park Presidio Boulevard

Compared to Alternative 1, Alternative 3 results in reduced delays at all study intersections during the PM peak hour:

- Lake Street/ $17^{\text {th }}$ Avenue (approximate reduction of 5\%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 9\%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 22%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 6\%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 8%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate reduction of at least 17%)
- California Street/Park Presidio Boulevard (approximate reduction of 9\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 62\%)

Comparison of Alternative 3 to Existing Conditions
Compared to the existing conditions, Alternative 3 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 6%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 12\%)

During the AM peak hour, Alternative 3 results in increased delays at the following intersections compared to the existing conditions:

- Lake Street/ $17^{\text {th }}$ Avenue (approximate increase of 1%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of 24%)
- Lake Street/Funston Avenue (approximate increase of 14\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 8%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of 46%)
- California Street/Park Presidio Boulevard (approximate increase of 1%)

Compared to the existing conditions, Alternative 3 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 3%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 3\%)
- California Street/Park Presidio Boulevard (approximate reduction of 7\%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.25 of B-4.38

Amy Marshall, The Presidio Trust

April 19, 2006
Page B-4.26 of B-4.38

During the PM peak hour, Alternative 3 results in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of 1%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of 18%)
- Lake Street/Funston Avenue (approximate increase of 15%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 10%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of 6%)

Alternative 4: Battery Caulfield Alternative - Alternative 4 with the Park Presidio Boulevard Access variant conditions are similar to conditions of other alternatives, and result in the lowest intersection delays of all alternatives. Table 3 shows that during the AM peak hour, all study intersections except California Street $/ 14^{\text {th }}$ Avenue would operate at LOS D or better under Alternative 4 with the Park Presidio Boulevard Access variant; and Table 4 shows that during the PM peak hour, the minor street approaches to the two-way stop-controlled intersections of Lake Street $/ 4^{n}$ Avenue and California Street/ 14^{14} Avenue would operate at LOS E, with the remaining study intersections operating at LOS D or better. Similar to Alternatives 2 and 3 with the Park Presidio Boulevard Access variants, Alternative 4 with the Park Presidio Boulevard Access variant results in reduced delays for two of the study intersections along Lake Street and increased delays for all other study intersections during the AM peak hour versus existing conditions, and increased delays for all but three study intersections during the PM peak hour versus existing conditions.

Comparison of Alternative 4 to Alternative 3
Compared to Alternative 3, Alternative 4 results in reduced delays at all study intersections during the AM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 2%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 1\%)
- Lake Street/Funston Avenue (approximate reduction of less than 1%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 4%)
- California Street/Park Presidio Boulevard (approximate redcuction of less than 1\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 2\%)

Compared to Alternative 3, Alternative 4 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 3%)
- Lake Street/Funston Avenue (approximate reduction of less than 1%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2\%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 3\%)
- California Street/Park Presidio Boulevard (approximate reduction of less than 1\%)

During the PM peak hour, Alternative 4 results in increased delays at the following two study intersections compared to Alternative 3:

- Lake Street/Park Presidio Boulevard (approximate increase of 1\%)
- New Alternative Access/Park Presidio Boulevard (approximate increase of 4\%)

Comparison of Alternative 4 to Alternative 2
Compared to Alternative 2, Alternative 4 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street/ $17^{\text {th }}$ Avenue (approximate reduction of less than 1%)
- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 3\%)
- Lake Street/ $14^{\text {th }}$ Avenue (approximate reduction of 4%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 1\%)
- Lake Street/Funston Avenue (approximate reduction of 1\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 2\%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate reduction of 5\%)
- New Alternative Access/Park Presidio Boulevard (approximate reduction of 2\%)

Alternative 4 results in no change to the delay compared to Alternative 2 at the following intersection during the AM peak hour:

- California Street/Park Presidio Boulevard

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.27 of B-4.38

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.28 of B-4.38

- Lake Street/Park Presidio Boulevard (approximate reduction of 5\%)
- Lake Street/Funston Avenue (approximate reduction of 3\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 10%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate reduction of at least 20\%)
- California Street/Park Presidio Boulevard (approximate reduction of 10\%)
- New Access Alternative/Park Presidio Boulevard (approximate reduction of 61\%)

Comparison of Alternative 4 to Existing Conditions
Compared to the existing conditions, Alternative 4 results in reduced delays at the following intersections during the AM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 7%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 13\%)

During the AM peak hour, Alternative 4 results in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of less than 1%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of 22%)
- Lake Street/Funston Avenue (approximate increase of 14%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 7%)
- California Street $/ 14^{\text {th }}$ Avenue (approximate increase of 40%)
- California Street/Park Presidio Boulevard (approximate increase of less than 1\%)

Compared to the existing conditions, Alternative 4 results in reduced delays at the following intersections during the PM peak hour:

- Lake Street $/ 15^{\text {th }}$ Avenue (approximate reduction of 4%)
- Lake Street/Park Presidio Boulevard (approximate reduction of 2\%)
- California Street/Park Presidio Boulevard (approximate reduction of 7\%)

During the PM peak hour, Alternative 4 results in increased delays at the following intersections compared to the existing conditions:

- Lake Street $/ 17^{\text {th }}$ Avenue (approximate increase of less than 1%)
- Lake Street $/ 14^{\text {th }}$ Avenue (approximate increase of 16%)
- Lake Street/Funston Avenue (approximate increase of 15\%)
- California Street $/ 15^{\text {th }}$ Avenue (approximate increase of 8%)

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.29 of B-4.38

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.30 of B-4.38

- California Street/ $14^{\text {th }}$ Avenue (approximate increase of 3%)

2.3 Traffic Operations and Safety Considerations

2.3.1 One-Way Couplet at $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates

Traffic conditions on Park Presidio Boulevard and in the surrounding residential neighborhood would vary across alternatives. Tables 5 and 6 shows anticipated peak hour traffic volumes through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates for each of the alternatives. Traffic volumes through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates would relate directly to the level of comfort and safety concerns of the residents of the surrounding neighborhood.

Table 5

Comparison of Peak Hour Traffic Volumes through 14th $/ 5^{\text {th }}$ Avenue Gates Existing Year 2005 plus Project Conditions

Land Use Alternative	One-way Couplet	
	AM Peak Hour	PM Peak Hour
Alternative 1	388	559
Alternative 2	262	279
Alternative 3	246	273
Alternative 4	214	234
Source: Wilbur Smith Associates - Febrer		

Source: Wilbur Smith Associates - February 2006.
Alternative 1: PTMP Alternative - Alternative 1 is expected to result in approximately 338 and 553 vehicles per hour traveling through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours, respectively. PM peak hour volume of 553 vehicles is about 4 times the PM peak hour volume of 133 vehicles per hour observed in October 2005.

Alternative 2: Wings Retained/Trust Revised Alternative - Alternative 2 would result in 32 percent fewer AM peak hour vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates and 50 percent fewer PM peak hour vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates than Alternative 1.

Alternative 3: Wings Removed Alternative - Compared to Alternative 2, Alternative 3 would result in approximately six percent and two percent fewer trips during the AM and PM peak hours, respectively. When compared to Alternative 1, Alternative 3 would result in approximately 37 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates during the AM peak hour and approximately 51 percent fewer trips during the PM peak hour.

Alternative 4: Battery Caulfield Alternative - Alternative 4 would generate 45 and 58 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours, respectively, than Alternative 1;18 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours than Alternative 2; and 13 and 14 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours, respectively, than Alternative 3.
2.3.2 Variant: New Park Presidio Boulevard Access with Inbound only Traffic at $14^{\text {th }}$ And $15^{\text {th }}$ Avenue Gates

Table 6

Comparison of Peak Hour Traffic Volumes through 14th $/ 5^{\text {th }}$ Avenue Gates Existing Year 2005 plus Project with Park Presidio Boulevard Access Conditions

Land Use Alternative	One-way Couplet	
	AM Peak Hour	PM Peak Hour
Alternative 1	175	174
Alternative 2	119	98
Alternative 3	105	98
Alternative 4	99	86
Source: Wilbur Smith Associates - February 2006.		

Source: Wilbur Smith Associates - February 2006
Alternative 1: PTMP Alternative - Alternative 1 with the Park Presidio Boulevard Access variant is expected to result in approximately 175 and 174 vehicles per hour traveling through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours, respectively.

Alternative 2: Wings Retained/Trust Revised Alternative - Alternative 2 with the Park Presidio Access variant would result in 32 percent fewer AM peak hour vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates and 44 percent fewer PM peak hour vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates than Alternative 1.

Alternative 3: Wings Removed Alternative - Compared to Alternative 2, Alternative 3 would result in approximately 12 percent fewer trips during the AM peak hour and no change in trips during the PM peak hour. When compared to Alternative 1, Alternative 3 would result in approximately 40 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates during the AM peak hour and approximately 44 percent fewer trips during the PM peak hour.

Alternative 4: Battery Caulfield Alternative - Alternative 4 would generate 43 and 51 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours, respectively, than Alternative 1; 17 percent and 12 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours, respectively, than Alternative 2; and 6 and 12 percent fewer vehicle trips through the $14^{\text {th }}$ and $15^{\text {th }}$ Avenue Gates in the AM and PM peak hours, respectively, than Alternative 3.

3. TRANSIT SERVICE

The land uses associated with the PHSH alternatives would generate transit trips on several Bay Area transit providers, and would most affect the three transit providers that directly serve the project site, including the San Francisco Municipal Railway (Muni), Golden Gate Transit (GGT) and the Presidio's internal shuttle (PresidiGo). Trips to and from the project site expected to be made by transit were estimated based on the expected mode split discussed in Technical

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.31 of B-4.38

Memorandum No. 2, Travel Demand, and then assigned to transit routes based on the geographic distribution of origins and destinations. Because some transit passengers may use more than one transit mode (e.g., transfer from Muni to PresidiGo), the sum of transit trips made on each transit provider may exceed the total number of transit passengers. Table 7 summarizes the expected AM peak hour and PM peak hour transit trips to and from the project site by transit service provider for each alternative. Tables $8,9,10$, and 11 summarize the AM and PM peak hour ridership on Muni, Golden Gate Transit and PresidiGo for all trips to and from the Presidio

Table 7

Peak Hour Transit Trips to/from Project Site by Service Provider and Alternative
Existing Year 2005 plus Project Conditions

Time Period and Service Provider	Alternative 1	Alternative 2	Alternative 3	Alternative 4
AM Peak Hour				
S.F. Muni	90	50	42	29
Golden Gate Transit	10	5	4	3
PresidiGo	44	18	14	11
PM Peak Hour				
S.F. Muni	169	55	49	35
Golden Gate Transit	18	6	5	4
PresidiGo	78	20	17	14

[^4]Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.32 of B-4.38

Line	Direction	Table 8 Existing (Year 2005) plus Project Muni Passenger Loads and Load Factors AM Peak Hour											
		Maximum Load Point	Number of Passengers					Average Load Factor					
			$\begin{aligned} & \text { Existing } \\ & \text { Capacity } \\ & \hline \end{aligned}$	It. 1	Alt. 2	Alt. 3	Alt. 4	$\begin{aligned} & \text { Existing } \\ & \text { Capacity } \\ & \hline \end{aligned}$	Alt. 1	Alt. 2	Alt. 3	Alt. 4	
1	$\begin{gathered} \text { to } \\ \text { Howard/Main } \end{gathered}$	Clay/Powell	866	894	893	893	891	1,276	103\%	103	103\%	103\%	
	to Geary/33rd	Sacramento/ Polk	819	398	380	375	373	1,173	49\%	46\%	46\%	46\%	
1 AX	to Davis/Pine	California/ Park Presidio	535	333	331	331	329	0	94\%	\%	94\%	93\%	
	to Geary/33rd	n.a.	0	0	0	0	0	294	\%	0\%	\%	\%	
1BX	to Davis/Pine	California Fillmore	707	640	639	639	637	0	91\%	90\%	90\%	90\%	
	to Park Presidio/ California	n.a.	0	0	0	0	0	334	0\%	0\%	0\%	0\%	
28	to Fort Mason	$19^{\text {did }}$ Ave/Lincoln	420	296	295	295	294	268	71\%	70\%	70\%	70\%	
	to Daly City bAR	$19^{\text {th }}$ Ave/Sloat	378	238	231	228	228	305	63\%	61\%	60\%	60\%	
28 L	to Park Presidio/ California	$19^{\text {ma }}$ Ave/Lincoln	236	177	176	176	174	0	75\%	74\%	74\%	74\%	
	to Daly City BART	$19^{\text {di }}$ Ave/Sloat	331	158	150	147	147	0	48\%	45\%	45\%	44\%	
Source: Wilbur Smith Associates - February 2006. Notes:													
1. n.a. - Not applicable; Indicates that no runs are made on that route in that direction during that particular time period. 2. Peak hour capacity is based on the Muni Bus and Metro FY 2004-2005 Weekday Conditions. It assumes an appreciable number of standees per vehicle (somewhere between 60% and 80% of the number of seated passengers, depending on the specific transit vehicle configuration) and may not include the effects of missed or late runs.													
3. Peak hour ridership is assumed to be 60% of the two-hour peak period ridership.													
4. The 1-California line operates at an eight-minute headway west of Fillmore Street and at a three-minute headway east of Fillmore Street. The peak													

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.33 of B-4.38 \qquad

Table 9

Existing (Year 2005) plus Project Muni Passenger Loads and Load Factor

Line	Direction	$\underset{\text { Point }}{\text { Maximum Load }}$	Number of Passengers					Average Load Factor				
			$\begin{gathered} \text { Existing } \\ \text { Capacity } \end{gathered}$	Alt. 1	Alt. 2	Alt. 3	Alt. 4	$\begin{aligned} & \text { Existing } \\ & \text { Capacity } \end{aligned}$	Alt. 1	Alt. 2	Alt. 3	Alt. 4
1	to Howard/Main	Clay/Powell	866	${ }^{629}$	599	595	593	1,276	49\%	47\%	47\%	46\%
	to Geary/33rd	Sacramento/Polk	819	1,020	1,009	1,009	1,007	1,173	87\%	86\%	86\%	86\%
1AX	to DavisPine	n.a.	535	0	0	0	0	0	0\%	0\%	0\%	0\%
	to Geary/33rd	$\underset{\text { Presidio }}{\substack{\text { California/ }}} \text { Park }$	0	229	215	215	213	294	78\%	73\%	73\%	72\%
1BX	to Davis Pine	n.a.	707	0	0	0	0	0	0\%	0\%	0\%	0\%
	to Park Presidio California	California/ Fillmore	0	289	275	275	273	334	87\%	82\%	82\%	82\%
28	to Fort Mason	$19^{\text {th }}$ Ave/Lincoln	420	305	279	276	274	268	114\%	104\%	103\%	102\%
	to Daly City BART	$19^{\text {h }}$ Ave/Sloat	378	388	370	370	367	305	128\%	121\%	121\%	120\%
28L	to Park Presidio California	n.a.	236	0	0	0	0	0	0\%	0\%	0\%	0\%
	$\begin{aligned} & \text { to Daly City } \\ & \text { BAR } \end{aligned}$	n.a.	331	0	0	0	0	0	0\%	0\%	0\%	0\%

$\frac{\text { Notes: }}{1 . \text { n.a }}$

1. n.a. - Not applicable: Indicates that no runs are made on that route in that direction during that particular time period.
Peak hour capacity is based on the Muni Bus and Metro FY $2004-2005$ Weeckay Conditions. It assums
2. Peak hour capacity is based on the Muni Bus and Metro FY $2004-2005$ Weekday Conditions. It assumes an anppreciable number of standees per vehicle (somewhere
between 60% and 80% of the number of seated passengers, depending on the specific transit vehicle configuration) and may not include the effecect of missed of the
3. Peak hour ridership is assumed to be 60% of the two-hour peak period ridership.
4. The 1-California line operates at an eight-minute headway west of Fillmore Street and at a three-minute headway east of Fillmore Street. The peak hour loads correspond
to maximum load points located cast of Fillmore Street.

Il, The Presidio Trust April 19, 2006
Page B-4.34 of B-4.38

Table 10
Route 10 Golden Gate Transit Bus Passenger Loads and Load Factors
Existing (Year 2005) plus Project Conditions

Time Period	Number of Passengers					Average Load Factor			
	$\begin{gathered} \text { Peak } \\ \text { Hour } \\ \text { Capacity } \\ \hline \end{gathered}$	Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 1	Alt. 2	Alt. 3	Alt. 4
AM Peak Hour									
- Northbound	59	29	28	28	27	49\%	48\%	48\%	46\%
- Southbound	39	30	26	25	25	77\%	67\%	65\%	64\%
PM Peak Hour									
- Northbound	49	28	22	21	20	57\%	44\%	43\%	42\%
- Southbound	59	38	32	32	31	65\%	55\%	55\%	53\%

Source: Wilbur Smith Associates - February 2006.
Peak hour capacity assumes 39 passengers per bus.
Table 11
PresidiGo Ridership by Alternative

Existing (Year 2005) plus Project Conditions		
Alternative	AM Peak Hour	PM Peak Hour
Alternative 1	244	369
Alternative 2	231	342
Alternative 3	230	341
Alternative 4	230	342

Alternative 1: PTMP Alternative - Alternative 1 would generate 1,524 daily transit trips. The alternative would generate 114 transit trips in the AM peak hour and 212 transit trips in the PM peak hour. Under existing AM peak hour conditions, the additional transit trips associated with Alternative 1 would not exceed the capacity of any of the Muni routes except under AM peak hour conditions, where Muni Route 1 would exceed capacity in the inbound direction; under PM peak hour conditions, Muni Route 28 would exceed capacity in both the inbound and outbound direction with the addition of transit trips associated with Alternative 1. The maximum load point for the Muni Route 28 occurs south of Golden Gate Park, and many passengers traveling to and from the Presidio are expected to board the bus at a considerable distance from the maximum load point.

Golden Gate Transit (GGT) Route 10 is the GGT route that directly serves the project site. As shown in Table 10, ridership on this route would not exceed capacity during the AM or PM peak hours under existing conditions with the addition of transit trips associated with Alternative 1. This analysis conservatively assumes that all transit ridership to/from the North Bay would be on GGT Route 10. In reality, some passengers may transfer to/from other GGT routes at the Golden Gate Bridge Toll Plaza, in which case the transit load would be distributed across more routes resulting in a lesser impact.

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.35 of B-4.38

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.36 of B-4.38

Alternative 2: Wings Retained/Trust Revised Alternative - Alternative 2 would generate 558 daily transit trips, or 63 percent fewer than Alternative 1. In the AM peak hour, Alternative 2 would generate 58 transit trips, or 49 percent fewer than Alternative 1. In the PM peak hour, Alternative 2 would generate 64 transit trips, or 70 percent fewer than Alternative 1.

The calculated Muni ridership for Alternative 2 is expected to result in 44 percent and 67 percent less Muni ridership than Alternative 1 in the AM and PM peak hours, respectively. As shown in Tables 8 and 9 , average load factors on Muni lines during the AM and PM peak hours with Alternative 2 would be virtually the same as with Alternative 1 . As under Alternative 1 conditions, under AM peak hour conditions, Muni Route 1 would exceed capacity in the inbound direction; under PM peak hour conditions, Muni Route 28 would exceed capacity in both the inbound and outbound direction with the addition of transit trips associated with Alternative 2.

As shown in Table 10, ridership on GGT Route 10 would not exceed capacity during the AM and PM peak hours under existing conditions with the addition of transit trips associated with Alternative 2. Alternative 2 would result in decreased load factors in both the AM and PM peak hours in the northbound and southbound directions, as compared to Alternative 1. This analysis conservatively assumes that all transit ridership to/from the North Bay would be on GGT Route 10. In reality, some passengers may transfer to/from other GGT routes at the Golden Gate Bridge Toll Plaza, in which case the transit load would be distributed across more routes, resulting in a lesser impact

Alternative 3: Wings Removed Alternative - Alternative 3 would generate 484 daily transit trips, or 68 percent fewer than Alternative 1 and 13 percent fewer than Alternative 2. In the AM peak hour, Alternative 3 would generate 48 transit trips, or 58 percent fewer than Alternative 1 and 17 percent fewer than Alternative 2. In the PM peak hour, Alternative 3 would generate 57 transit trips, or 73 percent fewer than Alternative 1 and 11 percent fewer than Alternative 2. Compared to Alternatives 1 and 2, Alternative 3 is expected to result in 53 and 16 percent less Muni ridership under existing conditions in the AM peak hours and 71 and 11 percent less Muni ridership under existing conditions in the PM peak hour, respectively. As shown in Tables 8 and 9, average load factors on Muni lines during the AM and PM peak hours with Alternative 3 would be virtually the same as with Alternative 1 and 2. Similar to Alternative 1 and 2 conditions, under AM peak hour conditions, Muni Route 1 would exceed capacity in the inbound direction; under PM peak hour conditions, Muni Route 28 would exceed capacity in both the inbound and outbound direction with the addition of transit trips associated with Alternative 3 .

Table 10 shows that ridership on GGT Route 10 would not exceed capacity during the AM or PM peak hour under existing conditions with the addition of transit trips associated with Alternative 3. Also similar to Alternative 2, Alternative 3 would result in decreased load factors in both the AM and PM northbound and southbound directions, as compared to Alternative 1. This analysis conservatively assumes that all transit ridership to/from the North Bay would be on GGT Route 10. In reality, some passengers may transfer to/from other GGT routes at the Golden Gate Bridge Toll Plaza, in which case the transit load would be distributed across more routes, resulting in a lesser impact

Alternative 4: Battery Caulfield Alternative - Alternative 4 would generate 417 daily transit trips, or 73 percent fewer than Alternative 1 and 25 percent fewer than Alternative 2 and 14 percent fewer than Alternative 3. In the AM peak hour, Alternative 4 would generate 34 transit trips, or 70 percent fewer than Alternative 1, and 41 percent fewer than Alternative 2, and 29 percent fewer than Alternative 3. In the PM peak hour, Alternative 4 would generate 42 transit trips, or 80 percent fewer than Alternative 1, 34 percent fewer than Alternative 2, and 26 percent fewer than Alternative 3. Compared to Alternative 1, Alternative 4 is expected to result in 68 percent and 79 percent less Muni ridership under existing conditions in the AM and PM peak hours, respectively. Average load factors on Muni lines during the AM and PM peak hours with Alternative 4 would be virtually the same as with Alternatives 1,2 , and 3 , as shown in Tables 8 and 9. Similar to Alternatives 1, 2, and 3, under AM peak hour conditions, Muni Route 1 would exceed capacity in the inbound direction; under PM peak hour conditions, Muni Route 28 would exceed capacity in both the inbound and outbound direction with the addition of transit trips associated with Alternative 4.

As shown in Table 10, ridership on GGT Route 10^{2} would not exceed capacity during the AM or PM peak hour under existing conditions with the addition of transit trips associated with Alternative 4. Alternative 4 would result in the lowest load factors in both the AM and PM peak hours for both northbound and southbound directions, as compared to Alternatives 1, 2, and 3 .

4. BICYCLE AND PEDESTRIAN CONDITIONS

The number of person trips to and from the project site expected to be made by bicycling, walking, or some other mode was calculated assuming the mode split discussed in Technical Memorandum No. 2, Travel Demand. The effects of the PHSH project alternatives on bicycle and pedestrian conditions are discussed in Technical Memorandum No. 3.

5. PARKING CONDITIONS

The effects of the PHSH project alternatives on parking conditions are discussed in Technical Memorandum No. 3.

6. MITIGATION MEASURES

The mitigation measures identified in this section represent those mitigation measures identified for Year 2025 conditions (in Technical Memorandum No. 3) that would be required under existing conditions.

6.1 Potential Impacts Identified

The possible mitigation measure identified for Lake Street/ $14^{\text {th }}$ Avenue in the PTMP EIS included signalization and restriping to provide a westbound left-turn pocket at Lake Street $/ 14^{\text {th }}$ Avenue (Mitigation Measure TR-11). The possible mitigation measure identified in the PTMP EIS for the California Street $/ 14^{\text {th }}$ Avenue intersection included installing STOP signs on
${ }^{2}$ Ridership data presented are for GGT Route 50. GGT Route 50 no longer exists, but GGT Route 10 follows the same alignment in San Francisco. Ridership data for GGT Route 10 are not yet available.

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.37 of B-4.38

Amy Marshall, The Presidio Trust
April 19, 2006
Page B-4.38 of B-4.38

Street/ $14^{\text {th }}$ Avenue if Caltrans signal warrants would be met ${ }^{3}$. Using the existing plus project peak hour turning movement volumes, an analysis of Caltrans’ Peak Hour Signal Warrant indicates that the intersection would not meet the peak hour warrant under any of the alternatives. Therefore, the turn restrictions would be considered an improvement measure to address a less-than-significant impact with each alternative. The Trust would coordinate with the City and County of San Francisco to determine the contribution of each party to the cost of improvements.

TR-22 TDM Program Monitoring - The Trust has agreed to implement a TDM Program to reduce automobile usage by all tenants, occupants, and visitors (see Appendix D of the PTMP for a full description). The Trust would monitor implementation and effectiveness of the TDM program on an ongoing basis. If the TDM performance standards as described in the PTMP (Appendix D) are not being reached, the Trust will implement more aggressive TDM strategies or intensify components of the existing TDM program, such as requiring tenant participation in more TDM program elements, or implementing more frequent and/or extensive shuttle service.

TR-10 and TR-25 Transit Service Improvements and Monitoring Program - The Trust currently monitors Muni operations and passenger loads within the Presidio. Continued monitoring of Muni service in the Presidio, and similar monitoring of GGT service at the Presidio would indicate any capacity problems. If the monitoring were to reveal insufficient capacity for northbound Presidio-generated passengers during the PM peak hour, the Trust will notify Muni or the Golden Gate Bridge Highway and Transportation District of the deficiencies. Transit service providers could then reduce passenger load factors through increased frequency.

TR-26 Construction Traffic Management Plan - During pre-construction activities, the contractor(s) of individual projects will work with the Trust to develop a construction traffic management protocol. The plan will include information on construction phases and duration, scheduling, proposed haul routes, permit parking, staging area management, visitor safety, detour routes, and pedestrian movements on adjacent routes.

Mitigation Measure TR-9 Bicycle and Pedestrian Amenities, would be implemented as planned improvements are funded pursuant to the adopted Presidio Trails and Bikeways Master Plan. Mitigation Measure TR-21 Presidio-wide Parking Management, which applies to the Crissy Field area, does not apply to the PHSH district.

[^5]Existing plus Project Conditions
Requested No Action Alternative
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			${ }_{\text {¢ }}$			${ }_{\text {¢ }}$			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	545	13	15	263	1	3	1	39	4	4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	592	14	16	286	1	3	1	42	4	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	287			607			928	923	599	966	930	286
vC1, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	287			607			928	923	599	966	930	286
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	92	98	98	100
cM capacity (veh/h)	1287			981			243	267	505	213	264	757

cM capacity (veh/h)	1287		981	243	267	505	213	264	75

Direction, Lane \# EB 1	WB 1	NB 1	SB 1	
Volume Total 609	303	47	12	
Volume Left 2	16	3	4	
Volume Right 14	1	42	3	
cSH 1287	981	461	290	
Volume to Capacity 0.00	0.02	0.10	0.04	
Queue Length 95th (ft) 0	1	8	3	
Control Delay (s) 0.0	0.6	13.7	17.9	
Lane LOS A	A	B	C	
Approach Delay (s) 0.0	0.6	13.7	17.9	
Approach LOS		B	C	
Intersection Summary				
Average Delay		1.1		
Intersection Capacity Utilization		40.1\%	ICU Level of Service	A
Analysis Period (min)		15		

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow							\dagger	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow	F	${ }_{1}$	\uparrow	F		个个年			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4932	
FIt Permitted	0.60	1.00	1.00	0.28	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1092	1756	1492	490	1756	1492		5012			4932	
Volume（vph）	218	405	28	59	170	105	0	2350	77	0	2058	327
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	222	413	29	60	173	107	0	2398	79	0	2100	334
RTOR Reduction（vph）	0	－	5	0	0	2	0	4	0	0	25	
Lane Group Flow（vph）	222	413	24	60	173	105	0	2473	0	0	2409	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	360	578	491	161	578	491		2889			2843	
v／s Ratio Prot		c0．24			0.10			c0．49			0.49	
v／s Ratio Perm	0.20		0.02	0.12		0.07						
v／c Ratio	0.62	0.71	0.05	0.37	0.30	0.21		0.86			0.85	
Uniform Delay，d1	24.0	25.0	19.4	21.8	21.2	20.6		15.0			14.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.58			1.00	
Incremental Delay，d2	7.7	7.4	0.2	6.5	1.3	1.0		1.9			3.3	
Delay（s）	31.7	32.4	19.6	28.3	22.5	21.6		10.7			18.2	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		31.6			23.2			10.7			18.2	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			16.9		HCM Leva	el of Se	vice		B			
HCM Volume to Capacity ratio			0.80									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			81．8\％		ICU Leve	of Ser			D			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Ave

HCM Unsignalized Intersection Capacity Analysis

105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢			${ }_{4}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	45	525	14	11	252	27	7	16	29	16	15	30
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	48	565	15	12	271	29	8	17	31	17	16	32
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					528							
pX, platoon unblocked	0.93						0.93	0.93		0.93	0.93	0.93
VC , conflicting volume	300			580			1018	992	572	1018	985	285
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	250			580			1020	992	572	1019	984	234
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	96			99			96	92	94	90	93	96
cM capacity (veh/h)	1239			1004			176	220	523	172	222	756
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	628	312	56	66								
Volume Left	48	12	8	17								
Volume Right	15	29	31	32								
cSH	1239	1004	309	305								
Volume to Capacity	0.04	0.01	0.18	0.22								
Queue Length 95th (ft)	3	1	16	20								
Control Delay (s)	1.1	0.4	19.2	20.0								
Lane LOS	A	A	C	C								
Approach Delay (s)	1.1	0.4	19.2	20.0								
Approach LOS			C	C								
Intersection Summary												
Average Delay			3.0									
Intersection Capacity Utilization			59.5\%	ICU Level of Service					B			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

2／20／2006												
	\rangle							\uparrow	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow			¢f			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	14	544	12	50	272	27	5	7	26	121	12	13
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	15	573	13	53	286	28	5	7	27	127	13	14
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					228							
pX ，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC ，conflicting volume	315			585			877	1028	293	753	1021	157
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	245			585			830	988	293	701	980	81
tC，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	99			95			98	97	96	55	94	99
cM capacity（veh／h）	1280			999			229	224	710	282	226	930
Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	301	299	196	172	40	154						
Volume Left	15	0	53	0	5	127						
Volume Right	0	13	0	28	27	14						
cSH	1280	1700	999	1700	424	294						
Volume to Capacity	0.01	0.18	0.05	0.10	0.09	0.52						
Queue Length 95th（ft）	1	0	4	0	8	71						
Control Delay（s）	0.5	0.0	2.7	0.0	14.4	29.9						
Lane LOS	A		A		B	D						
Approach Delay（s）	0.2		1.5		14.4	29.9						
Approach LOS					B	D						
Intersection Summary												
Average Delay			5.0									
Intersection Capacity Utilization			50．4\％		CU Leve	of Ser			A			
Analysis Period（min）			15									

Existing plus Project－AM Peak（No Action Alt）
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	$\stackrel{ }{ }$						4	\dagger				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个		${ }^{7}$	个t			个个全			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3198			4960			5002	
FIt Permitted	0.48	1.00		0.27	1.00			1.00			1.00	
Satd．Flow（perm）	837	3318		472	3198			4960			5002	
Volume（vph）	86	583	22	93	252	96	0	2245	251	0	2048	97
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	89	601	23	96	260	99	，	2314	259	0	2111	100
RTOR Reduction（vph）	0	3	0	0	3	0	0	16	0	0	6	
Lane Group Flow（vph）	89	621	0	96	356	0	0	2557	0	0	2205	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	256	1015		144	978			2976			3001	
v／s Ratio Prot		0.19			0.11			c0．52			0.44	
v／s Ratio Perm	0.11			c0．20								
v／c Ratio	0.35	0.61		0.67	0.36			0.86			0.73	
Uniform Delay，d1	22.9	25.2		25.7	23.0			14.0			12.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.62	
Incremental Delay，d2	3.7	2.7		21.8	1.0			3.5			0.9	
Delay（s）	26.6	27.9		47.5	24.1			17.5			8.5	
Level of Service	C	C		D	C			B			A	
Approach Delay（s）		27.8			29.0			17.5			8.5	
Approach LOS		C			C			B			A	
Intersection Summary												
HCM Average Control Delay			16.3		HCM Lev	el of S	rvice		B			
HCM Volume to Capacity ratioActuated Cycle Length（s）			0.79									
			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			80．9\％		ICU Leve	of Ser	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

Existing plus Project－AM Peak（No Action Alt）
Wilbur Smith Associates
Synchro 6 Report

Existing plus Project Conditions

Alternative 1: PTMP Alternative (Couplet)

AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }^{\dagger}$			\dagger			\dagger			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	556	13	15	270	1	3	1	39	4	4	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	604	14	16	293	1	3	1	42	,	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
VC , conflicting volume	295			618			948	943	611	985	949	294
vC1, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	295			618			948	943	611	985	949	294
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	91	98	98	100
cM capacity (veh/h)	1278			972			235	260	497	206	257	750

Direction, Lane \# EB 1	WB 1	NB 1	SB 1	
Volume Total 621	311	47	12	
Volume Left 2	16	3	4	
Volume Right 14	1	42	3	
cSH 1278	972	452	282	
Volume to Capacity 0.00	0.02	0.10	0.04	
Queue Length 95th (ft) 0	1	9	3	
Control Delay (s) 0.0	0.6	13.9	18.3	
Lane LOS A	A	B	C	
Approach Delay (s) 0.0	0.6	13.9	18.3	
Approach LOS		B	C	
Intersection Summary				
Average Delay		1.1		
Intersection Capacity Utilization		40.7\%	ICU Level of Service	A
Analysis Period (min)		15		

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

	\rangle							\dagger	F		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			${ }_{4}$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	584	13	13	256	3	2	2	37	75	48	28
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	2	608	14	14	267	3	2	2	39	78	50	29
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	624	283	43	157								
Volume Left (vph)	2	14	2	78								
Volume Right (vph)	14	3	39	29								
Hadj (s)	-0.01	0.00	-0.53	-0.01								
Departure Headway (s)	5.0	5.4	6.1	6.2								
Degree Utilization, x	0.86	0.43	0.07	0.27								
Capacity (veh/h)	713	631	530	534								
Control Delay (s)	30.3	12.3	9.5	11.6								
Approach Delay (s)	30.3	12.3	9.5	11.6								
Approach LOS	D	B	A	B								
Intersection Summary												
Delay			22.3									
HCM Level of Service			C									
Intersection Capacity Utilization			53.9\%		ICU Leve	of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			\dagger			${ }_{\dagger}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	56	635	5	139	265	129	4	71	40	1	2	3
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate（vph）	58	655	5	143	273	133	4	73	41	1	2	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.93						0.93	0.93		0.93	0.93	0.93
vC ，conflicting volume	406			660			1403	1465	657	1477	1402	340
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	362			660			1433	1500	657	1512	1431	291
tC ，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	95			85			95	21	91	96	98	100
cM capacity（veh／h）	1124			938			88	92	468	25	102	701
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	718	549	119	6								
Volume Left	58	143	4	1								
Volume Right	5	133	41	3								
cSH	1124	938	128	95								
Volume to Capacity	0.05	0.15	0.93	0.07								
Queue Length 95th（ft）	4	13	153	5								
Control Delay（s）	1.3	3.9	126.8	45.7								
Lane LOS	A	A	F	E								
Approach Delay（s）	1.3	3.9	126.8	45.7								
Approach LOS			F	E								
Intersection Summary												
Average Delay			13.2									
Intersection Capacity Utilization			78．4\％		U Leve	of Se			D			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	4			7			4	\dagger	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{*}$	\uparrow	F		惺家			个蚛	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4926	
Flt Permitted	0.58	1.00	1.00	0.27	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1060	1756	1492	475	1756	1492		5012			4926	
Volume（vph）	236	412	28	59	181	105	0	2350	77	0	2058	352
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	241	420	29	60	185	107	0	2398	79	0	2100	359
RTOR Reduction（vph）	0	0	5	0	0	2	0	4	0	0	28	
Lane Group Flow（vph）	241	420	24	60	185	105	0	2473	0	0	2431	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	349	578	491	156	578	491		2889			2840	
v／s Ratio Prot		c0．24			0.11			0.49			c0．49	
v／s Ratio Perm	0.23		0.02	0.13		0.07						
v／c Ratio	0.69	0.73	0.05	0.38	0.32	0.21		0.86			0.86	
Uniform Delay，d1	24.7	25.1	19.4	21.9	21.4	20.6		15.0			15.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.58			1.00	
Incremental Delay，d2	10.7	7.8	0.2	7.0	1.5	1.0		1.9			3.6	
Delay（s）	35.4	32.9	19.6	28.9	22.8	21.6		10.7			18.6	
Level of Service	D	C	B	C	C	C		B			B	
Approach Delay（s）		33.2			23.5			10.7			18.6	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			17.3		HCM Leve	el of Se	rvice		B			
HCM Volume to Capacity ratio			0.81									
Actuated Cycle Length（s）			85.0		Sum of lo	ost time			8.0			
Intersection Capacity Utilization			82．6\％		CU Leve	of Ser	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Ave

Existing plus Project - AM Peak (Alt 1)
Wilbur Smith Associates

HCM Unsignalized Intersection Capacity Analysis

105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢			${ }_{\text {¢ }}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	17	570	14	11	252	18	7	6	29	16	16	42
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	18	613	15	12	271	19	8	6	31	17	17	45
Pedestrians												
Lane Width (ft)												
Walking Speed (fts)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					528							
pX, platoon unblocked	0.94						0.94	0.94		0.94	0.94	0.94
vC , conflicting volume	290			628			1015	971	620	996	969	281
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	242			628			1016	969	620	995	967	231
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			96	97	94	91	93	94
cM capacity (veh/h)	1251			964			178	233	491	189	234	761
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	646	302	45	80								
Volume Left	18	12	8	17								
Volume Right	15	19	31	45								
cSH	1251	964	338	355								
Volume to Capacity	0.01	0.01	0.13	0.22								
Queue Length 95th (ft)	1	1	11	21								
Control Delay (s)	0.4	0.5	17.3	18.0								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.4	0.5	17.3	18.0								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.4									
Intersection Capacity Utilization			50.3\%		CU Level	of Ser	vice		A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

2／20／2006												
	\rangle							\uparrow	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow			¢f			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	59	544	12	50	267	32	1	24	26	121	12	13
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	62	573	13	53	281	34	1	25	27	127	13	14
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					228							
pX ，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC ，conflicting volume	315			585			969	1123	293	854	1113	157
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	245			585			926	1087	293	806	1076	81
tC，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	95			95			99	87	96	40	93	99
cM capacity（veh／h）	1280			999			188	189	710	212	191	930
Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	348	299	193	174	54	154						
Volume Left	62	0	53	0	1	127						
Volume Right	0	13	0	34	27	14						
cSH	1280	1700	999	1700	301	226						
Volume to Capacity	0.05	0.18	0.05	0.10	0.18	0.68						
Queue Length 95th（ft）	4	0	4	0	16	108						
Control Delay（s）	1.8	0.0	2.8	0.0	19.5	49.4						
Lane LOS	A		A		C	E						
Approach Delay（s）	1.0		1.5		19.5	49.4						
Approach LOS					C	E						
Intersection Summary												
Average Delay			8.0									
Intersection Capacity Utilization			51．8\％		CU Leve	of Ser			A			
Analysis Period（min）			15									

Existing plus Project－AM Peak（Alt 1）
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	$\stackrel{ }{*}$							\dagger				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	个t		${ }_{1}$	个t			做			个个号	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3198			4960			5002	
Flt Permitted	0.48	1.00		0.27	1.00			1.00			1.00	
Satd．Flow（perm）	837	3318		472	3198			4960			5002	
Volume（vph）	86	583	22	93	252	96	0	2245	251	0	2048	97
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	89	601	23	96	260	99	0	2314	259	0	2111	100
RTOR Reduction（vph）	0	3	0	0	3	0	0	16	0	0	6	
Lane Group Flow（vph）	89	621	0	96	356	0	0	2557	0	0	2205	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	256	1015		144	978			2976			3001	
v／s Ratio Prot		0.19			0.11			c0．52			0.44	
v／s Ratio Perm	0.11			c0．20								
v／c Ratio	0.35	0.61		0.67	0.36			0.86			0.73	
Uniform Delay，d1	22.9	25.2		25.7	23.0			14.0			12.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.64	
Incremental Delay，d2	3.7	2.7		21.8	1.0			3.5			0.9	
Delay（s）	26.6	27.9		47.5	24.1			17.5			8.6	
Level of Service	C	C		D	C			B			A	
Approach Delay（s）		27.8			29.0			17.5			8.6	
Approach LOS		C			C			B			A	
Intersection Summary												
HCM Average Control Delay			16.3		HCM Leve	el of S	vice		B			
HCM Volume to Capacity ratio			0.79									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			80．9\％		ICU Leve	of Ser			D			
Analysis Period（min）			15									

Existing plus Project－AM Peak（Alt 1）
Wilbur Smith Associates
Synchro 6 Report

Existing plus Project Conditions

Alternative 2: Wings Retained/Trust Revised

Alternative (Couplet)
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			${ }_{\text {¢ }}$			\dagger			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	542	13	15	264	1	3	1	39	4	4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	589	14	16	287	1	3	1	42	4	4	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	288			603			926	921	596	964	928	288
vC1, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	288			603			926	921	596	964	928	288
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	92	98	98	100
cM capacity (veh/h)	1286			984			244	268	507	213	265	756

cM capacity (veh/h)	1286			984	244	268	507	213	265
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1					

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1	
Volume Total	605	304	47	12	
Volume Left	2	16	3	4	
Volume Right	14	1	42	3	
cSH	1286	984	463	291	
Volume to Capacity	0.00	0.02	0.10	0.04	
Queue Length 95th (ft)	0	1	8	3	
Control Delay (s)	0.0	0.6	13.7	17.9	
Lane LOS	A	A	B	C	
Approach Delay (s)	0.0	0.6	13.7	17.9	
Approach LOS			B	C	
Intersection Summary					
Average Delay			1.1		
Intersection Capacity Utilization			39.9\%	ICU Level of Service	A
Analysis Period (min)			15		

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	42	615	5	139	265	81	4	44	40	1	2	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate（vph）	43	634	5	143	273	84	4	45	41	1	2	
Pedestrians												
Lane Width（ft）												
Walking Speed（fts）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.94						0.94	0.94		0.94	0.94	0.94
vC ，conflicting volume	357			639			1329	1366	637	1389	1327	315
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	315			639			1350	1390	637	1414	1348	271
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	96			85			96	59	91	98	98	100
cM capacity（veh／h）	1180			955			102	110	481	59	117	726
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	682	500	91	6								
Volume Left	43	143	4	1								
Volume Right	5	84	41	3								
cSH	1180	955	169	157								
Volume to Capacity	0.04	0.15	0.54	0.04								
Queue Length 95th（ft）	3	13	68	3								
Control Delay（s）	1.0	4.0	48.6	28.8								
Lane LOS	A	A	E	D								
Approach Delay（s）	1.0	4.0	48.6	28.8								
Approach LOS			E	D								
Intersection Summary												
Average Delay			5.7									
Intersection Capacity Utilization			76．9\％		CU Leve	of Se			D			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow							\dagger	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow	F	${ }_{1}$	\uparrow	F		个个年			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4935	
FIt Permitted	0.60	1.00	1.00	0.28	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1099	1756	1492	488	1756	1492		5012			4935	
Volume（vph）	221	406	28	59	167	105	0	2350	77	0	2058	318
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	226	414	29	60	170	107	0	2398	79	0	2100	324
RTOR Reduction（vph）	0	0	5	0	0	2	0	4	0	0	24	
Lane Group Flow（vph）	226	414	24	60	170	105	0	2473	0	0	2400	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	362	578	491	161	578	491		2889			2845	
v／s Ratio Prot		c0．24			0.10			c0．49			0.49	
v／s Ratio Perm	0.21		0.02	0.12		0.07						
v／c Ratio	0.62	0.72	0.05	0.37	0.29	0.21		0.86			0.84	
Uniform Delay，d1	24.1	25.0	19.4	21.8	21.2	20.6		15.0			14.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.58			1.00	
Incremental Delay，d2	7.9	7.4	0.2	6.5	1.3	1.0		1.9			3.3	
Delay（s）	32.0	32.4	19.6	28.3	22.5	21.6		10.7			18.1	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		31.7			23.2			10.7			18.1	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			16.8		HCM Leva	el of Se	vice		B			
HCM Volume to Capacity ratio			0.80									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			81．8\％		ICU Leve	of Ser			D			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Ave.

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			${ }^{4}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	17	547	14	11	252	18	7	6	29	16	15	32
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	18	588	15	12	271	19	8	6	31	17	16	34
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					528							
pX, platoon unblocked	0.94						0.94	0.94		0.94	0.94	0.94
vC , conflicting volume	290			603			979	946	596	971	944	281
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	242			603			978	943	596	969	940	231
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			96	97	94	91	93	95
cM capacity (veh/h)	1251			984			193	241	507	198	242	761
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	622	302	45	68								
Volume Left	18	12	8	17								
Volume Right	15	19	31	34								
cSH	1251	984	355	341								
Volume to Capacity	0.01	0.01	0.13	0.20								
Queue Length 95th (ft)	1	1	11	18								
Control Delay (s)	0.4	0.5	16.6	18.2								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.4	0.5	16.6	18.2								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.3									
Intersection Capacity Utilization			48.5\%		CU Level	of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

2／20／2006												
	\rangle	\rightarrow					4	\uparrow	1	\downarrow	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ ${ }_{\text {¢ }}$			¢ \uparrow			${ }_{\text {¢ }}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	36	544	12	50	267	32	1	20	26	121	12	13
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	38	573	13	53	281	34	1	21	27	127	13	14
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					228							
pX ，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC ，conflicting volume	315			585			921	1075	293	803	1064	157
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	245			585			876	1036	293	754	1026	81
tC，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			95			99	90	96	47	94	99
cM capacity（veh／h）	1280			999			209	206	710	241	209	930
Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	324	299	193	174	49	154						
Volume Left	38	0	53	0	1	127						
Volume Right	0	13	0	34	27	14						
cSH	1280	1700	999	1700	339	255						
Volume to Capacity	0.03	0.18	0.05	0.10	0.15	0.60						
Queue Length 95th（ft）	2	0	4	0	13	89						
Control Delay（s）	1.2	0.0	2.8	0.0	17.4	38.5						
Lane LOS	A		A		C	E						
Approach Delay（s）	0.6		1.5		17.4	38.5						
Approach LOS					C	E						
Intersection Summary												
Average Delay			6.4									
Intersection Capacity Utilization			51．1\％	ICU Level of Service					A			
Analysis Period（min）			15									

Existing plus Project－AM Peak（Alt 2）
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	$\stackrel{ }{*}$							\dagger				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	个t		${ }_{1}$	个t			做			个个号	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3198			4960			5002	
Flt Permitted	0.48	1.00		0.27	1.00			1.00			1.00	
Satd．Flow（perm）	837	3318		472	3198			4960			5002	
Volume（vph）	86	583	22	93	252	96	0	2245	251	0	2048	97
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	89	601	23	96	260	99	0	2314	259	0	2111	100
RTOR Reduction（vph）	0	3	0	0	3	0	0	16	0	0	6	
Lane Group Flow（vph）	89	621	0	96	356	0	0	2557	0	0	2205	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	256	1015		144	978			2976			3001	
v／s Ratio Prot		0.19			0.11			c0．52			0.44	
v／s Ratio Perm	0.11			c0．20								
v／c Ratio	0.35	0.61		0.67	0.36			0.86			0.73	
Uniform Delay，d1	22.9	25.2		25.7	23.0			14.0			12.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.62	
Incremental Delay，d2	3.7	2.7		21.8	1.0			3.5			0.9	
Delay（s）	26.6	27.9		47.5	24.1			17.5			8.4	
Level of Service	C	C		D	C			B			A	
Approach Delay（s）		27.8			29.0			17.5			8.4	
Approach LOS		C			C			B			A	
Intersection Summary												
HCM Average Control Delay			16.3		HCM Leve	el of S	vice		B			
HCM Volume to Capacity ratio			0.79									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			80．9\％		ICU Leve	of Ser			D			
Analysis Period（min）			15									

Existing plus Project－AM Peak（Alt 2）
Wilbur Smith Associates
Synchro 6 Report

Existing plus Project Conditions
 Alternative 3: Wings Removed Alternative (Couplet)
 AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			${ }_{\text {¢ }}$			\dagger			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	538	13	15	265	1	3	1	39	4	4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	585	14	16	288	1	3	1	42	4	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	289			599			923	918	592	960	924	289
vC1, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	289			599			923	918	592	960	924	289
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	92	98	98	100
cM capacity (veh/h)	1284			988			245	269	510	215	266	755

cM capacity (veh/h)	1284			988	245	269	510	215	266	75

Direction, Lane \# EB 1	WB 1	NB 1	SB 1	
Volume Total 601	305	47	12	
Volume Left 2	16	3	4	
Volume Right 14	1	42	3	
cSH 1284	988	465	292	
Volume to Capacity 0.00	0.02	0.10	0.04	
Queue Length 95th (ft) 0	1	8	3	
Control Delay (s) 0.0	0.6	13.6	17.8	
Lane LOS A	A	B	C	
Approach Delay (s) 0.0	0.6	13.6	17.8	
Approach LOS		B	C	
Intersection Summary				
Average Delay		1.1		
Intersection Capacity Utilization		39.7\%	ICU Level of Service	A
Analysis Period (min)		15		

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\dagger}$			\dagger			¢			${ }_{\dagger}$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	566	13	13	256	3	2	2	37	58	39	23
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	2	590	14	14	267	3	2	2	39	60	41	2
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	605	283	43	125								
Volume Left (vph)	2	14	2	60								
Volume Right (vph)	14	3	39	24								
Hadj (s)	-0.01	0.00	-0.53	-0.02								
Departure Headway (s)	4.8	5.2	5.8	6.1								
Degree Utilization, x	0.81	0.41	0.07	0.21								
Capacity (veh/h)	732	657	545	533								
Control Delay (s)	24.9	11.8	9.3	10.8								
Approach Delay (s)	24.9	11.8	9.3	10.8								
Approach LOS	C	B	A	B								
Intersection Summary												
Delay			19.1									
HCM Level of Service			C									
Intersection Capacity Utilization			51.2\%		CU Leve	of Se			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	38	618	5	139	265	69	4	38	40	1	2	3
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate（vph）	39	637	5	143	273	71	4	39	41	1	2	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX ，platoon unblocked	0.94						0.94	0.94		0.94	0.94	0.94
vC，conflicting volume	344			642			1318	1349	640	1374	1316	309
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	304			642			1337	1371	640	1397	1335	266
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			85			96	66	91	98	98	100
cM capacity（veh／h）	1195			952			105	114	479	66	120	732
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	681	488	85	6								
Volume Left	39	143	4	1								
Volume Right	5	71	41	3								
cSH	1195	952	181	167								
Volume to Capacity	0.03	0.15	0.47	0.04								
Queue Length 95th（ft）	3	13	56	3								
Control Delay（s）	0.9	4.0	41.4	27.4								
Lane LOS	A	A	E	D								
Approach Delay（s）	0.9	4.0	41.4	27.4								
Approach LOS			E	D								
Intersection Summary												
Average Delay			4.9									
Intersection Capacity Utilization			75．8\％	ICU Level of Service					D			
Analysis Period（min）			15									

Existing plus Project－AM Peak（Alt 3）
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	$\stackrel{ }{ }$						4	\dagger	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow	F	${ }^{7}$	\uparrow	F		个中t			个个A	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4937	
Flt Permitted	0.61	1.00	1.00	0.28	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1110	1756	1492	486	1756	1492		5012			4937	
Volume（vph）	224	407	28	59	163	105	0	2350	77	0	2058	310
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	229	415	29	60	166	107	0	2398	79	0	2100	316
RTOR Reduction（vph）	0	0		0	0	2	0	4	0	0	24	
Lane Group Flow（vph）	229	415	24	60	166	105	0	2473	0	0	2392	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	366	578	491	160	578	491		2889			2846	
v／s Ratio Prot		c0．24			0.09			c0．49			0.48	
v／s Ratio Perm	0.21		0.02	0.12		0.07						
v／c Ratio	0.63	0.72	0.05	0.38	0.29	0.21		0.86			0.84	
Uniform Delay，d1	24.1	25.0	19.4	21.8	21.1	20.6		15.0			14.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.58			1.00	
Incremental Delay，d2	7.9	7.5	0.2	6.6	1.2	1.0		1.9			3.2	
Delay（s）	31.9	32.5	19.6	28.4	22.4	21.6		10.7			18.0	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		31.8			23.2			10.7			18.0	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			16.8		HCM Leve	el of Sersid	rvice		B			
HCM Volume to Capacity ratio			0.81									
Actuated Cycle Length（s）			85.0		Sum of lo	ost time			8.0			
Intersection Capacity Utilization			81．9\％		CU Leve	of Ser	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Ave.

Existing plus Project - AM Peak (Alt 3)
Wilbur Smith Associates

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis

2／20／2006												
	\rangle							\uparrow	7		\downarrow	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow			¢f			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	31	544	12	50	267	32	1	19	26	121	12	13
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	33	573	13	53	281	34	1	20	27	127	13	14
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					228							
pX ，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC ，conflicting volume	315			585			910	1064	293	792	1054	157
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	245			585			865	1026	293	742	1015	81
tC，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			95			100	90	96	49	94	99
cM capacity（veh／h）	1280			999			213	210	710	248	213	930
Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	319	299	193	174	48	154						
Volume Left	33	0	53	0	1	127						
Volume Right	0	13	0	34	27	14						
cSH	1280	1700	999	1700	349	262						
Volume to Capacity	0.03	0.18	0.05	0.10	0.14	0.59						
Queue Length 95th（ft）	2	0	4	0	12	85						
Control Delay（s）	1.0	0.0	2.8	0.0	17.0	36.6						
Lane LOS	A		A		C	E						
Approach Delay（s）	0.5		1.5		17.0	36.6						
Approach LOS					C	E						
Intersection Summary												
Average Delay			6.2									
Intersection Capacity Utilization			51．0\％		CU Leve	el of Servis			A			
Analysis Period（min）			15									

Existing plus Project－AM Peak（Alt 3）
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	$\stackrel{ }{*}$							\dagger				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	个t		${ }_{1}$	个t			做			个个号	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3198			4960			5002	
Flt Permitted	0.48	1.00		0.27	1.00			1.00			1.00	
Satd．Flow（perm）	837	3318		472	3198			4960			5002	
Volume（vph）	86	583	22	93	252	96	0	2245	251	0	2048	97
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	89	601	23	96	260	99	0	2314	259	0	2111	100
RTOR Reduction（vph）	0	3	0	0	3	0	0	16	0	0	6	
Lane Group Flow（vph）	89	621	0	96	356	0	0	2557	0	0	2205	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	256	1015		144	978			2976			3001	
v／s Ratio Prot		0.19			0.11			c0．52			0.44	
v／s Ratio Perm	0.11			c0．20								
v／c Ratio	0.35	0.61		0.67	0.36			0.86			0.73	
Uniform Delay，d1	22.9	25.2		25.7	23.0			14.0			12.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.61	
Incremental Delay，d2	3.7	2.7		21.8	1.0			3.5			0.9	
Delay（s）	26.6	27.9		47.5	24.1			17.5			8.4	
Level of Service	C	C		D	C			B			A	
Approach Delay（s）		27.8			29.0			17.5			8.4	
Approach LOS		C			C			B			A	
Intersection Summary												
HCM Average Control Delay			16.2		HCM Leve	el of S	vice		B			
HCM Volume to Capacity ratio			0.79									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			80．9\％		ICU Leve	of Ser			D			
Analysis Period（min）			15									

Existing plus Project－AM Peak（Alt 3）
Wilbur Smith Associates
Synchro 6 Report

Existing plus Project Conditions Alternative 4: Battery Caulfield Alternative
(Couplet)
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }^{\dagger}$			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	537	13	15	261	1	3	1	39	4	4	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	584	14	16	284	1	3	1	42	4	4	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
VC, conflicting volume	285			598			917	912	591	955	919	284
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	285			598			917	912	591	955	919	284
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	92	98	98	100
cM capacity (veh/h)	1289			989			247	271	511	216	268	760

cM capacity (veh/h)	1289	989	247	271	511	216	268	760

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1		
Volume Total	600	301	47	12		
Volume Left	2	16	3	4		
Volume Right	14	1	42	3		
cSH	1289	989	466	295		
Volume to Capacity	0.00	0.02	0.10	0.04		
Queue Length 95th (ft)	0	1	8	3		
Control Delay (s)	0.0	0.6	13.6	17.7		
Lane LOS	A	A	B	C		
Approach Delay (s)	0.0	0.6	13.6	17.7		
Approach LOS			B	C		
Intersection Summary						
Average Delay		1.1				
Intersection Capacity Utilization	39.7%	ICU Level of Service				
Analysis Period (min)		15				

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\dagger			¢			\dagger	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	565	13	13	256	3	2	2	37	44	33	19
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	2	589	14	14	267	3	2	2	39	46	34	20
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	604	283	43	100								
Volume Left (vph)	2	14	2	46								
Volume Right (vph)	14	3	39	20								
Hadj (s)	-0.01	0.00	-0.53	-0.03								
Departure Headway (s)	4.7	5.1	5.7	6.1								
Degree Utilization, x	0.79	0.40	0.07	0.17								
Capacity (veh/h)	747	675	556	534								
Control Delay (s)	23.0	11.5	9.1	10.3								
Approach Delay (s)	23.0	11.5	9.1	10.3								
Approach LOS	C	B	A	B								
Intersection Summary												
Delay			18.0									
HCM Level of Service			C									
Intersection Capacity Utilization			49.8\%		ICU Leve	of Se			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	37	604	5	139	265	65	4	35	40	1	2	3
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate（vph）	38	623	5	143	273	67	4	36	41	1	2	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.94						0.94	0.94		0.94	0.94	0.94
vC ，conflicting volume	340			628			1299	1328	625	1354	1297	307
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	300			628			1317	1348	625	1376	1316	264
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			85			96	69	92	99	98	100
cM capacity（veh／h）	1199			964			109	118	488	71	124	734
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	666	484	81	6								
Volume Left	38	143	4	1								
Volume Right	5	67	41	3								
cSH	1199	964	190	175								
Volume to Capacity	0.03	0.15	0.43	0.04								
Queue Length 95th（ft）	2	13	49	3								
Control Delay（s）	0.8	4.0	37.3	26.3								
Lane LOS	A	A	E	D								
Approach Delay（s）	0.8	4.0	37.3	26.3								
Approach LOS			E	D								
Intersection Summary												
Average Delay			4.6									
Intersection Capacity Utilization			74．6\％		CU Leve	l of Se	vice		D			
Analysis Period（min）			15									

Existing plus Project－AM Peak（Alt 4
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	4			7			4	\dagger	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{*}$	\uparrow	F		个中t			个个号	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4938	
Flt Permitted	0.61	1.00	1.00	0.28	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1113	1756	1492	495	1756	1492		5012			4938	
Volume（vph）	214	403	28	59	162	105	0	2350	77	0	2058	307
Peak－hour factor，PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj．Flow（vph）	218	411	29	60	165	107	0	2398	79	0	2100	313
RTOR Reduction（vph）	0		5	0	0	2	0	4	0	0	23	
Lane Group Flow（vph）	218	411	24	60	165	105	0	2473	0	0	2390	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	367	578	491	163	578	491		2889			2847	
v／s Ratio Prot		c0．23			0.09			c0．49			0.48	
v／s Ratio Perm	0.20		0.02	0.12		0.07						
v／c Ratio	0.59	0.71	0.05	0.37	0.29	0.21		0.86			0.84	
Uniform Delay，d1	23.8	25.0	19.4	21.7	21.1	20.6		15.0			14.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.58			1.00	
Incremental Delay，d2	6.9	7.3	0.2	6.3	1.2	1.0		1.9			3.2	
Delay（s）	30.7	32.2	19.6	28.0	22.3	21.6		10.7			17.9	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		31.2			23.1			10.7			17.9	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			16.7		HCM Leve	el of Se	rvice		B			
HCM Volume to Capacity ratio			0.80									
Actuated Cycle Length（s）			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			81．7\％		CU Leve	of Ser	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Ave

Existing plus Project - AM Peak (Alt 4
Wilbur Smith Associates

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			¢			${ }_{4}$			${ }_{\text {¢ }}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	17	540	14	11	252	18	7	6	29	16	15	28
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	18	581	15	12	271	19	8	6	31	17	16	30
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					528							
pX, platoon unblocked	0.94						0.94	0.94		0.94	0.94	0.94
vC , conflicting volume	290			596			967	939	588	963	937	281
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	242			596			965	935	588	961	932	231
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			96	97	94	91	93	96
cM capacity (veh/h)	1251			991			198	244	512	201	245	761
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	614	302	45	63								
Volume Left	18	12	8	17								
Volume Right	15	19	31	30								
cSH	1251	991	360	332								
Volume to Capacity	0.01	0.01	0.13	0.19								
Queue Length 95th (ft)	1	1	11	17								
Control Delay (s)	0.4	0.5	16.4	18.4								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.4	0.5	16.4	18.4								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.2									
Intersection Capacity Utilization			47.9\%		CU Leve	I of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

2／20／2006												
	\rangle	\rightarrow					4	\uparrow	1	\downarrow	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ ${ }_{\text {¢ }}$			¢ \uparrow			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	29	544	12	50	267	32	1	19	26	121	12	13
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	31	573	13	53	281	34	1	20	27	127	13	14
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					228							
pX，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC ，conflicting volume	315			585			906	1060	293	788	1049	157
vC1，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	245			585			861	1021	293	738	1010	81
tC ，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	98			95			100	91	96	49	94	99
cM capacity（veh／h）	1280			999			215	211	710	250	215	930
Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	317	299	193	174	48	154						
Volume Left	31	0	53	0	1	127						
Volume Right	0	13	0	34	27	14						
cSH	1280	1700	999	1700	351	264						
Volume to Capacity	0.02	0.18	0.05	0.10	0.14	0.58						
Queue Length 95th（ft）	2	0	4	0	12	84						
Control Delay（s）	1.0	0.0	2.8	0.0	16.9	36.0						
Lane LOS	A		A		C	E						
Approach Delay（s）	0.5		1.5		16.9	36.0						
Approach LOS					C	E						
Intersection Summary												
Average Delay			6.1									
Intersection Capacity Utilization			50．9\％	ICU Level of Service					A			
Analysis Period（min）			15									

Existing plus Project－AM Peak（Alt 4）
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
2／20／2006

	$\stackrel{ }{*}$							\dagger				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	个t		${ }_{1}$	个t			做			个个号	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3198			4960			5002	
Flt Permitted	0.48	1.00		0.27	1.00			1.00			1.00	
Satd．Flow（perm）	837	3318		472	3198			4960			5002	
Volume（vph）	86	583	22	93	252	96	0	2245	251	0	2048	97
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	89	601	23	96	260	99	0	2314	259	0	2111	100
RTOR Reduction（vph）	0	3	0	0	3	0	0	16	0	0	6	
Lane Group Flow（vph）	89	621	0	96	356	0	0	2557	0	0	2205	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	256	1015		144	978			2976			3001	
v／s Ratio Prot		0.19			0.11			c0．52			0.44	
v／s Ratio Perm	0.11			c0．20								
v／c Ratio	0.35	0.61		0.67	0.36			0.86			0.73	
Uniform Delay，d1	22.9	25.2		25.7	23.0			14.0			12.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.61	
Incremental Delay，d2	3.7	2.7		21.8	1.0			3.5			0.9	
Delay（s）	26.6	27.9		47.5	24.1			17.5			8.3	
Level of Service	C	C		D	C			B			A	
Approach Delay（s）		27.8			29.0			17.5			8.3	
Approach LOS		C			C			B			A	
Intersection Summary												
HCM Average Control Delay			16.2		HCM Leve	el of S	vice		B			
HCM Volume to Capacity ratio			0.79									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			80．9\％		ICU Leve	of Ser			D			
Analysis Period（min）			15									

Existing plus Project－AM Peak（Alt 4
Wilbur Smith Associates
Synchro 6 Report

Existing plus Project Conditions
Requested No Action Alternative
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Street

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			\dagger			${ }_{\text {¢ }}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	289	10	25	415	4	4	1	25	7	3	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	307	11	27	441	4	4	1	27	7	3	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	446			318			818	816	313	841	819	444
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	446			318			818	816	313	841	819	444
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	96	97	99	100
cM capacity (veh/h)	1125			1253			289	306	732	271	305	618
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	320	472	32	13								
Volume Left	2	27	4	7								
Volume Right	11	4	27	2								
cSH	1125	1253	585	308								
Volume to Capacity	0.00	0.02	0.05	0.04								
Queue Length 95th (ft)	0	2	4	3								
Control Delay (s)	0.1	0.7	11.5	17.2								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.1	0.7	11.5	17.2								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.1									
Intersection Capacity Utilization			49.3\%		CU Leve	of Se			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue 2/20/2006

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\dagger}$			\dagger			${ }^{\dagger}$			${ }_{\dagger}$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	30	286	5	18	402	61	8	46	17	97	39	34
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	32	304	5	19	428	65	9	49	18	103	41	36
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	341	512	76	181								
Volume Left (vph)	32	19	9	103								
Volume Right (vph)	5	65	18	36								
Hadj (s)	0.01	-0.07	-0.12	-0.01								
Departure Headway (s)	5.5	5.2	6.5	6.3								
Degree Utilization, x	0.53	0.74	0.14	0.32								
Capacity (veh/h)	614	669	466	500								
Control Delay (s)	14.5	21.7	10.5	12.2								
Approach Delay (s)	14.5	21.7	10.5	12.2								
Approach LOS	B	C	B	B								
Intersection Summary												
Delay			17.2									
HCM Level of Service			C									
			51.7\%		CU Leve	of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄			¢			A			4	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	1	396	3	118	478	5	2	1	49	5	1	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate（vph）	1	421	3	126	509	5	2	1	52	5	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（fts）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.86						0.86	0.86		0.86	0.86	0.86
vC ，conflicting volume	514			424			1189	1190	423	1240	1189	511
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	435			424			1219	1221	423	1279	1219	432
tC ，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	100			89			98	99	92	95	99	100
cM capacity（veh／h）	977			1146			124	139	635	104	139	540
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	426	639	55	7								
Volume Left	1	126	2	5								
Volume Right	3	5	52	1								
cSH	977	1146	518	122								
Volume to Capacity	0.00	0.11	0.11	0.06								
Queue Length 95th（ft）	0	9	9	5								
Control Delay（s）	0.0	2.8	12.8	36.3								
Lane LOS	A	A	B	E								
Approach Delay（s）	0.0	2.8	12.8	36.3								
Approach LOS			B	E								
Intersection Summary												
Average Delay			2.4									
Intersection Capacity Utilization			66．4\％		CU Leve	of Se	vice		C			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

							4	\uparrow	P			\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow	F	\％	\uparrow	F		个个A			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4947	
FIt Permitted	0.41	1.00	1.00	0.46	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	748	1756	1492	799	1756	1492		5012			4947	
Volume（vph）	159	266	25	73	298	142	0	2174	72	0	2265	302
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	166	277	26	76	310	148	0	2265	75	0	2359	315
RTOR Reduction（vph）	0	，	3	0	0	3	0	4		0	20	
Lane Group Flow（vph）	166	277	23	76	310	145	0	2336	0	0	2654	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	246	578	491	263	578	491		2889			2852	
v／s Ratio Prot		0.16			0.18			0.47			c0．54	
v / s Ratio Perm	c0． 22		0.02	0.10		0.10						
v／c Ratio	0.67	0.48	0.05	0.29	0.54	0.29		0.81			0.93	
Uniform Delay，d1	24.6	22.7	19.4	21.1	23.2	21.2		14.3			16.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.69			1.00	
Incremental Delay，d2	13.9	2.8	0.2	2.8	3.5	1.5		1.2			6.9	
Delay（s）	38.4	25.5	19.6	23.9	26.8	22.7		11.1			23.4	
Level of Service	D	C	B	C	C	C		B			C	
Approach Delay（s）		29.8			25.2			11.1			23.4	
Approach LOS		C			C			B			C	
Intersection Summary												
HCM Average Control Delay			19.3		HCM Leve	vel of S	vice		B			
HCM Volume to Capacity ratio			0.84									
Actuated Cycle Length（s）			85.0		Sum of los	ost time			8.0			
Intersection Capacity Utilization			85．0\％		ICU Leve	el of Se			E			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

HCM Unsignalized Intersection Capacity Analysis

105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			¢			${ }_{\text {¢ }}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	36	385	7	16	389	24	8	11	30	19	17	27
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	37	393	7	16	397	24	8	11	31	19	17	28
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					524							
pX, platoon unblocked	0.88						0.88	0.88		0.88	0.88	0.88
vC, conflicting volume	421			400			948	924	396	948	915	409
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	346			400			941	914	396	941	904	332
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	97			99			96	95	95	90	93	96
cM capacity (veh/h)	1083			1170			189	232	657	192	235	632
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	437	438	50	64								
Volume Left	37	16	8	19								
Volume Right	7	24	31	28								
cSH	1083	1170	362	294								
Volume to Capacity	0.03	0.01	0.14	0.22								
Queue Length 95th (ft)	3	1	12	20								
Control Delay (s)	1.1	0.4	16.5	20.6								
Lane LOS	A	A	C	C								
Approach Delay (s)	1.1	0.4	16.5	20.6								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.8									
Intersection Capacity Utilization			48.4\%	ICU Level of Service					A			
Analysis Period (min)			15									

CM Unsignalized Intersection Capacity Analysis

2/20/2006												
	\rangle	\rightarrow					4	\uparrow	1	\downarrow	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ ${ }_{\text {¢ }}$			¢ \uparrow			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	15	413	6	62	418	32	5	5	30	93	23	6
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	16	449	7	67	454	35	5	5	33	101	25	7
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					224							
pX , platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
vC , conflicting volume	489			455			866	1109	228	899	1095	245
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	352			455			763	1028	228	799	1012	85
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			94			98	97	96	56	88	99
cM capacity (veh/h)	1117			1116			232	200	781	227	205	883
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	241	231	295	262	43	133						
Volume Left	16	0	67	0	5	101						
Volume Right	0	7	0	35	33	7						
cSH	1117	1700	1116	1700	471	231						
Volume to Capacity	0.01	0.14	0.06	0.15	0.09	0.57						
Queue Length 95th (ft)	1	0	5	0	8	80						
Control Delay (s)	0.7	0.0	2.4	0.0	13.4	39.7						
Lane LOS	A		A		B	E						
Approach Delay (s)	0.4		1.3		13.4	39.7						
Approach LOS					B	E						
Intersection Summary												
Average Delay			5.6									
Intersection Capacity Utilization			49.8\%	ICU Level of Service					A			
Analysis Period (min)			15									

Existing plus Project - PM Peak (No Action Alt)
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107: California Street \& Park Presidio Boulevard
2/20/2006

Existing plus Project - PM Peak (No Action Alt)

Existing plus Project Conditions

Alternative 1: PTMP Alternative (Couplet)

PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Street

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\$			${ }_{\dagger}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	310	10	25	432	4	4	1	25	7	3	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	330	11	27	460	4	4	1	27	7	3	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	464			340			858	856	335	881	860	462
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	464			340			858	856	335	881	860	462
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			98	100	96	97	99	100
cM capacity (veh/h)	1108			1230			271	290	711	254	289	604
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	343	490	32	13								
Volume Left	2	27	4	7								
Volume Right	11	4	27	2								
cSH	1108	1230	562	291								
Volume to Capacity	0.00	0.02	0.06	0.04								
Queue Length 95th (ft)	0	2	5	3								
Control Delay (s)	0.1	0.7	11.8	17.9								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.1	0.7	11.8	17.9								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.1									
Intersection Capacity Utilization			50.4\%		CU Leve	of Se			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			\dagger			${ }^{\text {¢ }}$			${ }^{\dagger}$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	335	5	18	402	4	8	4	17	164	71	51
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	356	5	19	428	4	9	4	18	174	76	54
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	364	451	31	304								
Volume Left (vph)	2	19	9	174								
Volume Right (vph)	5	4	18	54								
Hadj (s)	-0.01	0.00	-0.30	0.01								
Departure Headway (s)	5.8	5.7	6.8	6.2								
Degree Utilization, x	0.59	0.71	0.06	0.53								
Capacity (veh/h)	591	616	421	534								
Control Delay (s)	16.6	21.3	10.2	16.0								
Approach Delay (s)	16.6	21.3	10.2	16.0								
Approach LOS	C	C	B	C								
Intersection Summary												
Delay			18.1									
HCM Level of Service			C									
Intersection Capacity Utilization			63.2\%		CU Leve	of Se			B			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
102: Lake Street \& 14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	50	463	3	118	421	145	2	83	49	5	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	53	493	3	126	448	154	2	88	52	5	1	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					300							
pX, platoon unblocked	0.85						0.85	0.85		0.85	0.85	0.85
vC , conflicting volume	602			496			1378	1454	494	1473	1378	525
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	530			496			1447	1536	494	1558	1447	439
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	94			88			97	0	91	0	99	100
cM capacity (veh/h)	887			1078			81	82	579	0	93	527
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	549	728	143	7								
Volume Left	53	126	2	5								
Volume Right	3	154	52	1								
cSH	887	1078	120	0								
Volume to Capacity	0.06	0.12	1.19	Err								
Queue Length 95th (ft)	5	10	221	Err								
Control Delay (s)	1.6	2.8	210.3	Err								
Lane LOS	A	A	F	F								
Approach Delay (s)	1.6	2.8	210.3	Err								
Approach LOS			F	F								
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utilization			75.1\%		CU Leve	of Se	vice		D			
Analysis Period (min)			15									

Existing plus Project - PM Peak (Alt 1)
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
103: Lake Street \& Park Presidio Boulevard

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			¢			${ }_{4}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	13	338	6	7	512	5	18	1	16	1	1	4
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	13	345	6	7	522	5	18	1	16	1	1	4
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		79										
pX, platoon unblocked				0.87			0.87	0.87	0.87	0.87	0.87	
vC , conflicting volume	528			351			918	916	348	931	917	525
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	528			250			906	903	247	920	904	525
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			92	100	98	100	100	99
cM capacity (veh/h)	1045			1144			219	237	690	211	237	556

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow			${ }^{4}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	9	446	7	16	389	14	8	6	30	27	19	48
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	9	455	7	16	397	14	8	6	31	28	19	49
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					524							
pX, platoon unblocked	0.89						0.89	0.89		0.89	0.89	0.89
vC , conflicting volume	411			462			972	921	459	947	917	404
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	336			462			969	911	459	941	907	328
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			95	97	95	86	92	92
cM capacity (veh/h)	1095			1110			177	239	606	199	241	637
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	471	428	45	96								
Volume Left	9	16	8	28								
Volume Right	7	14	31	49								
cSH	1095	1110	368	324								
Volume to Capacity	0.01	0.01	0.12	0.30								
Queue Length 95th (ft)	1	1	10	30								
Control Delay (s)	0.3	0.5	16.1	20.7								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.3	0.5	16.1	20.7								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.9									
Intersection Capacity Utilization			45.1\%		U Leve	of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

2/20/2006												
	\rangle	\rightarrow					4	\uparrow	1	\downarrow	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ ${ }_{\text {¢ }}$			¢ \uparrow			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	76	421	6	62	411	39	2	19	30	93	23	6
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	83	458	7	67	447	42	2	21	33	101	25	7
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					224							
pX , platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
vC , conflicting volume	489			464			1003	1250	232	1040	1232	245
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	352			464			913	1182	232	953	1162	85
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	93			94			99	86	96	34	84	99
cM capacity (veh/h)	1117			1108			167	153	776	154	157	883
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	311	235	291	266	55	133						
Volume Left	83	0	67	0	2	101						
Volume Right	0	7	0	42	33	7						
cSH	1117	1700	1108	1700	291	161						
Volume to Capacity	0.07	0.14	0.06	0.16	0.19	0.82						
Queue Length 95th (ft)	6	0	5	0	17	137						
Control Delay (s)	2.8	0.0	2.4	0.0	20.2	86.9						
Lane LOS	A		A		C	F						
Approach Delay (s)	1.6		1.3		20.2	86.9						
Approach LOS					C	F						
Intersection Summary												
Average Delay			11.0									
Intersection Capacity Utilization			51.8\%	ICU Level of Service					A			
Analysis Period (min)			15									

Existing plus Project - PM Peak (Alt 1)
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107: California Street \& Park Presidio Boulevard
2/20/2006

Existing plus Project - PM Peak (Alt 1) Wilbur Smith Associates

Synchro 6 Report

Existing plus Project Conditions

Alternative 2: Wings Retained/Trust Revised

 Alternative (Couplet)PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Street

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	290	10	25	411	4	4	1	25	7	3	2
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	309	11	27	437	4	4	1	27	7	3	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX , platoon unblocked												
vC , conflicting volume	441			319			814	813	314	838	816	439
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	441			319			814	813	314	838	816	439
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	96	97	99	100
cM capacity (veh/h)	1129			1252			290	308	731	272	306	622

| cM capacity (veh/h) | 1129 | 1252 | 290 | 308 | 731 | 272 | 306 | 622 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			¢			¢			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	315	5	18	402	4	8	4	17	83	33	30
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	335	5	19	428	4	9	4	18	88	35	32
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	343	451	31	155								
Volume Left (vph)	2	19	9	88								
Volume Right (vph)	5	4	18	32								
Hadj (s)	-0.01	0.00	-0.30	-0.01								
Departure Headway (s)	5.1	5.0	5.9	5.9								
Degree Utilization, x	0.48	0.62	0.05	0.25								
Capacity (veh/h)	676	706	491	541								
Control Delay (s)	12.7	15.7	9.3	10.9								
Approach Delay (s)	12.7	15.7	9.3	10.9								
Approach LOS	B	C	A	B								
Intersection Summary												
Delay			13.7									
HCM Level of Service			B									
Intersection Capacity Utilization			55.3\%		ICU Leve	of Ser			B			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	30	382	3	118	421	64	2	44	49	5	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate（vph）	32	406	，	126	448	68	2	47	52	5	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.86						0.86	0.86		0.86	0.86	0.86
VC ，conflicting volume	516			410			1206	1239	408	1280	1206	482
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	437			410			1240	1278	408	1326	1240	397
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			89			98	62	92	92	99	100
cM capacity（veh／h）	975			1160			117	124	648	67	131	564
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	441	641	101	7								
Volume Left	32	126	2	5								
Volume Right	3	68	52	1								
cSH	975	1160	213	84								
Volume to Capacity	0.03	0.11	0.47	0.09								
Queue Length 95th（ft）	3	9	58	7								
Control Delay（s）	1.0	2.7	36.3	52.1								
Lane LOS	A	A	E	F								
Approach Delay（s）	1.0	2.7	36.3	52.1								
Approach LOS			E	F								
Intersection Summary												
Average Delay			5.2									
Intersection Capacity Utilization			69．9\％		CU Leve	of Se			C			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\rangle							\dagger	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow	F	${ }_{1}$	\uparrow	F		个个年			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4946	
FIt Permitted	0.41	1.00	1.00	0.46	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	746	1756	1492	809	1756	1492		5012			4946	
Volume（vph）	149	262	25	73	299	142	0	2174	72	0	2265	304
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	155	273	26	76	311	148	0	2265	75	0	2359	317
RTOR Reduction（vph）	0	－	3		0	3	0	4	0	0	20	
Lane Group Flow（vph）	155	273	23	76	311	145	0	2336	0	0	2656	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	246	578	491	266	578	491		2889			2851	
v／s Ratio Prot		0.16			0.18			0.47			c0．54	
v／s Ratio Perm	c0．21		0.02	0.09		0.10						
v／c Ratio	0.63	0.47	0.05	0.29	0.54	0.29		0.81			0.93	
Uniform Delay，d1	24.1	22.6	19.4	21.1	23.2	21.2		14.3			16.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.69			1.00	
Incremental Delay，d2	11.6	2.8	0.2	2.7	3.6	1.5		1.2			7.0	
Delay（s）	35.8	25.4	19.6	23.8	26.8	22.7		11.1			23.5	
Level of Service	D	C	B	C	C	C		B			C	
Approach Delay（s）		28.6			25.2			11.1			23.5	
Approach LOS		C			C			B			C	
Intersection Summary												
HCM Average Control Delay			19.2		HCM Leva	el of Se	vice		B			
HCM Volume to Capacity ratio			0.82									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			84．5\％		ICU Leve	of Ser			E			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			${ }_{\text {¢ }}$			${ }_{\text {¢ }}$			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	13	315	6	7	492	5	18	1	16	1	1	4
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	13	321	6	7	502	5	18	1	16	1	1	4
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		79										
pX , platoon unblocked				0.88			0.88	0.88	0.88	0.88	0.88	
vC , conflicting volume	507			328			874	872	324	887	873	505
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	507			235			857	855	231	871	855	505
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			92	100	98	100	100	99
cM capacity (veh/h)	1063			1176			240	257	714	231	257	571
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	341	514	36	6								
Volume Left	13	7	18	1								
Volume Right	6	5	16	4								
cSH	1063	1176	345	394								
Volume to Capacity	0.01	0.01	0.10	0.02								
Queue Length 95th (ft)	1	0	9	1								
Control Delay (s)	0.5	0.2	16.6	14.3								
Lane LOS	A	A	C	B								
Approach Delay (s)	0.5	0.2	16.6	14.3								
Approach LOS			C	B								
Intersection Summary												
Average Delay			1.0									
Intersection Capacity Utilization			40.5\%		CU Lev	of Se			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			¢			${ }_{\text {¢ }}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	9	413	7	16	389	14	8	6	30	17	16	22
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	9	421	7	16	397	14	8	6	31	17	16	22
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					524							
pX, platoon unblocked	0.89						0.89	0.89		0.89	0.89	0.89
vC , conflicting volume	411			429			911	887	425	914	884	404
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	336			429			899	873	425	903	869	328
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			96	98	95	92	94	96
cM capacity (veh/h)	1095			1142			209	252	634	212	253	637
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	438	428	45	56								
Volume Left	9	16	8	17								
Volume Right	7	14	31	22								
cSH	1095	1142	402	309								
Volume to Capacity	0.01	0.01	0.11	0.18								
Queue Length 95th (ft)	1	1	9	16								
Control Delay (s)	0.3	0.5	15.1	19.2								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.3	0.5	15.1	19.2								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utilization			41.4\%	ICU Level of Service					A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

2/20/2006												
	\Rightarrow	\rightarrow		\checkmark			4	\uparrow	p	\checkmark	\dagger	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		* \uparrow			* $\hat{*}$			\uparrow			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	43	411	6	62	411	39	2	13	30	93	23	6
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	47	447	7	67	447	42	2	14	33	101	25	7
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					224							
pX, platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
vC , conflicting volume	489			453			921	1167	227	959	1149	245
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	352			453			823	1092	227	865	1072	85
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	96			94			99	92	96	47	86	99
cM capacity (veh/h)	1117			1118			203	179	782	192	183	883
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	270	230	291	266	49	133						
Volume Left	47	0	67	0	2	101						
Volume Right	0	7	0	42	33	7						
cSH	1117	1700	1118	1700	372	198						
Volume to Capacity	0.04	0.14	0.06	0.16	0.13	0.67						
Queue Length 95th (ft)	3	0	5	0	11	102						
Control Delay (s)	1.8	0.0	2.4	0.0	16.1	54.0						
Lane LOS	A		A		C	F						
Approach Delay (s)	1.0		1.3		16.1	54.0						
Approach LOS					C	F						
Intersection Summary												
Average Delay			7.4									
Intersection Capacity Utilization			50.6\%		ICU Leve	of Servis	vice		A			
Analysis Period (min)			15									

Existing plus Project - PM Peak (Alt 2)
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107: California Street \& Park Presidio Boulevard
2/20/2006

Existing plus Project - PM Peak (Alt 2) Wilbur Smith Associates

Synchro 6 Report

Existing plus Project Conditions

Alternative 3: Wings Removed Alternative (Couplet)
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Street

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			¢			¢			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	291	10	25	409	4	4	1	25	7	3	2
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	310	11	27	435	4	4	1	27	7	3	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	439			320			813	812	315	837	815	437
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	439			320			813	812	315	837	815	437
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	96	97	99	100
cM capacity (veh/h)	1131			1251			291	308	730	272	307	624
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	322	466	32	13								
Volume Left	2	27	4	7								
Volume Right	11	4	27	2								
cSH	1131	1251	585	310								
Volume to Capacity	0.00	0.02	0.05	0.04								
Queue Length 95th (ft)	0	2	4	3								
Control Delay (s)	0.1	0.7	11.5	17.1								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.1	0.7	11.5	17.1								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.1									
Intersection Capacity Utilization			49.0\%	ICU Level of Service					A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			4			¢			¢	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	316	5	18	402	4	8	4	17	76	30	28
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	336	5	19	428	4	9	4	18	81	32	30
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	344	451	31	143								
Volume Left (vph)	2	19	9	81								
Volume Right (vph)	5	4	18	30								
Hadj (s)	-0.01	0.00	-0.30	-0.01								
Departure Headway (s)	5.0	4.9	5.9	5.9								
Degree Utilization, x	0.48	0.61	0.05	0.23								
Capacity (veh/h)	685	714	498	541								
Control Delay (s)	12.5	15.4	9.2	10.7								
Approach Delay (s)	12.5	15.4	9.2	10.7								
Approach LOS	B	C	A	B								
Intersection Summary												
Delay			13.5									
HCM Level of Service			B									
Intersection Capacity Utilization			54.7\%		ICU Leve	of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	31	375	3	118	421	67	2	46	49	5	1	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate（vph）	33	399	3	126	448	71	2	49	52	5	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（fts）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.86						0.86	0.86		0.86	0.86	0.86
vC ，conflicting volume	519			402			1203	1237	401	1278	1203	484
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu, unblocked vol	440			402			1236	1276	401	1323	1236	399
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			89			98	61	92	92	99	100
cM capacity（veh／h）	971			1167			118	125	654	67	132	563
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	435	645	103	7								
Volume Left	33	126	2	5								
Volume Right	3	71	52	1								
cSH	971	1167	210	83								
Volume to Capacity	0.03	0.11	0.49	0.09								
Queue Length 95th（ft）	3	9	61	7								
Control Delay（s）	1.0	2.7	37.5	52.7								
Lane LOS	A	A	E	F								
Approach Delay（s）	1.0	2.7	37.5	52.7								
Approach LOS			E	F								
Intersection Summary												
Average Delay			5.4									
Intersection Capacity Utilization			69．9\％		CU Leve	of Se			C			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\rangle							\dagger	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow	F	${ }_{1}$	\uparrow	F		个个年			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4946	
FIt Permitted	0.41	1.00	1.00	0.46	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	743	1756	1492	814	1756	1492		5012			4946	
Volume（vph）	144	260	25	73	300	142	0	2174	72	0	2265	306
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	150	271	26	76	312	148	0	2265	75	0	2359	319
RTOR Reduction（vph）	0		3		0	3	0	4	0	0	20	
Lane Group Flow（vph）	150	271	23	76	312	145	0	2336	0	0	2658	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	245	578	491	268	578	491		2889			2851	
v／s Ratio Prot		0.15			0.18			0.47			c0．54	
v／s Ratio Perm	c0． 20		0.02	0.09		0.10						
v／c Ratio	0.61	0.47	0.05	0.28	0.54	0.29		0.81			0.93	
Uniform Delay，d1	23.9	22.6	19.4	21.1	23.2	21.2		14.3			16.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.69			1.00	
Incremental Delay，d2	10.9	2.7	0.2	2.6	3.6	1.5		1.2			7.1	
Delay（s）	34.9	25.3	19.6	23.7	26.8	22.7		11.1			23.5	
Level of Service	C	C	B	C	C	C		B			C	
Approach Delay（s）		28.2			25.2			11.1			23.5	
Approach LOS		C			C			B			C	
Intersection Summary												
HCM Average Control Delay			19.2		HCM Leva	el of Se	vice		B			
HCM Volume to Capacity ratio			0.82									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			84．3\％		ICU Leve	of Ser			E			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			${ }_{4}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	13	313	6	7	493	5	18	1	16	1	1	4
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	13	319	6	7	503	5	18	1	16	1	1	4
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		79										
pX, platoon unblocked				0.88			0.88	0.88	0.88	0.88	0.88	
vC , conflicting volume	508			326			873	871	322	886	872	506
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	508			234			856	854	230	870	854	506
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			92	100	98	100	100	99
cM capacity (veh/h)	1062			1179			240	258	716	232	257	571

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow			${ }_{\text {¢ }}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	9	414	7	16	389	14	8	6	30	17	16	20
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	9	422	7	16	397	14	8	6	31	17	16	20
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					524							
pX, platoon unblocked	0.89						0.89	0.89		0.89	0.89	0.89
vC , conflicting volume	411			430			910	888	426	915	885	404
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	336			430			898	874	426	904	870	328
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			96	98	95	92	94	97
cM capacity (veh/h)	1095			1141			210	252	633	212	253	637
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	439	428	45	54								
Volume Left	9	16	8	17								
Volume Right	7	14	31	20								
cSH	1095	1141	403	303								
Volume to Capacity	0.01	0.01	0.11	0.18								
Queue Length 95th (ft)	1	1	9	16								
Control Delay (s)	0.3	0.5	15.1	19.4								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.3	0.5	15.1	19.4								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utilization			41.3\%		U Leve	of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

2/20/2006												
	\rangle	\rightarrow					4	\uparrow	1	\downarrow	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ ${ }_{\text {¢ }}$			¢ \uparrow			${ }_{\text {¢ }}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	44	411	6	62	411	39	2	14	30	93	23	6
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	48	447	7	67	447	42	2	15	33	101	25	7
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					224							
pX , platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
vC , conflicting volume	489			453			923	1170	227	962	1152	245
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	352			453			825	1094	227	868	1075	85
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	96			94			99	91	96	47	86	99
cM capacity (veh/h)	1117			1118			202	178	782	190	183	883
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	271	230	291	266	50	133						
Volume Left	48	0	67	0	2	101						
Volume Right	0	7	0	42	33	7						
cSH	1117	1700	1118	1700	362	196						
Volume to Capacity	0.04	0.14	0.06	0.16	0.14	0.68						
Queue Length 95th (ft)	3	0	5	0	12	103						
Control Delay (s)	1.8	0.0	2.4	0.0	16.5	55.1						
Lane LOS	A		A		C	F						
Approach Delay (s)	1.0		1.3		16.5	55.1						
Approach LOS					C	F						
Intersection Summary												
Average Delay			7.5									
Intersection Capacity Utilization			50.6\%	ICU Level of Service					A			
Analysis Period (min)			15									

Existing plus Project - PM Peak (Alt 3)
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
107: California Street \& Park Presidio Boulevard
2/20/2006

Existing plus Project - PM Peak (Alt 3)
Wilbur Smith Associates
Synchro 6 Report

Existing plus Project Conditions Alternative 4: Battery Caulfield Alternative

(Couplet)

PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Street

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenu

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			4			¢			¢	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	2	312	5	18	402	4	8	4	17	68	26	26
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	332	5	19	428	4	9	4	18	72	28	28
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	339	451	31	128								
Volume Left (vph)	2	19	9	72								
Volume Right (vph)	5	4	18	28								
Hadj (s)	-0.01	0.00	-0.30	-0.02								
Departure Headway (s)	5.0	4.8	5.8	5.8								
Degree Utilization, x	0.47	0.61	0.05	0.21								
Capacity (veh/h)	694	724	508	543								
Control Delay (s)	12.2	15.0	9.1	10.4								
Approach Delay (s)	12.2	15.0	9.1	10.4								
Approach LOS	B	B	A	B								
Intersection Summary												
Delay			13.2									
HCM Level of Service			B									
Intersection Capacity Utilization			53.3\%		ICU Leve	of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	27	367	3	118	421	53	2	39	49	5	1	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate（vph）	29	390	，	126	448	56	2	41	52	5	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.86						0.86	0.86		0.86	0.86	0.86
VC ，conflicting volume	504			394			1178	1205	392	1249	1178	476
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	425			394			1207	1238	392	1290	1207	392
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			89			98	69	92	93	99	100
cM capacity（veh／h）	987			1176			124	132	661	77	138	570
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	422	630	96	7								
Volume Left	29	126	2									
Volume Right	3	56	52	1								
cSH	987	1176	234	95								
Volume to Capacity	0.03	0.11	0.41	0.08								
Queue Length 95th（ft）	2	9	47	6								
Control Delay（s）	0.9	2.7	30.6	46.2								
Lane LOS	A	A	D	E								
Approach Delay（s）	0.9	2.7	30.6	46.2								
Approach LOS			D	E								
Intersection Summary												
Average Delay			4.6									
Intersection Capacity Utilization			68．0\％		CU Leve	of Se			C			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis

103：Lake Street \＆Park Presidio Boulevard

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	\uparrow	${ }^{7}$	${ }^{7}$	\uparrow	${ }^{\prime}$		个中家			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4949	
FIt Permitted	0.41	1.00	1.00	0.47	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	753	1756	1492	818	1756	1492		5012			4949	
Volume（vph）	138	258	25	73	296	142	0	2174	72	0	2265	296
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	144	269	26	76	308	148	0	2265	75	0	2359	308
RTOR Reduction（vph）	0	0	3	0	0	3	0	4	0	0	19	
Lane Group Flow（vph）	144	269	23	76	308	145	0	2336	0	0	2648	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	248	578	491	269	578	491		2889			2853	
v／s Ratio Prot		0.15			0.18			0.47			c0．53	
v／s Ratio Perm	c0．19		0.02	0.09		0.10						
v／c Ratio	0.58	0.47	0.05	0.28	0.53	0.29		0.81			0.93	
Uniform Delay，d1	23.6	22.6	19.4	21.1	23.2	21.2		14.3			16.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.69			1.00	
Incremental Delay，d2	9.6	2.7	0.2	2.6	3.5	1.5		1.2			6.7	
Delay（s）	33.2	25.3	19.6	23.7	26.7	22.7		11.1			23.1	
Level of Service	C	C	B	C	C	C		B			C	
Approach Delay（s）		27.5			25.1			11.1			23.1	
Approach LOS		C			C			B			C	
Intersection Summary												
			18.9		HCM Le	el of Servider	rvice		B			
HCM Average Control Delay HCM Volume to Capacity ratio			0.80									
			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			83．6\％		ICU Lev	of Ser	vice		E			
			15									
Analysis Period（min） c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			${ }_{*}$			${ }^{\dagger}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	13	311	6	7	489	5	18	1	16	1	1	4
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	13	317	6	7	499	5	18	1	16	1	1	4
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		79										
pX, platoon unblocked				0.88			0.88	0.88	0.88	0.88	0.88	
vC , conflicting volume	504			323			867	865	320	880	866	502
vC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	504			232			849	847	229	863	848	502
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			92	100	98	100	100	99
cM capacity (veh/h)	1066			1182			243	260	719	234	260	574

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1		
Volume Total	337	511	36	6		
Volume Left	13	7	18	1		
Volume Right	6	5	16	4		
cSH	1066	1182	350	398		
Volume to Capacity	0.01	0.01	0.10	0.02		
Queue Length 95th (ft)	1	0	8	1		
Control Delay (s)	0.5	0.2	16.5	14.2		
Lane LOS	A	A	C	B		
Approach Delay (s)	0.5	0.2	16.5	14.2		
Approach LOS			C	B		
Intersection Summary						
Average Delay			1.0			
Intersection Capacity Utilization			40.3\%		ICU Level of Service	A
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow			${ }_{\text {¢ }}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	9	409	7	16	389	14	8	6	30	16	16	18
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	9	417	7	16	397	14	8	6	31	16	16	18
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					524							
pX, platoon unblocked	0.89						0.89	0.89		0.89	0.89	0.89
vC , conflicting volume	411			424			903	883	421	910	880	404
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	336			424			890	868	421	898	864	328
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			96	98	95	92	94	97
cM capacity (veh/h)	1095			1146			214	254	637	214	255	637
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	434	428	45	51								
Volume Left	9	16	8	16								
Volume Right	7	14	31	18								
cSH	1095	1146	407	301								
Volume to Capacity	0.01	0.01	0.11	0.17								
Queue Length 95th (ft)	1	1	9	15								
Control Delay (s)	0.3	0.5	14.9	19.4								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.3	0.5	14.9	19.4								
Approach LOS			B	C								
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utilization			40.9\%		U Level	of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
106: California Street \& 14th Avenue

	\rangle						4	\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Configurations		ब \uparrow			4t			¢			¢	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Pedestrians												
Walking Speed (ft/s)												
Right turn flare (veh)												
Median storage veh)												
pX, platoon unblocked	0.92						0.92	0.92		0.92	0.92	0.92
$\mathrm{vC1}$, stage 1 conf vol												
vCu , unblocked vol	352			452			812	1081	226	855	1062	85
tC, 2 stage (s)												
p0 queue free \%	96			94			99	92	96	48	87	99

Volume Left	42	0	67	0	2	101
cSH	1117	1700	1119	1700	377	202
		0	5	0	11	09

Queue Length 95th (ft) 300050011
Lane LOS A A C F
Approach LOS C F

Average Delay	7.1		
Intersection Capacity Utilization	50.5%	ICU Level of Service	A
Analysis Period (\min)	15		

Existing plus Project - PM Peak (Alt 4)	Synchro 6 Report
Wilbur Smith Associates	Page 7

HCM Signalized Intersection Capacity Analysis
107: California Street \& Park Presidio Boulevard
2/20/2006

xisting plus Project - PM Peak (Alt 4) Wilbur Smith Associates

Synchro 6 Report
Page 8

Existing plus Project Conditions

Alternative 1: PTMP Alternative (Variant)

AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue
Existing+Project Variant AM Peak Alt 1

cM capacity (veh/h)	1289	972	239	263	497	209	261	760

Direction, Lane \# EB 1	WB 1	NB 1	SB 1	
Volume Total 621	301	47	12	
Volume Left 2	16	3	4	
Volume Right 14		42	3	
cSH 1289	972	454	286	
Volume to Capacity 0.00	0.02	0.10	0.04	
Queue Length 95th (ft) 0	1	9	3	
Control Delay (s) 0.0	0.6	13.8	18.1	
Lane LOS A	A	B	C	
Approach Delay (s) 0.0	0.6	13.8	18.1	
Approach LOS		B	C	
Intersection Summary				
Average Delay		1.1		
Intersection Capacity Utilization		40.7\%	ICU Level of Service	A
Analysis Period (min)		15		

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
102: Lake Street \& 14th Avenue

$\rightarrow \rightarrow \downarrow \rightarrow 4+\downarrow \downarrow$

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		F			\dagger			\dagger			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	30	566	5	145	306	28	4	36	40	3	2	4
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate (vph)	31	578	5	148	312	29	4	37	41	3	2	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					300							
pX, platoon unblocked	0.93						0.93	0.93		0.93	0.93	0.93
vC , conflicting volume	341			583			1269	1278	580	1323	1266	327
vC1, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	292			583			1289	1299	580	1347	1286	277
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	97			85			96	71	92	96	98	99
cM capacity (veh/h)	1193			1002			113	126	518	75	128	714

cM capacity (veh/h)	1193			1002	113	126	518	75	128	714
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1						
Volume Total	613	489	82	9						
Volume Left	31	148	4	3						
Volume Right	5	29	41	4						
cSH	1193	1002	201	148						
Volume to Capacity	0.03	0.15	0.41	0.06						
Queue Length 95th (ft)	2	13	46	5						
Control Delay (s)	0.7	4.0	34.7	31.0						
Lane LOS	A	A	D	D						
Approach Delay (s)	0.7	4.0	34.7	31.0						
Approach LOS			D	D						
Intersection Summary										
Average Delay			4.6							
Intersection Capacity Utilization			72.2\%		ICU Level of Service		C			
Analysis Period (min)			15							

Presidio of SF PHSH EA
Wilbur Smith Associates

HCM Signalized Intersection Capacity Analysis
103: Lake Street \& Park Presidio Boulevard

HCM Unsignalized Intersection Capacity Analysis

104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow			\dagger			${ }_{\text {¢ }}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	1	460	13	3	332	4	11	3	16	3	2	2
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	1	523	15	3	377	5	12	3	18	3	2	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		71										
pX, platoon unblocked				0.79			0.79	0.79	0.79	0.79	0.79	
vC , conflicting volume	382			538			922	921	530	939	926	380
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	382			416			902	900	407	923	907	380
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			94	98	96	98	99	100
cM capacity (veh/h)	1182			909			204	221	514	190	219	672
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	539	385	34	8								
Volume Left	1	3	12	3								
Volume Right	15	5	18	2								
cSH	1182	909	304	251								
Volume to Capacity	0.00	0.00	0.11	0.03								
Queue Length 95th (ft)	0	0	9	2								
Control Delay (s)	0.0	0.1	18.3	19.8								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.0	0.1	18.3	19.8								
Approach LOS			C	C								
Intersection Summary												
Average Delay			0.9									
Intersection Capacity Utilization			35.6\%		U Lev	of S			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

	$\stackrel{ }{*}$							\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{\text {¢ }}$			\uparrow			${ }^{*}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	36	543	14	11	267	20	7	21	29	14	9	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	38	578	15	12	284	21	7	22	31	15	10	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)					531							
pX, platoon unblocked	0.94						0.94	0.94		0.94	0.94	0.94
VC , conflicting volume	305			593			990	990	585	1022	987	295
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	260			593			989	990	585	1023	986	248
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	97			99			96	90	94	91	96	99
cM capacity (veh/h)	1235			993			199	223	515	170	224	746
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	631	317	61	30								
Volume Left	38	12	7	15								
Volume Right	15	21	31	5								
cSH	1235	993	307	217								
Volume to Capacity	0.03	0.01	0.20	0.14								
Queue Length 95th (ft)	2	1	18	12								
Control Delay (s)	0.8	0.4	19.6	24.2								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.8	0.4	19.6	24.2								
Approach LOS			C	C								
Intersection Summary												
Average Delay			2.5									
Intersection Capacity Utilization			55.1\%		CU Leve	of Se			B			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard

	\rangle						4	\uparrow			\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	个t		${ }^{7}$	个t			个中t			个个家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3198			4960			4997	
Flt Permitted	0.48	1.00		0.27	1.00			1.00			1.00	
Satd．Flow（perm）	837	3318		467	3198			4960			4997	
Volume（vph）	86	587	22	93	252	96	0	2245	251	0	2102	115
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	89	605	23	96	260	99	0	2314	259	0	2167	119
RTOR Reduction（vph）	0	3	0	0	3	0	0	16	0	0	7	
Lane Group Flow（vph）	89	625	0	96	356	0	0	2557	0	0	2279	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	256	1015		143	978			2976			2998	
v／s Ratio Prot		0.19			0.11			c0．52			0.46	
v／s Ratio Perm	0.11			c0．21								
v／c Ratio	0.35	0.62		0.67	0.36			0.86			0.76	
Uniform Delay，d1	22.9	25.2		25.8	23.0			14.0			12.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.64	
Incremental Delay，d2	3.7	2.8		22.3	1.0			3.5			0.9	
Delay（s）	26.6	28.0		48.1	24.1			17.5			8.9	
Level of Service	C	C		D	C			B			A	
Approach Delay（s）		27.8			29.2			17.5			8.9	
Approach LOS		C			C			B			A	
Intersection Summary												
HCM Average Control Delay			16.4		HCM Leve	el of Sersid	rvice		B			
HCM Volume to Capacity ratioActuated Cycle Length（s）			0.80									
			85.0		Sum of lo	ost time			8.0			
Intersection Capacity Utilization			81．0\％		ICU Level of Service							
Analysis Period（min）		15										

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard Existing+Project Variant AM Peak Alt 1

Existing plus Project Conditions

Alternative 2: Wings Retained/Trust Revised

Alternative (Variant)
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue
Year 2025 Variant AM Peak Alt 2

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }^{\dagger}$			\dagger			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	542	13	15	255	1	3	1	39	4	4	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	589	14	16	277	1	3	1	42	4	4	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
VC, conflicting volume	278			603			916	911	596	954	918	278
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	278			603			916	911	596	954	918	278
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	92	98	98	100
cM capacity (veh/h)	1296			984			247	271	507	217	269	766

cirection, Lane \#	EB 1	WB 1	NB 1	SB 1					

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			${ }_{\dagger}$			\dagger	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	21	551	13	13	267	21	2	24	37	6	2	2
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	22	574	14	14	278	22	2	25	39	6	2	
Direction, Lane \#	EB 1	WB 1	NB 1	SB1								
Volume Total (vph)	609	314	66	10								
Volume Left (vph)	22	14	2	6								
Volume Right (vph)	14	22	39	2								
Hadj (s)	-0.01	-0.03	-0.35	0.00								
Departure Headway (s)	4.5	4.8	5.6	6.1								
Degree Utilization, x	0.76	0.42	0.10	0.02								
Capacity (veh/h)	783	730	575	515								
Control Delay (s)	20.2	11.1	9.3	9.2								
Approach Delay (s)	20.2	11.1	9.3	9.2								
Approach LOS	C	B	A	A								
Intersection Summary												
Delay 16.5												
$\begin{array}{lrl}\text { HCM Level of Service } & \text { C } \\ \text { Intersection Capacity Utilization } & 47.7 \% & \text { ICU Level of Service }\end{array}$												
Intersection Capacity Utilization			47.7\%	ICU Level of Service					A			
			15									

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow							\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个中t			个个号	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4945	
FIt Permitted	0.60	1.00	1.00	0.28	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1089	1756	1492	484	1756	1492		5012			4945	
Volume（vph）	182	399	28	59	167	105	0	2350	77	0	2116	291
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	190	416	29	61	174	109	0	2448	80	0	2204	303
RTOR Reduction（vph）	0	0	3	0	0	2	0	4	0	0	21	
Lane Group Flow（vph）	190	416	26	61	174	107	0	2524	0	0	2486	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	359	578	491	159	578	491		2889			2851	
v／s Ratio Prot		c0．24			0.10			c0．50			0.50	
v／s Ratio Perm	0.17		0.02	0.13		0.07						
v／c Ratio	0.53	0.72	0.05	0.38	0.30	0.22		0.87			0.87	
Uniform Delay，d1	23.1	25.1	19.4	21.9	21.2	20.6		15.4			15.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.58			0.60	
Incremental Delay，d2	5.5	7.5	0.2	6.9	1.3	1.0		2.3			3.2	
Delay（s）	28.6	32.6	19.6	28.8	22.6	21.6		11.2			12.4	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		30.8			23.4			11.2			12.4	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			14.5		HCM Le	el of Se	rvice		B			
HCM Volume to Capacity ratio			0.82									
Actuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			81．7\％		CU Lev	of Ser	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis

104: Lake Street \& Funston Avenue

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ ${ }^{\text {d }}$			¢ ${ }_{\text {¢ }}$			\dagger			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	23	542	12	51	283	30	1	13	26	125	12	13
Peak Hour Factor	0.91	0.91	0.25	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate（vph）	25	596	48	56	311	33	1	14	29	137	13	14
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					231							
pX，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC ，conflicting volume	344			644			959	1126	322	824	1134	172
vC1，stage 1 conf vol												
vC2，stage 2 conf vol												
vCu ，unblocked vol	277			644			916	1091	322	776	1099	98
tC，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	98			94			99	93	96	42	93	98
cM capacity（veh／h）	1247			951			194	192	680	238	190	909

Presidio of SF PHSH EA

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant AM Peak Alt 2

	$\stackrel{ }{ }$						4	\uparrow	P		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	个 ${ }_{\text {¢ }}$		${ }^{7}$	个 ${ }_{\text {a }}$			个中家			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3198			4960			4998	
Flt Permitted	0.48	1.00		0.27	1.00			1.00			1.00	
Satd．Flow（perm）	837	3318		470	3198			4960			4998	
Volume（vph）	86	585	22	93	252	96	0	2245	251	0	2091	112
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	89	603	23	96	260	99	0	2314	259	0	2156	115
RTOR Reduction（vph）	0	3	0	0	3	0	0	16		0	7	
Lane Group Flow（vph）	89	623	0	96	356	0	0	2557	0	0	2264	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	256	1015		144	978			2976			2999	
v / s Ratio Prot		0.19			0.11			c0．52			0.45	
v／s Ratio Perm	0.11			c0．20								
v／c Ratio	0.35	0.61		0.67	0.36			0.86			0.75	
Uniform Delay，d1	22.9	25.2		25.7	23.0			14.0			12.4	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.64	
Incremental Delay，d2	3.7	2.8		21.8	1.0			3.5			0.9	
Delay（s）	26.6	28.0		47.5	24.1			17.5			8.8	
Level of Service	C	C		D	C			B			A	
Approach Delay（s）		27.8			29.0			17.5			8.8	
Approach LOS		C			C			B			A	
Intersection Summary												
HCM Average Control Delay			16.3		HCM Le	el of S	rvice		B			
HCM Volume to Capacity ratio			0.79									
Actuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			81．0\％		ICU Lev	of Se	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant AM Peak Alt 2

Existing plus Project Conditions
 Alternative 3: Wings Removed Alternative
 (Variant)
 AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue
Year 2025 Variant AM Peak Alt 3

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			${ }_{\dagger}$			${ }^{*}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	538	13	15	256	1	3	1	39	4	4	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	2	585	14	16	278	1	3	1	42	4	4	3
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	279			599			913	908	592	951	915	279
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	279			599			913	908	592	951	915	279
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tc}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	92	98	98	100
cM capacity (veh/h)	1295			988			249	272	510	218	270	765

cM capacity (veh/h)	1295			988	249	272	510	218	270	765
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1						
Volume Total	601	296	47	12						
Volume Left	2	16	3	4						
Volume Right	14	1	42	3						
cSH	1295	988	466	297						
Volume to Capacity	0.00	0.02	0.10	0.04						
Queue Length 95th (ft)	0	1	8	3						
Control Delay (s)	0.0	0.6	13.6	17.7						
Lane LOS	A	A	B	C						
Approach Delay (s)	0.0	0.6	13.6	17.7						
Approach LOS			B	C						
Intersection Summary										
Average Delay			1.1							
Intersection Capacity Utilization			39.7\%		ICU Level of Service		A			
Analysis Period (min)			15							

Presidio of SF PHSH EA
Wilbur Smith Associates

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\dagger			¢			\dagger	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	19	549	13	13	268	19	2	21	37	6	2	2
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	20	572	14	14	279	20	2	22	39	6	2	
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	605	313	63	10								
Volume Left (vph)	20	14	2	6								
Volume Right (vph)	14	20	39	2								
Hadj (s)	-0.01	-0.03	-0.36	0.00								
Departure Headway (s)	4.5	4.7	5.6	6.1								
Degree Utilization, x	0.75	0.41	0.10	0.02								
Capacity (veh/h)	785	733	577	517								
Control Delay (s)	19.6	11.0	9.2	9.2								
Approach Delay (s)	19.6	11.0	9.2	9.2								
Approach LOS	C	B	A	A								
Intersection Summary												
Delay			16.1									
HCM Level of Service			C									
Intersection Capacity Utilization			46.8\%		CU Leve	of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Presidio of SF PHSH EA

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow							\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个中t			个个号	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4944	
FIt Permitted	0.60	1.00	1.00	0.28	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1099	1756	1492	484	1756	1492		5012			4944	
Volume（vph）	182	399	28	59	163	105	0	2350	77	0	2118	292
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	190	416	29	61	170	109	0	2448	80	0	2206	304
RTOR Reduction（vph）	0	0	3	0	0	2	0	4	0	0	21	
Lane Group Flow（vph）	190	416	26	61	170	107	0	2524	0	0	2489	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	362	578	491	159	578	491		2889			2850	
v／s Ratio Prot		c0．24			0.10			c0．50			0.50	
v／s Ratio Perm	0.17		0.02	0.13		0.07						
v／c Ratio	0.52	0.72	0.05	0.38	0.29	0.22		0.87			0.87	
Uniform Delay，d1	23.1	25.1	19.4	21.9	21.2	20.6		15.4			15.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.58			0.61	
Incremental Delay，d2	5.4	7.5	0.2	6.9	1.3	1.0		2.3			3.2	
Delay（s）	28.5	32.6	19.6	28.8	22.5	21.6		11.2			12.5	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		30.8			23.3			11.2			12.5	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			14.5		HCM Le	el of Se	rvice		B			
			0.82									
HCM Volume to Capacity ratioActuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			81．8\％		CU Lev	of Ser	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis

104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow			\dagger			${ }_{\text {¢ }}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	1	460	13	3	314	4	11	3	16	3	2	2
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	1	523	15	3	357	5	12	3	18	3	2	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		71										
pX, platoon unblocked				0.79			0.79	0.79	0.79	0.79	0.79	
vC , conflicting volume	361			538			902	901	530	918	906	359
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	361			416			876	874	407	897	881	359
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			94	99	96	98	99	100
cM capacity (veh/h)	1203			909			212	229	514	198	227	690
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	539	365	34	8								
Volume Left	1	3	12	3								
Volume Right	15	5	18	2								
cSH	1203	909	312	260								
Volume to Capacity	0.00	0.00	0.11	0.03								
Queue Length 95th (ft)	0	0	9	2								
Control Delay (s)	0.0	0.1	17.9	19.3								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.0	0.1	17.9	19.3								
Approach LOS			C	C								
Intersection Summary												
Average Delay			0.9									
Intersection Capacity Utilization			35.6\%		U Lev	of Se			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ 1			¢ \uparrow			\dagger			\＄	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	21	542	12	52	283	30	1	12	26	126	12	13
Peak Hour Factor	0.91	0.91	0.25	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate（vph）	23	596	48	57	311	33	1	13	29	138	13	14
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					231							
pX，platoon unblocked	0.96						0.96	0.96		0.96	0.96	0.96
vC ，conflicting volume	344			644			956	1124	322	821	1132	172
vC1，stage 1 conf vol												
vC 2 ，stage 2 conf vol												
vCu ，unblocked vol	277			644			914	1089	322	773	1096	98
tC，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	98			94			99	93	96	42	93	98
cM capacity（veh／h）	1247			951			195	193	680	240	191	909

Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total	321	346	213	188	43	166	
Volume Left	23	0	57	0	1	138	
Volume Right	0	48	0	33	29	14	
cSH	1247	1700	951	1700	369	251	
Volume to Capacity	0.02	0.20	0.06	0.11	0.12	0.66	
Queue Length 95th（ft）	1	0	5	0	10	105	
Control Delay（s）	0.7	0.0	2.9	0.0	16.0	43.6	
Lane LOS	A		A		C	E	
Approach Delay（s）	0.4		1.5		16.0	43.6	
Approach LOS					C	E	
Intersection Summary							
Average Delay			6.9				
Intersection Capacity Utilization			51．3\％		CU Lev	of Service	A
Analysis Period（min）			15				

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant AM Peak Alt 3

	$\stackrel{ }{ }$						4	\uparrow	P		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	$\uparrow{ }^{\text {个 }}$		\％	个 ${ }_{\text {a }}$			个中家			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3198			4960			4998	
Flt Permitted	0.48	1.00		0.27	1.00			1.00			1.00	
Satd．Flow（perm）	837	3318		468	3198			4960			4998	
Volume（vph）	86	586	22	93	252	96	0	2245	251	0	2093	112
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	89	604	23	96	260	99	0	2314	259	0	2158	115
RTOR Reduction（vph）	0	3	0	0	3	0	0	16		0	7	
Lane Group Flow（vph）	89	624	0	96	356	0	0	2557	0	0	2266	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	256	1015		143	978			2976			2999	
v / s Ratio Prot		0.19			0.11			c0．52			0.45	
v／s Ratio Perm	0.11			c0．20								
v／c Ratio	0.35	0.61		0.67	0.36			0.86			0.76	
Uniform Delay，d1	22.9	25.2		25.8	23.0			14.0			12.4	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.64	
Incremental Delay，d2	3.7	2.8		22.3	1.0			3.5			0.9	
Delay（s）	26.6	28.0		48.1	24.1			17.5			8.8	
Level of Service	C	C		D	C			B			A	
Approach Delay（s）		27.8			29.2			17.5			8.8	
Approach LOS		C			C			B			A	
Intersection Summary												
HCM Average Control Delay			16.4		HCM Leve	el of S	rvice		B			
HCM Volume to Capacity ratio			0.80									
Actuated Cycle Length（s）			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			81．0\％		CU Leve	of Se	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant AM Peak Alt 3

Existing plus Project Conditions Alternative 4: Battery Caulfield Alternative
(Variant)
AM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue
Year 2025 Variant AM Peak Alt 4

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

| | | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SBR

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		F			\dagger			¢			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	20	566	5	142	288	18	4	18	40	3	2	4
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Hourly flow rate（vph）	20	578	5	145	294	18	4	18	41	3	2	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.94						0.94	0.94		0.94	0.94	0.94
vC，conflicting volume	312			583			1219	1223	580	1264	1216	303
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	270			583			1232	1237	580	1280	1230	260
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	98			86			97	87	92	97	99	99
cM capacity（veh／h）	1230			1002			126	141	518	99	142	738

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow						4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个个曻			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5012			4945	
Flt Permitted	0.61	1.00	1.00	0.28	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	1102	1756	1492	484	1756	1492		5012			4945	
Volume（vph）	182	399	28	59	162	105	0	2350	77	0	2110	287
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．Flow（vph）	190	416	29	61	169	109	0	2448	80	0	2198	299
RTOR Reduction（vph）	0	0	4	0	0	2	0	4	0	0	21	
Lane Group Flow（vph）	190	416	25	61	169	107	0	2524	0	0	2476	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	363	578	491	159	578	491		2889			2851	
v / s Ratio Prot		c0．24			0.10			c0．50			0.50	
v／s Ratio Perm	0.17		0.02	0.13		0.07						
v／c Ratio	0.52	0.72	0.05	0.38	0.29	0.22		0.87			0.87	
Uniform Delay，d1	23.1	25.1	19.4	21.9	21.1	20.6		15.4			15.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.58			0.59	
Incremental Delay，d2	5.3	7.5	0.2	6.9	1.3	1.0		2.3			3.1	
Delay（s）	28.4	32.6	19.6	28.8	22.4	21.6		11.2			12.2	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		30.8			23.3			11.2			12.2	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			14.3		HCM Lev	el of S	rvice		B			
HCM Volume to Capacity ratio			0.82									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			81．5\％		ICU Leve	of Se	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis

104: Lake Street \& Funston Avenue

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1			
Volume Total	320	346	211	188	43	164			
Volume Left	22	0	56	0	1	136			
Volume Right	0	48	0	33	29	14			
cSH	1248	1700	951	1700	372	254			
Volume to Capacity	0.02	0.20	0.06	0.11	0.12	0.65			
Queue Length 95th（ft）	1	0	5	0	10	101			
Control Delay（s）	0.7	0.0	2.8	0.0	15.9	41.8			
Lane LOS	A		A		C	E			
Approach Delay（s）	0.3		1.5		15.9	41.8			
Approach LOS				C	E				
Intersection Summary									
Average Delay		6.6							
Intersection Capacity Utilization	51.1%	ICU Level of Service							
Analysis Period（min）		15							

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant AM Peak Alt 4

	\rangle							\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个t		${ }^{7}$	个t			个个曻			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.98			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3318		1668	3198			4960			4998	
Flt Permitted	0.48	1.00		0.27	1.00			1.00			1.00	
Satd．Flow（perm）	837	3318		471	3198			4960			4998	
Volume（vph）	86	584	22	93	252	96	0	2245	251	0	2086	111
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	89	602	23	96	260	99	0	2314	259	0	2151	114
RTOR Reduction（vph）	0	3	0	0	3	0	0	16	0	0	7	
Lane Group Flow（vph）	89	622	0	96	356	0	0	2557	0	0	2258	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Effective Green，g（s）	26.0	26.0		26.0	26.0			51.0			51.0	
Actuated g／C Ratio	0.31	0.31		0.31	0.31			0.60			0.60	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	256	1015		144	978			2976			2999	
v / s Ratio Prot		0.19			0.11			c0．52			0.45	
v／s Ratio Perm	0.11			c0．20								
v／c Ratio	0.35	0.61		0.67	0.36			0.86			0.75	
Uniform Delay，d1	22.9	25.2		25.7	23.0			14.0			12.4	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.63	
Incremental Delay，d2	3.7	2.8		21.8	1.0			3.5			0.9	
Delay（s）	26.6	28.0		47.5	24.1			17.5			8.8	
Level of Service	C	C		D	C			B			A	
Approach Delay（s）		27.8			29.0			17.5			8.8	
Approach LOS		C			C			B			A	
Intersection Summary												
HCM Average Control Delay			16.3		HCM Lev	el of S	rvice		B			
HCM Volume to Capacity ratio			0.79									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			81．0\％		ICU Leve	of Se	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant AM Peak Alt 4

Existing plus Project Conditions Alternative 1: PTMP Alternative (Variant)

PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			¢			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	309	10	25	413	4	4	1	25	7	3	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	2	332	11	27	444	4	4	1	27	8	3	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	448			343			846	844	338	869	847	446
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	448			343			846	844	338	869	847	446
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			98	100	96	97	99	100
cM capacity (veh/h)	1123			1227			276	295	709	258	294	616
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	345	475	32	13								
Volume Left	2	27	4	8								
Volume Right	11	4	27	2								
cSH	1123	1227	565	296								
Volume to Capacity	0.00	0.02	0.06	0.04								
Queue Length 95th (ft)	0	2	5	3								
Control Delay (s)	0.1	0.7	11.8	17.7								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.1	0.7	11.8	17.7								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.1									
Intersection Capacity Utilization			49.4\%		U Leve	of Se			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\stackrel{ }{\text { F }}$			¢			${ }_{\text {¢ }}$			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	25	306	3	126	457	30	2	35	49	6	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate（vph）	27	329	3	135	491	32	2	38	53		1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ ft ）					300							
pX，platoon unblocked	0.85						0.85	0.85		0.85	0.85	0.85
vC ，conflicting volume	524			332			1165	1179	331	1234	1165	508
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	439			332			1194	1211	331	1276	1194	420
tC ，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			89			98	72	93	92	99	100
cM capacity（veh／h）	961			1238			125	135	716	81	138	541
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	359	659	92	9								
Volume Left	27	135	2	6								
Volume Right	3	32	53	1								
cSH	961	1238	251	96								
Volume to Capacity	0.03	0.11	0.37	0.09								
Queue Length 95th（ft）	2	9	41	7								
Control Delay（s）	0.9	2.7	27.5	46.2								
Lane LOS	A	A	D	E								
Approach Delay（s）	0.9	2.7	27.5	46.2								
Approach LOS			D	E								
Intersection Summary												
Average Delay			4.5									
Intersection Capacity Utilization			65．4\％		CU Leve	of Ser	vice		C			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow							\uparrow	1		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个中t			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5015			4963	
FIt Permitted	0.39	1.00	1.00	0.50	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	705	1756	1492	883	1756	1492		5015			4963	
Volume（vph）	101	235	25	73	318	142	0	2174	72	0	2388	295
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	104	242	26	75	328	146	0	2241	74	0	2462	304
RTOR Reduction（vph）	0	0	2	0	0	3	0	4	0	0	18	
Lane Group Flow（vph）	104	242	24	75	328	143	0	2311	0	0	2748	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	1\％	3\％	1\％	1\％	3\％	\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	232	578	491	291	578	491		2891			2861	
v / s Ratio Prot		0.14			c0．19			0.46			c0．55	
v／s Ratio Perm	0.15		0.02	0.08		0.10						
v／c Ratio	0.45	0.42	0.05	0.26	0.57	0.29		0.80			0.96	
Uniform Delay，d1	22.4	22.2	19.4	20.9	23.5	21.1		14.1			17.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.24			0.60	
Incremental Delay，d2	6.2	2.2	0.2	2.1	4.0	1.5		1.1			6.9	
Delay（s）	28.6	24.4	19.6	23.0	27.5	22.6		18.7			17.1	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		25.2			25.6			18.7			17.1	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			19.0		HCM Le	el of Se	rvice		B			
			0.82									
HCM Volume to Capacity ratioActuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			85．0\％		CU Lev	of Ser	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			${ }_{4}$			${ }_{4}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	13	288	6	7	511	5	18	1	16	1	1	4
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	15	331	7	8	587	6	21	1	18	1	1	5
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		68										
pX, platoon unblocked				0.89			0.89	0.89	0.89	0.89	0.89	
vC , conflicting volume	593			338			976	974	334	990	974	590
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	593			260			973	970	256	988	971	590
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	98			99			90	99	97	99	99	99
cM capacity (veh/h)	988			1172			203	223	704	194	223	511

| Direction, Lane \# | EB 1 | WB 1 | NB 1 | SB 1 | | |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| Volume Total | 353 | 601 | 40 | 7 | | |
| Volume Left | 15 | 8 | 21 | 1 | | |
| Volume Right | 7 | 6 | 18 | 5 | | |
| cSH | 988 | 1172 | 302 | 344 | | |
| Volume to Capacity | 0.02 | 0.01 | 0.13 | 0.02 | | |
| Queue Length 95th (ft) | 1 | 1 | 11 | 2 | | |
| Control Delay (s) | 0.5 | 0.2 | 18.8 | 15.7 | | |
| Lane LOS | A | A | C | C | | |
| Approach Delay (s) | 0.5 | 0.2 | 18.8 | 15.7 | | |
| Approach LOS | | | C | C | | |
| Intersection Summary | | | | | | |
| Average Delay | | 1.2 | | | | |
| Intersection Capacity Utilization | 41.3% | ICU Level of Service | A | | | |
| Analysis Period (min) | | 15 | | | | |
| | | | | | | |

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow			А $\hat{*}$			${ }_{4}$			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	43	404	6	62	439	34	2	9	30	101	23	6
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	45	425	6	65	462	36	2	9	32	106	24	6
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					231							
pX ，platoon unblocked	0.91						0.91	0.91		0.91	0.91	0.91
vC ，conflicting volume	498			432			899	1147	216	950	1133	249
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	353			432			793	1065	216	849	1049	81
tC ，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	96			94			99	95	96	47	87	99
cM capacity（veh／h）	1110			1139			214	185	795	201	189	885

Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total	258	219	296	267	43	137	
Volume Left	45	0	65	0	2	106	
Volume Right	0	6	0	36	32	6	
cSH	1110	1700	1139	1700	428	206	
Volume to Capacity	0.04	0.13	0.06	0.16	0.10	0.66	
Queue Length 95th（ft）	3	0	5	0	8	101	
Control Delay（s）	1.8	0.0	2.3	0.0	14.3	51.4	
Lane LOS	A		A		B	F	
Approach Delay（s）	1.0		1.2		14.3	51.4	
Approach LOS					B	F	
Intersection Summary							
Average Delay			7.2				
Intersection Capacity Utilization			51．5\％		CU Lev	of Service	A
Analysis Period（min）			15				

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant PM Peak Alt 1

	\rangle						4	\uparrow			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个t		${ }^{7}$	个t			个中家			个中家	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3303		1668	3216			4968			4994	
Flt Permitted	0.37	1.00		0.40	1.00			1.00			1.00	
Satd．Flow（perm）	642	3303		708	3216			4968			4994	
Volume（vph）	66	438	31	153	397	125	0	2055	204	0	2348	138
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj．Flow（vph）	69	461	33	161	418	132	0	2163	215	0	2472	145
RTOR Reduction（vph）	0	1	0	0	2	0	0	14	0	0	8	
Lane Group Flow（vph）	69	493	0	161	548	0	0	2364	0	0	2609	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Effective Green，g（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Actuated g／C Ratio	0.39	0.39		0.39	0.39			0.52			0.52	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	249	1282		275	1249			2572			2585	
v／s Ratio Prot		0.15			0.17			0.48			c0．52	
v／s Ratio Perm	0.11			c0． 23								
v／c Ratio	0.28	0.38		0.59	0.44			0.92			1.01	
Uniform Delay，d1	17.8	18.7		20.6	19.2			18.9			20.5	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.37	
Incremental Delay，d2	2.7	0.9		8.8	1.1			6.7			13.5	
Delay（s）	20.6	19.6		29.4	20.3			25.6			21.1	
Level of Service	C	B		C	C			C			C	
Approach Delay（s）		19.7			22.4			25.6			21.1	
Approach LOS		B			C			C			C	
Intersection Summary												
HCM Average Control Delay			22.8		HCM Lev	el of S	rvice		C			
HCM Volume to Capacity ratio			0.83									
Actuated Cycle Length（s）			85.0		Sum of los	st time			8.0			
Intersection Capacity Utilization			80．0\％		ICU Leve	of Se	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108：New Alternative Access \＆Park Presidio Boulevard \quad Year 2025 Variant PM Peak Alt 1

	$\stackrel{ }{*}$			\dagger	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	\％	F＇7		¢4ヶ	个个榢		
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	
Total Lost time（s）	4.0	4.0		4.0	4.0		
Lane Util．Factor	1.00	0.88		0.91	0.91		
Frt	1.00	0.85		1.00	0.99		
Flt Protected	0.95	1.00		1.00	1.00		
Satd．Flow（prot）	1787	2814		5036	5004		
Flt Permitted	0.95	1.00		1.00	1.00		
Satd．Flow（perm）	1787	2814		5036	5004		
Volume（vph）	105	162	0	2417	2521	110	
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	
Adj．Flow（vph）	109	169	0	2518	2626	115	
RTOR Reduction（vph）	0	8	0	0	6	，	
Lane Group Flow（vph）	109	161	0	2518	2735	0	
Heavy Vehicles（\％）	1\％	1\％	3\％	3\％	3\％	3\％	
Turn Type		ustom					
Protected Phases	$1!$	5		2	$6!$		
Permitted Phases							
Actuated Green，G（s）	3.0	18.0		74.0	59.0		
Effective Green，g（s）	3.0	18.0		74.0	59.0		
Actuated g／C Ratio	0.04	0.21		0.87	0.69		
Clearance Time（s）	4.0	4.0		4.0	4.0		
Vehicle Extension（s）	3.0	3.0		3.0	3.0		
Lane Grp Cap（vph）	63	596		4384	3473		
v／s Ratio Prot	c0．06	0.06		c0．50	c0．55		
v / s Ratio Perm							
v／c Ratio	1.73	0.27		0.57	0.79		
Uniform Delay，d1	41.0	28.0		1.4	8.8		
Progression Factor	1.00	1.00		0.35	1.00		
Incremental Delay，d2	386.2	0.2		0.4	1.9		
Delay（s）	427.2	28.3		0.9	10.7		
Level of Service	F	C		A	B		
Approach Delay（s）	184.7			0.9	10.7		
Approach LOS	F			A	B		
Intersection Summary							
HCM Average Control Delay			14.9		HCM Lev	el of Service	B
HCM Volume to Capacity ratio			0.77				
Actuated Cycle Length（s）			85.0		Sum of los	st time（s）	8.0
Intersection Capacity Utilization			63．6\％		ICU Leve	of Service	B
Analysis Period（min）			15				
$!$ Phase conflict between lane groups．							
c Critical Lane Group							

Existing plus Project Conditions
Alternative 2: Wings Retained/Trust Revised
Alternative (Variant)
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			${ }_{\text {¢ }}$			${ }_{\text {¢ }}$			${ }_{\dagger}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	290	10	25	392	4	4	1	25	7	3	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	2	312	11	27	422	4	4	1	27	8	3	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX , platoon unblocked												
vC , conflicting volume	426			323			803	801	317	826	804	424
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	426			323			803	801	317	826	804	424
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	96	97	99	100
cM capacity (veh/h)	1144			1249			295	313	728	277	311	635
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	325	453	32	13								
Volume Left	2	27	4	8								
Volume Right	11	4	27	2								
cSH	1144	1249	587	315								
Volume to Capacity	0.00	0.02	0.05	0.04								
Queue Length 95th (ft)	0	2	4	3								
Control Delay (s)	0.1	0.7	11.5	16.9								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.1	0.7	11.5	16.9								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.1									
Intersection Capacity Utilization			48.2\%		U Lev	of Se			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			¢			¢			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	7	310	5	18	412	9	8	33	17	7	3	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	8	341	5	20	453	10	9	36	19	8	3	
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	354	482	64	12								
Volume Left (vph)	8	20	9	8								
Volume Right (vph)	5	10	19	1								
Hadj (s)	0.00	0.00	-0.15	0.07								
Departure Headway (s)	4.7	4.5	5.6	6.0								
Degree Utilization, x	0.46	0.61	0.10	0.02								
Capacity (veh/h)	753	777	547	504								
Control Delay (s)	11.5	14.2	9.3	9.1								
Approach Delay (s)	11.5	14.2	9.3	9.1								
Approach LOS	B	B	A	A								
Intersection Summary												
Delay			12.8									
HCM Level of Service			B									
Intersection Capacity Utilization			41.3\%		ICU Leve	of Ser			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	25	306	3	121	436	11	2	16	49	6	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate（vph）	27	329	3	130	469	12	2	17	53	6	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX ，platoon unblocked	0.86						0.86	0.86		0.86	0.86	0.86
vC，conflicting volume	481			332			1121	1125	331	1181	1121	475
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	397			332			1140	1145	331	1210	1140	390
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			89			98	89	93	94	99	100
cM capacity（veh／h）	1010			1238			138	151	716	106	152	571
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	359	611	72	9								
Volume Left	27	130	2	6								
Volume Right	3	12	53	1								
cSH	1010	1238	355	123								
Volume to Capacity	0.03	0.11	0.20	0.07								
Queue Length 95th（ft）	2	9	19	6								
Control Delay（s）	0.9	2.7	17.7	36.4								
Lane LOS	A	A	C	E								
Approach Delay（s）	0.9	2.7	17.7	36.4								
Approach LOS			C	E								
Intersection Summary												
Average Delay			3.4									
Intersection Capacity Utilization			61．9\％	ICU Level of Service					B			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard
Year 2025 Variant PM Peak Alt 2

	\Rightarrow							\uparrow	1		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	\％	\uparrow	F		个中t			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5015			4968	
Flt Permitted	0.41	1.00	1.00	0.50	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	753	1756	1492	883	1756	1492		5015			4968	
Volume（vph）	101	235	25	73	299	142	0	2174	72	0	2332	269
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	104	242	26	75	308	146	0	2241	74	0	2404	277
RTOR Reduction（vph）	0	0	2	0	0	3	0	4	0	0	17	
Lane Group Flow（vph）	104	242	24	75	308	143	0	2311	0	0	2664	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	1\％	3\％	1\％	1\％	3\％	1\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	248	578	491	291	578	491		2891			2864	
v / s Ratio Prot		0.14			c0．18			0.46			c0．54	
v／s Ratio Perm	0.14		0.02	0.08		0.10						
v／c Ratio	0.42	0.42	0.05	0.26	0.53	0.29		0.80			0.93	
Uniform Delay，d1	22.2	22.2	19.4	20.9	23.2	21.1		14.1			16.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.24			0.60	
Incremental Delay，d2	5.1	2.2	0.2	2.1	3.5	1.5		1.1			5.1	
Delay（s）	27.3	24.4	19.6	23.0	26.7	22.6		18.7			15.0	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		24.9			25.0			18.7			15.0	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			17.9		HCM Le	el of Se	rvice		B			
			0.79									
HCM Volume to Capacity ratioActuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			82．4\％		CU Lev	of Ser	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢			\dagger			${ }_{\text {¢ }}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	13	288	6	7	492	5	18	1	16	1	1	4
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	15	331	7	8	566	6	21	1	18	1	1	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		68										
pX, platoon unblocked				0.89			0.89	0.89	0.89	0.89	0.89	
vC, conflicting volume	571			338			954	952	334	968	952	568
vC1, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	571			260			949	946	256	964	947	568
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			90	100	97	99	100	99
cM capacity (veh/h)	1006			1172			211	231	704	202	230	526

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant PM Peak Alt 2

	\rangle						4	4			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	个t		${ }^{7}$	个t			个中t			个中t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3302		1668	3216			4968			4993	
Flt Permitted	0.37	1.00		0.41	1.00			1.00			1.00	
Satd．Flow（perm）	642	3302		714	3216			4968			4993	
Volume（vph）	66	433	31	153	397	125	0	2055	204	0	2292	138
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj．Flow（vph）	69	456	33	161	418	132	0	2163	215	0	2413	145
RTOR Reduction（vph）	0	1	0	0	2	0	0	14	0	0	8	
Lane Group Flow（vph）	69	488	0	161	548	0	0	2364	0	0	2550	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Effective Green，g（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Actuated g／C Ratio	0.39	0.39		0.39	0.39			0.52			0.52	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	249	1282		277	1249			2572			2585	
v／s Ratio Prot		0.15			0.17			0.48			c0．51	
v／s Ratio Perm	0.11			c0．23								
v／c Ratio	0.28	0.38		0.58	0.44			0.92			0.99	
Uniform Delay，d1	17.8	18.7		20.5	19.2			18.9			20.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.36	
Incremental Delay，d2	2.7	0.9		8.6	1.1			6.7			9.1	
Delay（s）	20.6	19.5		29.2	20.3			25.6			16.4	
Level of Service	C	B		C	C			C			B	
Approach Delay（s）		19.7			22.3			25.6			16.4	
Approach LOS		B			C			C			B	
Intersection Summary												
HCM Average Control Delay			20.9		HCM Leve	el of Se	rvice		C			
HCM Volume to Capacity ratio			0.81									
Actuated Cycle Length（s）			85.0		Sum of lo	ost time			8.0			
Intersection Capacity Utilization			78．8\％		CU Leve	of Ser	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant PM Peak Alt 2

Existing plus Project Conditions

Alternative 3: Wings Removed Alternative (Variant)
PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			¢			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	290	10	25	390	4	4	1	25	7	3	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	2	312	11	27	419	4	4	1	27	8	3	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	424			323			801	799	317	824	802	422
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	424			323			801	799	317	824	802	422
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	96	97	99	100
cM capacity (veh/h)	1146			1249			296	313	728	278	312	636

cM capacity (veh/h)	1146			1249	296	313	728	278	312

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\dagger			\dagger			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	25	306	3	120	434	11	2	16	49	6	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate（vph）	27	329	3	129	467	12	2	17	53	6	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX ，platoon unblocked	0.86						0.86	0.86		0.86	0.86	0.86
vC，conflicting volume	478			332			1117	1121	331	1176	1117	473
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	395			332			1135	1140	331	1205	1135	388
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			90			98	89	93	94	99	100
cM capacity（veh／h）	1012			1238			140	152	716	107	153	573
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	359	608	72	9								
Volume Left	27	129	2	6								
Volume Right	3	12	53	1								
cSH	1012	1238	356	124								
Volume to Capacity	0.03	0.10	0.20	0.07								
Queue Length 95th（ft）	2	9	19	5								
Control Delay（s）	0.9	2.7	17.6	36.1								
Lane LOS	A	A	C	E								
Approach Delay（s）	0.9	2.7	17.6	36.1								
Approach LOS			C	E								
Intersection Summary												
Average Delay			3.4									
Intersection Capacity Utilization			61．7\％	ICU Level of Service					B			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow							\uparrow	1		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	\％	\uparrow	F		个中t			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5015			4968	
Flt Permitted	0.41	1.00	1.00	0.50	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	753	1756	1492	883	1756	1492		5015			4968	
Volume（vph）	101	235	25	73	299	142	0	2174	72	0	2327	266
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	104	242	26	75	308	146	0	2241	74	0	2399	27
RTOR Reduction（vph）	0	0	2	0	0	3	0	4	0	0	17	
Lane Group Flow（vph）	104	242	24	75	308	143	0	2311	0	0	2656	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	1\％	3\％	1\％	1\％	3\％	\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	248	578	491	291	578	491		2891			2864	
v / s Ratio Prot		0.14			c0．18			0.46			c0．53	
v／s Ratio Perm	0.14		0.02	0.08		0.10						
v／c Ratio	0.42	0.42	0.05	0.26	0.53	0.29		0.80			0.93	
Uniform Delay，d1	22.2	22.2	19.4	20.9	23.2	21.1		14.1			16.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.24			0.59	
Incremental Delay，d2	5.1	2.2	0.2	2.1	3.5	1.5		1.1			5.0	
Delay（s）	27.3	24.4	19.6	23.0	26.7	22.6		18.7			14.6	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		24.9			25.0			18.7			14.6	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			17.8		HCM Le	el of Se	rvice		B			
			0.78									
HCM Volume to Capacity ratioActuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			82．2\％		CU Lev	of Ser	vice		E			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis
104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢			\dagger			${ }_{\text {¢ }}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	13	288	6	7	492	5	18	1	16	1	1	4
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	15	331	7	8	566	6	21	1	18	1	1	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		68										
pX, platoon unblocked				0.89			0.89	0.89	0.89	0.89	0.89	
vC, conflicting volume	571			338			954	952	334	968	952	568
vC1, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	571			260			949	946	256	964	947	568
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			90	100	97	99	100	99
cM capacity (veh/h)	1006			1172			211	231	704	202	230	526

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		fit			¢ \uparrow			${ }_{\dagger}$			¢	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	27	404	6	62	439	34	2	7	30	95	23	6
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	28	425	6	65	462	36	2	7	32	100	24	6
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					231							
pX，platoon unblocked	0.91						0.91	0.91		0.91	0.91	0.91
vC，conflicting volume	498			432			865	1114	216	915	1099	249
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	353			432			756	1028	216	811	1012	81
tC，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			94			99	96	96	54	88	99
cM capacity（veh／h）	1110			1139			232	198	795	219	202	885

Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total	241	219	296	267	41	131	
Volume Left	28	0	65	0	2	100	
Volume Right	0	6	0	36	32	6	
cSH	1110	1700	1139	1700	477	224	
Volume to Capacity	0.03	0.13	0.06	0.16	0.09	0.58	
Queue Length 95th（ft）	2	0	5	0	7	82	
Control Delay（s）	1.2	0.0	2.3	0.0	13.3	41.4	
Lane LOS	A		A		B	E	
Approach Delay（s）	0.6		1.2		13.3	41.4	
Approach LOS					B	E	
Intersection Summary							
Average Delay			5.8				
Intersection Capacity Utilization			50．7\％		CU Leve	of Service	A
Analysis Period（min）			15				

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant PM Peak Alt 3

	$\stackrel{ }{ }$						4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个t		${ }^{7}$	个t			个中家			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3302		1668	3216			4968			4993	
Flt Permitted	0.37	1.00		0.41	1.00			1.00			1.00	
Satd．Flow（perm）	642	3302		715	3216			4968			4993	
Volume（vph）	66	432	31	153	397	125	0	2055	204	0	2287	138
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj．Flow（vph）	69	455	33	161	418	132	0	2163	215	0	2407	145
RTOR Reduction（vph）	0	1	0	0	2	0	0	14	0	0	8	0
Lane Group Flow（vph）	69	487	0	161	548	0	0	2364	0	0	2544	0
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Effective Green，g（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Actuated g／C Ratio	0.39	0.39		0.39	0.39			0.52			0.52	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	249	1282		278	1249			2572			2585	
v／s Ratio Prot		0.15			0.17			0.48			c0．51	
v／s Ratio Perm	0.11			c0．23								
v／c Ratio	0.28	0.38		0.58	0.44			0.92			0.98	
Uniform Delay，d1	17.8	18.7		20.5	19.2			18.9			20.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.36	
Incremental Delay，d2	2.7	0.9		8.5	1.1			6.7			8.7	
Delay（s）	20.6	19.5		29.0	20.3			25.6			16.0	
Level of Service	C	B		C	C			C			B	
Approach Delay（s）		19.6			22.3			25.6			16.0	
Approach LOS		B			C			C			B	
Intersection Summary												
HCM Average Control Delay			20.7		HCM Leve	el of S	vice		C			
HCM Volume to Capacity ratio			0.81									
Actuated Cycle Length（s）			85.0		Sum of lo	st time			8.0			
Intersection Capacity Utilization			78．7\％		CU Leve	of Se			D			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant PM Peak Alt 3

Existing plus Project Conditions Alternative 4: Battery Caulfield Alternative

(Variant)

PM Peak Hour

HCM Unsignalized Intersection Capacity Analysis
100: Lake Street \& 17th Avenue
Year 2025 Variant PM Peak Alt 4

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			${ }_{4}$	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	2	287	10	25	388	4	4	1	25	7	3	2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	2	309	11	27	417	4	4	1	27	8	3	2
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	422			319			795	794	314	819	797	419
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	422			319			795	794	314	819	797	419
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	100	96	97	99	100
cM capacity (veh/h)	1149			1252			299	316	731	280	314	638
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	322	448	32	13								
Volume Left	2	27	4	8								
Volume Right	11	4	27	2								
cSH	1149	1252	591	318								
Volume to Capacity	0.00	0.02	0.05	0.04								
Queue Length 95th (ft)	0	2	4	3								
Control Delay (s)	0.1	0.7	11.4	16.8								
Lane LOS	A	A	B	C								
Approach Delay (s)	0.1	0.7	11.4	16.8								
Approach LOS			B	C								
Intersection Summary												
Average Delay			1.1									
Intersection Capacity Utilization			47.9\%		U Lev	of Se			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
101: Lake Street \& 15th Avenue

| | | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SBR

HCM Unsignalized Intersection Capacity Analysis
102：Lake Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow			\dagger			\uparrow	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	25	306	3	120	432	8	2	13	49	6	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate（vph）	27	329	3	129	465	9	2	14	53	6	1	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					300							
pX，platoon unblocked	0.86						0.86	0.86		0.86	0.86	0.86
vC ，conflicting volume	473			332			1113	1116	331	1171	1113	469
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	390			332			1131	1134	331	1198	1131	385
tC，single（s）	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	97			90			98	91	93	94	99	100
cM capacity（veh／h）	1019			1238			141	154	716	110	155	576
Direction，Lane \＃	EB 1	WB 1	NB 1	SB 1								
Volume Total	359	602	69	9								
Volume Left	27	129	2	6								
Volume Right	3	9	53	1								
cSH	1019	1238	383	128								
Volume to Capacity	0.03	0.10	0.18	0.07								
Queue Length 95th（ft）	2	9	16	5								
Control Delay（s）	0.9	2.7	16.5	35.2								
Lane LOS	A	A	C	E								
Approach Delay（s）	0.9	2.7	16.5	35.2								
Approach LOS			C	E								
Intersection Summary												
Average Delay			3.3									
Intersection Capacity Utilization			61．3\％		CU Leve	l of Se	vice		B			
Analysis Period（min）			15									

HCM Signalized Intersection Capacity Analysis
103：Lake Street \＆Park Presidio Boulevard

	\Rightarrow							\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	F	${ }^{7}$	\uparrow	F		个中t			个个t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	10	10	10	10	10	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.91			0.91	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00			0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00			1.00	
Satd．Flow（prot）	1728	1756	1492	1668	1756	1492		5015			4969	
FIt Permitted	0.42	1.00	1.00	0.50	1.00	1.00		1.00			1.00	
Satd．Flow（perm）	760	1756	1492	883	1756	1492		5015			4969	
Volume（vph）	101	235	25	73	296	142	0	2174	72	0	2322	264
Peak－hour factor，PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj．Flow（vph）	104	242	26	75	305	146	0	2241	74	0	2394	272
RTOR Reduction（vph）	0	0	2	0	0	3	0	4	0	0	17	
Lane Group Flow（vph）	104	242	24	75	305	143	0	2311	0	0	2649	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	1\％	3\％	1\％	1\％	3\％	\％
Turn Type	Perm		Perm	Perm		Perm						
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8						
Actuated Green，G（s）	26.0	26.0	26.0	26.0	26.0	26.0		47.0			47.0	
Effective Green，g（s）	28.0	28.0	28.0	28.0	28.0	28.0		49.0			49.0	
Actuated g／C Ratio	0.33	0.33	0.33	0.33	0.33	0.33		0.58			0.58	
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0		6.0			6.0	
Lane Grp Cap（vph）	250	578	491	291	578	491		2891			2864	
v / s Ratio Prot		0.14			c0．17			0.46			c0．53	
v／s Ratio Perm	0.14		0.02	0.08		0.10						
v／c Ratio	0.42	0.42	0.05	0.26	0.53	0.29		0.80			0.93	
Uniform Delay，d1	22.1	22.2	19.4	20.9	23.1	21.1		14.1			16.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.24			0.63	
Incremental Delay，d2	5.0	2.2	0.2	2.1	3.4	1.5		1.1			4.9	
Delay（s）	27.2	24.4	19.6	23.0	26.6	22.6		18.7			15.2	
Level of Service	C	C	B	C	C	C		B			B	
Approach Delay（s）		24.8			25.0			18.7			15.2	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM Average Control Delay			18.0		HCM Le	el of Se	rvice		B			
			0.78									
HCM Volume to Capacity ratioActuated Cycle Length（s）			85.0		Sum of	st time			8.0			
Intersection Capacity Utilization			81．9\％		CU Lev	of Ser	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

HCM Unsignalized Intersection Capacity Analysis

104: Lake Street \& Funston Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			${ }_{\dagger}$			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	13	288	6	7	489	5	18	1	16	1	1	4
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	15	331	7	8	562	6	21	1	18	1	1	
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		68										
pX, platoon unblocked				0.89			0.89	0.89	0.89	0.89	0.89	
vC , conflicting volume	568			338			951	948	334	964	949	565
vC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	568			260			945	942	256	960	943	565
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			90	100	97	99	100	99
cM capacity (veh/h)	1009			1172			212	232	704	203	232	528

HCM Unsignalized Intersection Capacity Analysis
105: California Street \& 15th Avenue

HCM Unsignalized Intersection Capacity Analysis
106：California Street \＆14th Avenue

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow			¢ \uparrow			¢			\dagger	
Sign Control		Free			Free			Stop			Stop	
Grade		0\％			0\％			0\％			0\％	
Volume（veh／h）	24	404	6	62	439	34	2		30	95	23	6
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate（vph）	25	425	6	65	462	36	2	6	32	100	24	
Pedestrians												
Lane Width（ft）												
Walking Speed（ft／s）												
Percent Blockage												
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（ft）					231							
pX，platoon unblocked	0.91						0.91	0.91		0.91	0.91	0.91
vC，conflicting volume	498			432			859	1107	216	908	1093	249
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	353			432			749	1022	216	803	1005	81
tC ，single（s）	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC， 2 stage（s）												
tF（s）	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \％	98			94			99	97	96	55	88	99
cM capacity（veh／h）	1110			1139			236	200	795	223	204	885

Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1	
Volume Total	238	219	296	267	40	131	
Volume Left	25	0	65	0	2	100	
Volume Right	0	6	0	36	32	6	
cSH	1110	1700	1139	1700	499	228	
Volume to Capacity	0.02	0.13	0.06	0.16	0.08	0.57	
Queue Length 95th（ft）	2	0	5	0	7	80	
Control Delay（s）	1.1	0.0	2.3	0.0	12.8	40.1	
Lane LOS	A		A		B	E	
Approach Delay（s）	0.6		1.2		12.8	40.1	
Approach LOS					B	E	
Intersection Summary							
Average Delay			5.6				
Intersection Capacity Utilization			50．6\％		CU Lev	of Service	A
Analysis Period（min）			15				

HCM Signalized Intersection Capacity Analysis
107：California Street \＆Park Presidio Boulevard
Year 2025 Variant PM Peak Alt 4

	\rangle						4	4			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个t		${ }^{7}$	个 \uparrow			个中t			个中t	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	10	10	15	10	10	15	12	12	12	12	12	12
Total Lost time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util．Factor	1.00	0.95		1.00	0.95			0.91			0.91	
Frt	1.00	0.99		1.00	0.96			0.99			0.99	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd．Flow（prot）	1668	3302		1668	3216			4968			4993	
Flt Permitted	0.37	1.00		0.41	1.00			1.00			1.00	
Satd．Flow（perm）	642	3302		715	3216			4968			4993	
Volume（vph）	66	432	31	153	397	125	0	2055	204	0	2282	138
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj．Flow（vph）	69	455	33	161	418	132	0	2163	215	0	2402	145
RTOR Reduction（vph）	0	，	0	0	2	0	0	14	0	0	8	
Lane Group Flow（vph）	69	487	0	161	548	0	0	2364	0	0	2539	
Heavy Vehicles（\％）	1\％	1\％	1\％	1\％	1\％	1\％	3\％	3\％	3\％	3\％	3\％	3\％
Turn Type	Perm			Perm								
Protected Phases		4			8			2			6	
Permitted Phases	4			8								
Actuated Green，G（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Effective Green，g（s）	33.0	33.0		33.0	33.0			44.0			44.0	
Actuated g／C Ratio	0.39	0.39		0.39	0.39			0.52			0.52	
Clearance Time（s）	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Grp Cap（vph）	249	1282		278	1249			2572			2585	
v／s Ratio Prot		0.15			0.17			0.48			c0．51	
v／s Ratio Perm	0.11			c0．23								
v／c Ratio	0.28	0.38		0.58	0.44			0.92			0.98	
Uniform Delay，d1	17.8	18.7		20.5	19.2			18.9			20.1	
Progression Factor	1.00	1.00		1.00	1.00			1.00			0.36	
Incremental Delay，d2	2.7	0.9		8.5	1.1			6.7			8.5	
Delay（s）	20.6	19.5		29.0	20.3			25.6			15.7	
Level of Service	C	B		C	C			C			B	
Approach Delay（s）		19.6			22.3			25.6			15.7	
Approach LOS		B			C			C			B	
Intersection Summary												
HCM Average Control Delay			20.6		HCM Le	el of Se	rvice		C			
HCM Volume to Capacity ratio			0.81									
Actuated Cycle Length（s）			85.0		Sum of	ost time			8.0			
Intersection Capacity Utilization			78．6\％		ICU Lev	of Ser	vice		D			
Analysis Period（min）			15									
c Critical Lane Group												

Presidio of SF PHSH EA
Presidio of SF PHSH EA
Wilbur Smith Associates
Synchro 6 Report
Page 8

HCM Signalized Intersection Capacity Analysis
108: New Alternative Access \& Park Presidio Boulevard \quad Year 2025 Variant PM Peak Alt 4

Technical Memorandum No. 6, Alternative 1 Trip Generation Variation, was written to describe the effect of changing the trip generation rate for cultural/educational uses in Alternative 1 from the rate assumed in the PTMP EIS to a rate that more closely reflects the educational use anticipated for the PHSH district, and is available in the Presidio Trust library."

Encineers PLANNERS ECONOMIS
 Wilbur Smith Associates MEMO

Amy Marshall, The Presidio Trust February 24, 2006
B-7.2 of B-7.5

SAN FRANCISCO OFFICE
March 1, 2006
Project Number:
To: Amy Marshall, The Presidio Trust
FROM: José I. Farrán, Project Manager
Nate Chanchareon, Senior Transportation Engineer
SUBJECT: The Presidio of San Francisco
Public Health Service Hospital Site Supplemental Environmental Impact Statement
Draft Technical Memorandum No. 7 - Traffic Signal Warrant Analysis

TRAFFIC SIGNAL WARRANT ANALYSIS

Traffic signal warrant analysis is one of the criteria used by traffic engineers to determine if an intersection should be signalized. Since the proposed intersection access to the PHSH site does not currently exist, the California Supplement of the 2003 Manual Uniform Traffic Control Device (May 2004) indicates that Table 4C-101 (Traffic Signal Warrant - Average Traffic Estimate) on page 4C-8 of the Manual Supplement should be used to evaluate the potential installation of a traffic signal at this location.

Table 1 summarizes the expected daily traffic volume at the proposed intersection location under Alternative 2 (Wings Retained/Trust Revised Alternative) as it is the Trust's preferred alternative. Since only peak hour volumes are available from the traffic analysis for the Final EIS, year 2025 daily traffic volumes on Highway 1 have been calculated using a seven percent peak hour factor, which is based on available daily and peak hour traffic volume data obtained from Caltrans for this location. Daily traffic volumes on the minor approach have been calculated using an eleven percent PM peak hour factor based on trip generation estimates for the PHSH district.

Table 1

Highway 1 - Park Presidio Boulevard
Average Traffic Estimate Traffic Signal Warrant Analysis
Year 2025 Land Use Alternative 2 (Wings Retained/Trust Revised Alternative)

Roadway Segment	Year 2025 Daily Traffic Volumes			Minimum Requirements		
				1A	1B	$1 \mathrm{~A} \& \mathrm{~B}$
Highway 1	NB	SB	Total	Total Traffic Volume		
Lake Street to New						
Intersection	40,600	43,800	84,400	9,600	14,400	11,520
New Intersection to						
MacArthur Tunner	41,200	43,300	84,500	9,600	14,400	11,520
PHSH Access	EB	WB	Total	EB Traffic Only		
New Intersection	1,100	410	1,510	3,200	1,600	2,560

Wilbur Smith Associates, 2006
As shown in Table 8, the intersection is expected to have approximately 1,100 vehicles per day on the minor street approach in the eastbound direction and between 84,400 to 84,500 vehicles per day on the major street in both directions. Figure 1 presents the worksheet used in the Traffic Signal Warrant - Average Traffic Estimate analysis. As Table 1 and Figure 1 indicate, Traffic Signal Warrant - Average Traffic Estimate analysis. As Table 1 and Figure 1 indicate, Traffic
Signal Warrant 1A (Minimum Vehicular Traffic) and Signal Warrant 1B (Interruption of Continuous Traffic) are not satisfied since the expected traffic volume on the minor street (1,100 vehicles) is about 34 percent of the required minimum volume described in Warrant 1A (3,200 vehicles) and about 69 percent of the required minimum volume (1,600 vehicles) described in Warrant 1B. The expected volume on the minor approach would also not meet the 80% requirement of Warrants 1 A and 1 B .

Since Year 2025 AM and PM peak hour traffic volumes have also been estimated for Alternative 2 as part of the transportation analyses conducted for the Draft Supplemental EIS for the PHSH site, WSA has also conducted the Peak Hour Traffic Signal Warrant (Warrant 3) analysis, using Figure 4C-101 (page 4C-4) of the California Supplement to the 2003 MUTCD (May 2004) and Figure 4C-3 of the 2003 MUTCD

Figure 2 presents the worksheet and figure used in the Peak Hour Traffic Signal Warrant (Warrant 3) analysis. Either Part A or Part B of the worksheet needs to be satisfied in order to satisfy Traffic Signal Warrant 3. This analysis conservatively assumes that all transit ridership to/from the North Bay would be on GGT Route 10. In reality, some passengers may transfer to/from other GGT routes at the Golden Gate Bridge Toll Plaza, in which case the transit load would be distributed across more routes, resulting in a lesser impact. As shown in Figure 2, using the data summarized in Table 2, neither Part A or Part B of Traffic Signal Warrant 3 is not satisfied during either the AM or PM peak hour.

Amy Marshall, The Presidio Trust
February 24, 2006
B-7.3 of B-7.5
Amy Marshall, The Presidio Trus
February 24, 2006
B-7.4 of B-7.5

Table 2

Highway 1 - Park Presidio Boulevard
Peak Hour Traffic Signal Warrant Analysis (Warrant 3)
Year 2025 - Land Use Alternative 2 (Wings Retained/Trust Revised Alternative) Roadway Variant: New Park Presidio Blvd. Access with Inbound Only Traffic at $14^{\text {th }} \&$ $15^{\text {th }}$ Ave. Gates

Roadway Segment	Year 2025 AM Peak Hour Traffic Volumes			Year 2025 PM Peak Hour Traffic Volumes			Minim			
				Requireme nts						
Highway 1	NB	SB	Total				NB	SB	Total	Total
Lake Street to New										
Intersection	2,960	2,680	5,640	2,800	3,020	5,820	1,800			
New Intersection to South End of MacArthur Tunnel	3,000	2,650	5,650	2,840	2,990	5,830	1,800			
PHSH Access	EB	WB	Total	EB	WB	Total	Total			
New Intersection	115	45	160	130	50	180	150			

In conclusion, the proposed intersection access to the PHSH district would not meet the Traffic Signal for planned intersections using estimated daily traffic volumes, nor the Peak Hour Traffic Signal Warrant (Warrant 3) for existing intersections during the AM or PM peak hour.

Figure 1

Traffic Signal Warrant Worksheet Average Traffic Estimate Form

Table 4C-101. Traffic Signal Warrants Worksheet (Average Traffic Estimate Form)

(Based on Estimated Average Daily Traffic - See Note)		
urban \quad rural	Minimum Requirements	
Satisfied \qquad Not Satisfied \qquad	Venicles Per Day on Major Street (Total of Both Approaches)	Venicles Per Day on Higher-Volume Minor Street Approach (One Direction Only)
		Urban Rural 2,400 1,680 3.400 1.680 3.2000 $2.2,240$
1B - Interruption of Continuos Traffic Satisfied \qquad Not Satisfied	Vehicles Per Day on Major Street (Total of Both Approaches)	Vehicles Per Day On righer-volume (One Direction Only)
		Urban Rural 1,200 850 1,060 1,600 850 1,000 $1,1,120$
1A\&B - Combinations Satisfied \qquad Not Satisfied \qquad No one warrant satisfied, but following warrants fulfilled 80% or more.	2 Warrants	2 Warrants

Figure 2

Traffic Signal Warrant Worksheet Peak Hour Traffic Signal Warrant (Warrant 3) California Supplement to the 2003

Figure 4C-101. Traffic Signal Warrants Worksheet (Sheet 2 of 4)

1. The total delay experienced for traticic on one minor street approach controlled and five vehicle-hours for a two-lane approach: AND
2. The volume on the same minor street approach equals or exceeds 100 vph for
one moving lane of traficic or 150 vph for two moving lanes; AND
3. The total entering volume serviced during the hour equals so exceeds 800 vph
for intersections with
three approooches.

Yes \square No \square
Yes \square No \square
Yes \square No \square
PARTB
satisfied yes \square nod

The ploted points for venicles per hour on major streets (both approaches)
and the corresponding per hour higher volume vehicle minor street approach
(one direction only) tor one hour (any consecative 15 minute period
tall above the applicable cunves in MUTCD Figure $4 C-3$ or $4 C-4$.

MAJOR STREET-TOTAL OF BOTH APPROACHES-
VEHICLES PER HOUR (VPH)
"Nole: 150 vph applies as the lower threshold volume for a minor-stree
approach with two or more lanes and 100 yph applies as the lower
thresthokd volume lor a minor-streel approach with one lane.

Appendix C

Environmental Review Summary

Appendix C. Environmental Review Summary

March 2003PHSH DISTRICT CONCEPT AND EIS ASSUMPTIONSC-1
PTMP Concept C-1
PTMP EIS Assumptions C-2
ENVIRONMENTAL RESOURCE TOPICS C-3
Historic Architectural Resources and the Cultural Landscape C-3
Archaeology C-5
Geology and Soils C-6
Biological Resources C-7
Wetlands, Streams and Drainages C-8
Water Quality C-8
Visual Resources C-9
Air Quality C-10
Noise C-11
Land Use C-11
Socioeconomic Issues/Housing Supply C-11
Schools C-13
Visitor Experience C-13
Recreation C-13
Public Safety C-14
Roadway Network C-14
Construction Traffic C-15
Parking C-16
Water Supply and Demand C-16
Wastewater Treatment and Disposal C-17
Storm Drainage C-18
Solid Waste C-18
Energy Consumption and Distribution C-19
Natural Gas Supply C-20
Cumulative Impacts C-21
REFERENCES C-21

Environmental Review Summary

Plans and projects of a federal entity like the Presidio Trust (Trust) are subject to environmental review under the National Environmental Policy Act (NEPA). In August 2002, the Trust completed the Presidio Trust Management Plan (PTMP), a comprehensive land use plan for Area B of the Presidio. The Trust analyzed the general land use proposals of the PTMP in the accompanying program-level PTMP Final Environmental Impact Statement (Trust 2002c) prepared under the NEPA. Project-level environmental review of proposals within the Public Health Service Hospital (PHSH) district will "tier" from and/or supplement the analysis in the PTMP EIS as needed. ${ }^{1}$ The PTMP EIS analyzed alternative land use concepts for the future of the Presidio, including a preference for residential and educational uses within the PHSH district.

This document summarizes the existing environmental review baseline for project proposals within the PHSH district. The Trust (or an environmental review contractor supervised by the Trust) will evaluate proposals against this baseline to determine the scope of additional review required, if any. This environmental review summary is a tool and is not a substitute for the PTMP EIS. It is offered as a way to consider in advance of and during project planning what environmental studies, mitigation requirements, or other information may be warranted in connection with the federal NEPA process. This summary may be used to:

- assist the Trust in determining the extent of NEPA review required;
- assist project proponents in comparing existing plans and prior analysis to the specifics of their proposal; and
- allow the public, reviewing agencies and project proponents to gain a better understanding of Trust requirements.

PHSH District Concept and EIS Assumptions

PTMP CONCEPT

The PTMP identifies the PHSH district as a "Residential and Educational Community" where some building demolition and replacement construction could occur (page 93).

[^6]Land use preferences are stated for the district on page 94, and expressed in terms of a general mix of uses (educational and residential). The PTMP calls for rehabilitation of the historic portions of the 314,000 square-foot former hospital building for residential use, and states a preference for educational uses within the bulk of remaining square footage in the district. The PTMP anticipates that the non-historic structures within the district, including the modern seven-story wings to the main hospital, could be removed (page 94). Any replacement construction would be secondary to the former hospital as the predominant building in the complex (page 97). New construction, if any, would be compatible in scale, massing, height, color and materials with the historic buildings in the area and would be consistent with the planning guidelines (pages 96 through 99). Maximum heights would be between 30 feet to 45 feet for outbuildings and 70 feet for buildings adjacent to the main hospital (page 97). There would be no net change in square footage within the district (page 94), with maximum possible new construction equal to maximum possible demolition at 130,000 sf. Remnant natural systems within the district would be preserved and enhanced. This includes wetland features and habitat for sensitive plant and wildlife species, such as the San Francisco lessingia (Lessingia germanorum), a federally-listed endangered plant, and the locally-scarce California Quail (Callipepla californica).

PTMP EIS ASSUMPTIONS

For the purposes of its analyses, the PTMP EIS assumed that the historic complex of buildings within the PHSH district would be rehabilitated according to the Secretary of Interior's Standards for the Rehabilitation of Historic Properties to accommodate new residential and educational uses (page 28). Non-historic structures, including the hospital wings, would be removed and replaced with new construction that would be used to facilitate the effective rehabilitation and reuse of historic buildings (page 28). Any new construction would occur within the constraints imposed by the PTMP, and would only occur in areas previously developed. Preservation of the integrity of the National Historic Landmark District (NHLD) status would guide what changes would be made (page 32). Open space on the upper plateau (above the building core and surrounding Battery Caulfield) would be enhanced to protect and restore important natural resources, including wetlands and habitat for sensitive plant and wildlife species and cultural resources, such as the old Marine Cemetery. ${ }^{2}$ Deconstructed materials would be salvaged and reused to the extent possible. All new construction would be designed to be energy efficient. Other assumptions include the following:

- The large parking lot and the tennis court on the upper plateau would be removed.

[^7]- Remedial actions would be implemented at identified landfill sites to protect human health and the environment and expedite and enhance the beneficial reuse of the sites.
- New trails would be designed and constructed to improve bicycle and pedestrian circulation and connect the Presidio trail system to nearby outdoor recreational amenities and the existing regional trail network.
- Transportation demand management actions ${ }^{3}$ and circulation improvements (such as reopening the $14^{\text {th }}$ Avenue Gate to vehicular access and operating $14^{\text {th }}$ and $15^{\text {th }}$ Avenues as a one-way couplet) would be implemented to reduce traffic impacts on the surrounding neighborhood.
- Views to and from the district would be preserved and enhanced.

Environmental Resource Topics

The following summarizes environmental issues, topic by topic, as discussed in the PTMP EIS, and concentrates on issues specific to a proposed project within the PHSH district. The summary also provides updated or background information, where available, and identifies mitigation measures as required by the PTMP Record of Decision (ROD) (Trust 2002d) to avoid or minimize environmental impacts. ${ }^{4}$

HISTORIC ARCHITECTURAL RESOURCES AND THE CULTURAL LANDSCAPE

The potential impacts of development within the Presidio on historic resources, including the NHLD are assessed on pages 199 through 202 of the PTMP EIS. The analysis presents a discussion of proposed changes within the PHSH district including the maximum allowable new construction ($130,000 \mathrm{sf}$) and demolition ($130,000 \mathrm{sf}$). The analysis concludes that demolition of the non-historic front addition and wings to the main hospital and rehabilitation and restoration of the historic front façade, and rehabilitation and reuse of other historic buildings would enhance the integrity of the district and the NHLD. The non-historic wings and front addition's square footage could be replaced with buildings elsewhere within the district. New (replacement) space would be constructed within existing areas of development (e.g., within the building core on the lower plateau or Battery Caulfield on the upper plateau), and would be sited and designed to reinforce historic character-defining features of the district. New construction, if any, would be in conformance with the PTMP Planning Principles and the PHSH Planning

[^8]District Guidelines, and all physical changes would be subject to consultation pursuant to Section 106 of the National Historic Preservation Act as outlined in the Programmatic Agreement (PA). ${ }^{5}$ The Planning Principles require that the Trust protect the historic character and the integrity of the NHLD while allowing changes that will maintain the district's vitality. The Planning District Guidelines provide guidance on spatial organization and land patterns, buildings and structures, open space, vegetation and views, and circulation and access.

The PTMP also suggests that if a suitable tenant for the main hospital building cannot be found, the building's removal and replacement could be considered subject to further analysis. However, the PTMP cautions that every reasonable effort to adapt historic properties to new uses would be made, and new construction and demolition of historic buildings would be minimized as needed to meet policy and plan objectives. The Trust would provide an opportunity for public comment before making any decision to proceed with any proposal involving substantial new construction, and any proposal that could potentially have a significant adverse effect on a historic resource. The Trust will utilize the process for consultation as stipulated in the PA to minimize adverse effects on historic resources and ensure the preservation and protection of the NHLD.

The following mitigation measures derived from the PTMP EIS would limit adverse effects on historic resources and the cultural landscape due to building removal and new construction within the PHSH district:

1. CR-1 Documentation of Building Addition to be Removed. Should all or some of the additions to the main hospital be removed, appropriate mitigating measures would be determined in consultation with the California State Historic Preservation Officer, and the Advisory Council on Historic Preservation during the Section 106 consultation process. Section 106 consultation and review of rehabilitation plans for compliance with the Secretary of Interior's Standards for the Rehabilitation of Historic Properties for Rehabilitation and Investment Tax Credit projects may be accomplished within the Part I and Part II Certification process as delineated in 36 CFR Part 67. ${ }^{6}$
2. CR-4 Demolition and New Construction. The Trust would engage in a consultation process with historic preservation agencies as stipulated in the PA. The project would conform to the PTMP Planning Principles, PHSH Planning District Guidelines, and the Secretary of the Interior's Standards, in a manner that assures the preservation of the integrity of the NHLD.

[^9]3. CR-7 Compliance with Standards for Building and Cultural Landscape Rehabilitation. Building rehabilitation would conform to the Guidelines for Rehabilitating Buildings at the Presidio of San Francisco (ARG 1995), and the Secretary of the Interior's Standards for the Rehabilitation of Historic Properties (NPS 1992a). Historic landscape rehabilitation would also conform to the Secretary of the Interior's Guidelines for the Treatment of Cultural Landscapes (NPS 1992b).

ARCHAEOLOGY

The potential impacts of development within the PHSH district on archaeology are analyzed on pages 215 through 217 of the PTMP EIS. The PTMP acknowledges that the history of the Marine Hospital and Presidio are intertwined both in the development of military reservation lands and in the provision of services to the community. As a civilian facility, the Marine Hospital provided free medical care, both short-term and convalescent, to merchant marines. While none of the buildings remain from the original 1870s complex, the site had been continuously used as a marine hospital for more than 100 years, from its 1875 opening to its closing in 1981 by the United States Public Health Service. Subsurface remains of the cemetery associated with the early history of this facility do exist, and lie largely beneath an extensive paved court and parking area located on the rise near the southwest corner of the upper plateau. Historical research suggests that a substantial cemetery once existed behind the old Marine Hospital. While records could not be found to establish that the burials of the cemetery had been relocated, the Army assumed that a relocation had taken place. In 1990 the Army conducted a test excavation in an area presumed to have been the Marine Hospital cemetery and found the remains of two burials below almost 15 feet of concrete rubble. In 2002, field investigations for environmental remediation of Landfill 8 by the Trust also encountered human remains near the ground surface (URS 2003). Historical research suggests that the remains of approximately 500 to 600 individuals are interred in the cemetery.

The PTMP EIS analysis concludes that building demolition, new construction, infrastructure upgrades, vegetation management, and native plant restoration within the district all have the potential to impact archaeological sites.

Guidelines in the PTMP and measures contained in the PA would help avoid or mitigate potential adverse impacts on sites. These include protecting and commemorating the former Marine Cemetery (PTMP, page 98), and preparing and implementing an Archaeological Management Assessment and Monitoring Program to discover, document and protect predicted sensitive archaeological areas prior to construction (Mitigation Measure CR-9 Ground Disturbing Activities).

GEOLOGY AND SOILS

The impact topic of geology and soils is discussed on page A-5 in Appendix A of the PTMP EIS. Two major active faults lie near the Presidio: the San Andreas (about 9 kilometers west) and the Hayward (about 16 kilometers east). Strong earthquake shaking is highly likely to result from earthquakes on the San Andreas or Hayward faults, or other more distant faults in the San Francisco Bay Area. ${ }^{7}$ In addition, soils in the Presidio are mostly excessively drained sands, artificial fill, and other urban land (asphalt, concrete, etc.), all of which are subject to seismic ground shaking hazards to some degree. Future earthquake shaking may be exacerbated and damage intensified within these areas because the soft liquefiable sands may lose strength rapidly. ${ }^{8}$

The PHSH district is not located within a seismic hazard zone (California Geological Survey 1997a). ${ }^{9}$ According to a building seismic analysis prepared for the City and County of San Francisco (Fong \& Chan Architects 1990), the buildings are generally usable and in good condition, with no indication of serious structural damage to the primary structural systems from recent or past earthquakes, settlements or overloads. Damage to interior finishes and some areas of exterior cladding and deterioration from age or other causes were observed. However, neither the 1932 original hospital nor the 1952 addition meet current safety standards or conform to code requirements for seismic forces, and would require seismic upgrading (Fong \& Chan Architects 1990; Architectural Resources Group 1991; Faye Bernstein \& Associates 1999).

The PTMP EIS concludes that site-specific development projects would require supplemental review to evaluate geologic and seismic hazards (page A-5). Prior to building rehabilitation or replacement construction, the project development team would be required to employ a geotechnical engineer to investigate the site and recommend measures to ensure public safety given site-specific conditions. Similarly, a structural engineer would be required to provide guidance regarding necessary improvements to existing buildings and foundations. In developing measures to address seismic hazards, the guidelines established by the California Geological Survey (1997b) should be utilized.

[^10]
BIOLOGICAL RESOURCES

Biological resources within the PHSH district are identified on pages 83 through 119 of the Presidio PTMP EIS and pages 94 through 95 of the PTMP. The upper plateau of the district supports unique and ecologically significant native plant communities that include coast live oak woodland, central dune scrub, and riparian and dune slack wetland vegetation, as well as the San Francisco lessingia, a federally-listed endangered plant. The complex array of vegetation also provides valuable habitat for the largest known California Quail population in San Francisco, as well as other wildlife species. As discussed in the U.S. Fish and Wildlife Service's (USFWS) Draft Recovery Plan, the dune slope immediately behind the main hospital building that currently supports a nonnative, nonhistoric stand of cypress trees serves as a buffer between the built (lower) and generally unbuilt (upper) portions of the district (USFWS 2001; Trust 2002a).

The potential impacts of development within the district are analyzed on pages 220 through 238 of the PTMP EIS, and in the USFWS Biological Opinion (2002). The analyses assumes that no construction activities (such as placement of fill material, mechanized land clearing, land leveling and road construction) would occur beyond existing developed areas and therefore existing natural habitat would not be displaced. However, at Battery Caulfield (above the Nike swale) approximately 2 acres of currently paved and disturbed area is designated for potential reuse. The precise effect of the change in land use would depend on the site-specific changes proposed. Possible secondary effects from use of this site could include potential changes in hydrology of the existing wetland, conversion of adjacent early successional native vegetation to more shrubby vegetation assemblages, and disturbance to wildlife and sensitive plant and wildlife species (page 223).

The PTMP EIS analysis indicates that future uses would be subject to the mitigation measures identified in the EIS and the "minimization measures" included in the Biological Opinion, as well as site-specific planning and environmental review that would take place prior to any substantial construction or demolition. The mitigation measures include the use of buffer areas to protect sensitive species, such as a 50-75 foot dense vegetation buffer to be established from the base of the main hospital building to prevent any potential conflicts between building operations and viable lessingia habitat on the upper plateau (Mitigation Measure NR-5 Wildlife and Native Plant Communities and Trust 2002). ${ }^{10}$ Additional mitigations call for restrictions on the use of non-native invasive plant species (Mitigation Measure NR-1 Native Plant Communities), and implementation of best management practices (Mitigation Measure NR-6 Best Management Practices). Furthermore, development within Battery Caulfield would need to be consistent with the Presidio California Quail Habitat Enhancement Action Plan

[^11](Trust 2002e), which identifies specific treatments for the open space surrounding the battery, such as planting native plants to create foraging areas, and removing iceplant and other nonnative species.

WETLANDS, STREAMS AND DRAINAGES

Notable water features within the PHSH district are identified on page 118 of the PTMP EIS and include a dune wetland feature on the upper plateau that supports characteristics of a dune slack wetland (shown in Figure 19 of the PTMP EIS). Its associated vegetation assemblage is the only remnant example of this vegetation type on the northern San Francisco peninsula. The potential effects of development within the PHSH district on this wetland are analyzed on page 242 of the PTMP EIS, and derive from development within Battery Caulfield. The analysis assumes that new (replacement) construction would be limited to developed areas, and concludes that development within Battery Caulfield would likely have a minimal direct impact on the existing wetland due to the site's upland and more distant location.

The PTMP EIS specifies that proposed uses of Battery Caulfield will be designed or otherwise conditioned to minimize changes in the local hydrology (Mitigation Measure NR-11 Nike Missile Site). In addition, BMPs and other standard drainage and vegetation protection measures would be required to help ensure the wetland system is not impacted. Management of the wetland would be consistent with the objectives set forth in the native plant community zone of the VMP.

WATER QUALITY

Water quality issues within the Presidio are discussed on page 121 of the PTMP EIS. The Presidio has implemented and is operating under the Presidio of San Francisco Stormwater Management Plan (SMP) (Dames \& Moore 1994), which includes a detailed Storm Water Pollution Prevention Plan that outlines erosion prevention and sedimentation control measures used by the Presidio to avoid contamination of storm drains and surface water resources. The SMP is being updated to reflect changes in storm water routing as well as new Phase II stormwater permitting requirements. Water quality is also addressed for Lobos Creek and Mountain Lake, which are adjacent to the PHSH district.

Most of the runoff from impervious areas within the district is collected and discharged to the city's storm drain system, which conveys storm drainage out of the watershed. As noted on pages 245 and 246 of the PTMP EIS, demolition and new construction could result in indirect downstream impacts due to erosion, sedimentation, and discharges of other pollutants.

Federal and state National Pollutant Discharge Elimination System (NPDES) permit requirements would address nonpoint source storm water pollution issues and other potential water quality impacts. All work within the district would be performed in accordance with the SMP. As required by Mitigation Measure UT-7 Stormwater Reduction, proposals within the district would implement designs or measures to limit or eliminate impervious surfaces in order to reduce stormwater runoff volumes and improve water quality. The measure encourages that on-site vegetation and landscaping would be used as a filtration and retention system to the extent feasible.

Finally, the Presidio's domestic water supply permit for the water treatment plant prohibits the use of reclaimed wastewater use within the district to avoid degradation of water quality in Lobos Creek (California Department of Health Services 1997).

VISUAL RESOURCES

Visual resources within the PHSH district are discussed on page 122 of the PTMP EIS. The district is considered an important historic and contemporary vista point that provides visitors with views of the cityscape to the south, Lobos Creek to the west, and Mountain Lake to the east. The PTMP (pages 95 through 97) also notes that the "dominant" hospital building and a number of smaller buildings that face the city "present a strong image, with prominent massing and classical detailing."

The potential impacts on visual resources due to new construction within the PHSH district are analyzed on page 249 of the PTMP EIS. The analysis concludes that replacement construction would be necessarily designed and limited such that the association, feeling, and setting of the remaining elements of the visual and cultural landscape would not be severed or impaired.

New construction would conform with the PTMP Planning Principles and PHSH District Guidelines to help ensure that it would be sensitive to the prevailing architectural treatment, scale, and orientation of existing structures, and designed to reinforce the historic setting. The guidelines for the PHSH district address overall spatial organization and land patterns, buildings and structures, open space, vegetation, views, and circulation and access and include the following:

- Maintain the historic patterns of development, primarily on the lower plateau. The formal placement of buildings around open space and the definition of open space and streets through plantings should be retained. Infill construction should respect historic spatial relationships, scale and orientation of buildings (Spatial Organization and Land Patterns, page 96);
- Maintain the historic character of the complex. In concert with historic building rehabilitation, cluster additions and/or replacement construction onto compact sites,
close to existing buildings, to reinforce the campus-like setting (Buildings and Structures, page 97);
- Ensure that any replacement construction is secondary to the former hospital as the predominant building in the complex (Buildings and Structures, page 97);
- Maximum heights should be between 30 feet to 45 feet for outbuildings and 70 feet for buildings adjacent to the main hospital (Buildings and Structures, page 97); and
- Preserve and enhance view corridors and panoramic viewsheds both from and to the district. Significant views include Mountain Lake from Wyman Terrace and Lobos Creek Valley from the western edge of the district, as well as sweeping views of the city and ocean from the upper plateau (Open Space/Vegetation/Views, page 99).

Further guidance is provided in the PHSH Draft Planning and Design Guidelines (Trust 2003b).

Abstract

AIR QUALITY The air quality impacts of development within the PHSH district are analyzed on pages 252 through 260 in the PTMP EIS pursuant to Bay Area Air Quality Management District guidelines (BAAQMD 1999). The analysis concludes that: 1) demolition and construction activities would create fugitive dust particulate matter that could cause adverse effects on local air quality; 2) projected motor vehicle use would not cause violations of ambient air quality standards for carbon monoxide at congested intersections such as the $14^{\text {th }}$ Avenue/Lake Street intersection; and 3) housing and employment growth could induce emissions from transportation and energy demand that would be inconsistent with the assumptions in the 2000 Clean Air Plan (CAP).

Feasible BAAQMD-recommended control measures for fugitive dust particulate matter (PM10) would be required to limit adverse effects on air quality during demolition and construction activities. The Presidio Trust Transportation Demand Management Program, which consists of activities conducted by the Trust and by the park's tenants, would implement relevant transportation control measures of the CAP to reduce the number and length of vehicle trips, and thus minimize air emissions and maintain consistency with the CAP. ${ }^{11}$ Finally, should any building demolition activities occur, an environmentally effective approach (such as deconstruction) would be required to reduce PM10 emissions. ${ }^{12}$

[^12]
NOISE

The noise impacts of development within the PHSH district are analyzed on pages 260 through 262 in the PTMP EIS using compatibility standards established by the City of San Francisco and the Federal Highway Administration. To assess effects in the City of San Francisco near the $15^{\text {th }}$ Avenue Gate, peak hour noise levels were estimated for the gate. The analysis concluded that while traffic volumes near the gate would increase noise above background levels, the increase would not be substantial (i.e., would not exceed applicable noise abatement criteria) and would not warrant mitigation. Demolition and construction activities would create short-term impacts on the noise environment. This noise could at times be distinctive and disruptive to park users and other people within close proximity of the activity. However, a suitable buffer distance (i.e., greater than 250 feet) exists between most proposed construction activities within the PHSH district and residences within the City of San Francisco.

Mitigation Measure NR-23 General Construction/Demolition Noise requires that during construction, contractors and other equipment operators would be need to comply with the San Francisco Noise Ordinance (San Francisco Municipal Code, Section 2907b), which requires that each piece of powered equipment, other than impact tools, emit noise levels of not more than 80 A-weighted decibels (dBA) at 100 feet.

LAND USE

The impact of new uses within the PHSH district on the Presidio and surrounding neighborhoods is analyzed on pages 274 through 276 of the PTMP EIS. The analysis acknowledged that the reoccupation of the district as a residential and educational community would represent a "major change" in historic land use adjacent to the neighborhood, and a change in current activity levels in this area, since the hospital site has been relatively unused and vacant since 1981. However, the district would remain at the same level of development, and there would be no substantial conflicts with adjacent land uses.

Any additional noise and traffic in the vicinity due to the proposed changes in land use would be mitigated through measures identified in other relevant sections of the EIS.

SOCIOECONOMIC ISSUES/HOUSING SUPPLY

The impacts on housing supply from development at the Presidio were analyzed on pages 282 through 288 of the PTMP EIS. The analysis determined that employment at the Presidio would generate demand for roughly 3,000 new households in the region, of which approximately half would live in the Presidio. The PTMP EIS analysis also assumes that 200,000 square feet in the district would be in residential use, with the bulk
of remaining square footage in educational use (Table 39). The PTMP (page 45) allows for an increase in the PHSH district (historically a mixed-use area that included houses and dormitories) of the number of residential accommodations, converting the 314,000 square-foot hospital to residential use, and possibly, senior housing if feasible. Planned housing retention, removal, and replacement for the PHSH district is presented in Figure 2.4 of the PTMP and below:

- Existing Dwelling/Dorm Units: 11/86 (Total 97)
- Units to be Removed or Converted to Non-Residential Use: 0-90
- New Units within Existing Buildings: 80-200
- New Units within New Construction: 0-40
- Maximum Number of New Residences: 200-210

The PTMP acknowledges that the number of planned units is given as a range that reflects general goals, and that achieving these goals would depend on site-specific assessments of building configuration and financial feasibility, as well as progress toward meeting other planning objectives (such as preserving historic buildings or providing a reliable long-term source of revenue available to the Trust). This acknowledgement is reinforced by the following text correction in the PTMP Record of Decision (August 2002) incorporated by reference and added as a footnote to Table 39 of the PTMP EIS:

The Final Plan Alternative states as a preference residential use of the

 PHSH building, which is approximately 314,000 square feet including both historic and non-historic portions. (Non-historic portions may be removed and replaced elsewhere on the site.) Residential use of the building is the Trust's preference, despite the assumption in the Final EIS analysis that only 200,000 square feet would be in residential use, with the bulk of remaining square footage in educational use. Because educational use represents a more intense use, in terms of the number of persons on site, the number of peak period automobile trips, and other considerations, the assumptions inherent in the Final EIS analysis are considered more conservative (i.e. they would generate more impacts and less revenue) than the preference stated in the Plan, and thus did not warrant modification between the Draft EIS and the Final EIS. Nothing in the Final EIS analysis should be construed as negating the Trust's preference for residential use of the PHSH building, and the potential educational use of auxiliary structures in the PHSH complex.It is anticipated that project development teams will assess the configuration and feasibility of a project that meets the Trust's goals for the district. If a project proposal includes more units than are assumed in the PTMP or the PTMP EIS, the potential environmental effects of this change would need to be assessed, including effects on
housing available to Presidio-based employees and the Trust's progress towards a jobs/housing balance (Mitigation Measure CO-2 Jobs/Housing Balance Monitoring).

SCHOOLS

The potential impacts of development within the PHSH district on public schools were analyzed on pages 288 through 292 of the PTMP EIS. The effect on schools was calculated by comparing the number of school children generated (derived from the number of residential units proposed within the district) to existing capacity within the San Francisco Unified School District. The analysis determined that minor changes in enrollment due to changes in overall Presidio occupancy would not have a significant impact because the school district could adequately provide the needed services, and continue to receive compensation through the Federal Impact Aid program. No applicable measures have been identified.

VISITOR EXPERIENCE

The potential impacts from expanded residential and educational uses at the PHSH district on the experience of park visitors ${ }^{13}$ are analyzed on pages 292 through 296 of the PTMP EIS. The analysis assumes that a residential and educational community at the district would contribute to the vitality of the larger Presidio community, and determined that visitors would benefit from public access to portions of rehabilitated historic buildings, interpretive displays, enhanced open space (including restoration of remnant natural areas), and commemoration of the former Marine Cemetery. The Trust would facilitate educational opportunities for visitors, and support interpretive programs, events, and outreach provided by the NPT, tenants and others. The analysis concludes that these enhancements would result in beneficial impacts on visitor interpretation and education, and no project-specific mitigation measures would be necessary.

RECREATION

The impacts on recreational improvements within the PHSH district are within the scope of and adequately analyzed on pages 296 through 298 of the PTMP EIS. The analysis assumed that improvements such as new trails, including the Juan Bautista de Anza National Historic Trail, the West Pacific Mountain Lake Corridor, and the Lobos Creek Valley Trail Corridor would be designed and constructed to improve bicycle and pedestrian circulation and connect the Presidio trail system to the existing regional network in accordance with the draft Presidio Trails and Bikeways Master Plan (NPS and

[^13]Trust 2002). ${ }^{14}$ Upon completion and approval of the Presidio Trails and Bikeways Master Plan, the Trust would implement priorities for trails to enhance connections between the district and other key features of the Presidio (Mitigation Measure CO-11 Trail Maintenance and Enhancement).

PUBLIC SAFETY

The potential impacts due to the increased demand for law enforcement, fire protection and emergency response services resulting from an increase in resident and employee population in the Presidio is evaluated on pages 298 through 301 of the PTMP EIS. Law enforcement services at the Presidio are provided by the U.S. Park Police (USPP) San Francisco Field Office (SFFO), and fire protection and emergency medical services are provided by the NPS' Presidio Fire Department. Pursuant to an Interagency Agreement, the Trust reimburses the USPP and the NPS for the costs of providing law enforcement and fire prevention and suppression services. The analysis concludes that development within the PHSH district as a residential and educational community (including senior housing) would potentially raise the number of calls for police service, fire protection, and emergency response.

The PTMP EIS assumes that the public safety service providers would review a specific proposal against public safety service standards following tenant selection within the district and identify any appropriate increases in staff, equipment, and facilities to maintain adequate services. Costs to provide services would be reimbursed through Service District Charges. ${ }^{15}$

ROADWAY NETWORK

The potential impacts of development within the PHSH district on future traffic conditions on Presidio and city roadways were analyzed on pages 302 through 327 of the PTMP EIS. Two city streets through the residential Lake Street neighborhood in the city's Richmond District, $14^{\text {th }}$ and $15^{\text {th }}$ Avenues, provide the main opportunities for vehicular access. The $14^{\text {th }}$ Avenue vehicular access is currently closed. Access to the district from other parts of the Presidio would continue along Battery Caulfield Road, and through traffic would be discouraged.

[^14]The PTMP and PTMP EIS assume that the $14^{\text {th }}$ Avenue Gate (currently closed to vehicular access) would be reopened, and $14^{\text {th }}$ and $15^{\text {th }}$ Avenues would be operated as a one-way couplet, with $14^{\text {th }}$ Avenue accommodating inbound traffic and the $15^{\text {th }}$ Avenue Gate accommodating outbound traffic. ${ }^{16}$ The PTMP and PTMP EIS analyze the effect of the one-way couplet operation, which minimizes traffic impacts from new uses and improves circulation and access for the district. The Trust has taken the PTMP one-way couplet concept a step further by reviewing alternative means of providing access to the district, including a no action alternative (Trust 2003a). These alternatives have been reviewed by the San Francisco Department of Parking and Traffic, since changes would primarily be required on city property.

Prior to the PTMP, three other alternatives were explored that accessed the district directly from Park Presidio Boulevard (Wilbur Smith Associates 1999). These alternatives were rejected by the Trust and Caltrans due to environmental considerations and impacts to Park Presidio Boulevard. During their review of the alternatives, Caltrans found it "difficult to see any justification for disrupting the travel of current Park Presidio Boulevard users in order to accommodate the relatively small amount of traffic generated by the proposed development, especially with existing ingress and egress that is likely to be functionally adequate to meet the traffic needs of the development" (Caltrans 1999).

The Trust currently believes, based on the analysis in the PTMP and the current draft study above, that a vehicular access plan to the district that is compatible with the district can be developed without having direct access from Park Presidio Boulevard. In addition to the one-way couplet concept, key components of the plan would be to select uses for the district that minimize traffic, further reduce traffic through aggressive transportation demand management programs (as described in Appendix D of the PTMP and required under Mitigation Measure TR-22 TDM Program Monitoring), and develop an internal road system that prohibits or strongly discourages through traffic (see page 99, PTMP Guidelines for Circulation and Access).

CONSTRUCTION TRAFFIC

The short-term impact of construction traffic on the roadway network due to demolition and construction activities within the PHSH district and elsewhere within the Presidio is discussed on page 321 of the PTMP EIS. Construction vehicles would include trucks hauling construction debris and delivering construction materials and supplies, as well as construction worker vehicles. The volume of construction vehicles accessing the district would vary, depending on the specific construction activity and the schedules of the various building elements of individual projects. Construction-related traffic could create

[^15]some conflicts with local and regional traffic, especially from the larger construction vehicles. However, because construction vehicle trips traveling to and from the district would be dispersed, the vehicle trips on other regional roadways would not be substantial and would generally fall within the normal fluctuations of traffic.

As required by Mitigation Measure TR-26 Construction Traffic Management Plan, a traffic management plan would be developed prior to construction to provide specific routes and other measures to minimize potential traffic impacts.

PARKING

There are three principal parking lots within the PHSH district, located to the north, east and west of the hospital. The parking lot north of the building (currently in use by the Trust for temporary storage of landscape materials and designated for removal under the PTMP) has a capacity of 233 spaces. The parking lot on the eastern portion of the site has 37 spaces, and the parking lot on the western portion of the site (on Landfill 10) has approximately 200 spaces. In addition, there are 69 on-street parking spaces, for an estimated total of 539 spaces (Wilbur Smith Associates 1999). The PTMP (page 51) allows for parking areas to be redesigned or relocated to simplify access or to reduce visual impacts. The PTMP EIS (page 314) assumes that the number of parking spaces within the district and elsewhere within the Presidio would provide an amount five percent greater than projected average demand. Constraining supply and charging for parking would seek to limit automobile use, and would require careful planning to avoid spillover effects in the adjacent neighborhoods.

As required by Mitigation Measure TR-22 TDM Program Monitoring the Trust would implement a TDM Program within the district to reduce automobile usage by all tenants, occupants and visitors (see Appendix D of the PTMP for a full description). The Trust would monitor implementation and effectiveness of the TDM program on an ongoing basis. If the TDM performance standards as described are not being reached, the Trust would implement more aggressive TDM strategies or intensify components of the existing TDM Program, such as requiring tenant participation in more TDM program elements, and more frequent and/or extensive shuttle service.

WATER SUPPLY AND DEMAND

The potential impacts of development within the PHSH district on water demand were analyzed on pages 328 through 333 of the PTMP EIS. The Trust operates a facility that treats water from Lobos Creek to provide potable water to the park. Supplemental water is purchased from the City and County of San Francisco as needed. The proposed use of the district for 400,000 square feet for cultural/educational and residential purposes
(Table 39, page 271) is taken into account in the Presidio's water demand calculations
(see Appendix H of the PTMP EIS). In addition, should the main hospital building be used primarily for residential use (i.e., greater than 200,000 square feet as indicated in Table 39), water demand estimates for the district should be considered conservative, as cultural/educational and lodging uses would consume more water than residential. ${ }^{17}$ With a new use, the PTMP EIS assumes the district would become a model of responsible water use and a demonstration site for water conservation programs.

Mitigation Measure UT-1 Demand Management Best Management Practices would require that Best Management Practices be implemented to encourage water conservation, including the following:

- Installing low-flush toilets, low flow showerheads, and other water-saving devices in all buildings;
- Integrating non-invasive, drought-tolerant, low-maintenance landscaping into the development areas to the extent possible to promote efficient and effective water application;
- Retrofitting landscaped areas with low-flow irrigation devices; and
- Informing tenants and residents of water conservation practices.

WASTEWATER TREATMENT AND DISPOSAL

The potential impacts of development on the wastewater treatment and disposal system were analyzed on pages 332 through 335 of the PTMP EIS. Wastewater was projected by applying a 90 percent factor to the domestic water use estimates (discussed directly above), and compared to current levels to determine impacts on the City's sanitary sewer system, which treats wastewater from the Presidio. The PTMP EIS determined that, at full occupancy including the new use at the PHSH district, the Presidio would generate less wastewater than the 1990 levels. In addition, wastewater generated from the district would be routed to the City's Oceanside Water Pollution Control Plant, which has a greater capacity to absorb wet weather flows than the City's Southeast Water Pollution Control Plant. Mitigation Measure UT-4 Reduction of Onsite Wastewater Generation acknowledges that water conservation practices required by Mitigation Measure UT-1 (discussed above) to minimize water usage within the district would reduce wastewater generation and flows to the City's system.

[^16]
STORM DRAINAGE

The impact due to stormwater runoff within the PHSH district was assessed on pages 335 through 341 in the PTMP EIS. The assessment estimated the amount of net new construction (i.e. new construction less demolition) in the district to determine changes in permeable surfaces and thus stormwater runoff. Stormwater presently flows via the Caltrans storm line that runs along the north side of Lobos Creek and connects to the Richmond Transport Tunnel, which is part of the City's combined sewer system. The district does not experience flooding problems. The analysis determined that no additional demands or impacts on this system are anticipated because the maximum permitted buildings (up to 400,000 square feet) would not increase over existing built space and would be limited to already developed areas.

The following mitigation measure in the PTMP EIS (page 341) would require that infrastructure improvements be installed prior to new construction to minimize stormwater runoff and comply with existing water quality standards, regulatory requirements and the Trust's stormwater quality control (pollution prevention) program:

UT-7 Stormwater Reduction. As part of planning for future projects under the PTMP, the Trust would implement designs or measures to limit or eliminate impervious surfaces in order to reduce stormwater runoff volumes and improve water quality. The Trust would practice natural stormwater reduction by using on-site vegetation and landscaping as a filtration and retention system to the extent feasible. Grass, sand, and other porous surfaces, particularly when placed around non-porous surfaces such as asphalt, could significantly limit stormwater runoff. Projects would be reviewed to determine if stormwater flows could be limited through reduction of impervious surfaces and addition of porous surfaces.

SOLID WASTE

The impacts of demolition, construction, and rehabilitation activities at the PHSH district on the regional waste stream are analyzed on pages 341 through 344 of the PTMP EIS. These activities, including demolition of the nonhistoric hospital wings, would result in the disposal of up to 12,600 tons of debris, constituting .001 percent of the regional solid waste stream in 1999 (see Table 1 in PTMP EIS Appendix I). The PTMP EIS assumes that solid waste would be reduced through efficient resource use, recycling and reuse, and by diverting organic material from waste and purchasing products composed of recycled materials. Recycled asphalt and concrete would be used for paving where practical. Recycling bins would be available at all activity sites, and tenants would be encouraged to set aside indoor recycling areas.

Mitigation Measure UT-8 Waste Diversion would require implementing other costeffective, environmentally protective alternatives to disposal of demolition debris including the following:

- Selection of contractors who understand the processes involved and are able to maximize reuse and recycling of construction and demolition materials;
- Clearing salvageable items from structures prior to demolition activities, including such items as piping, flooring, doors, windows, bathroom fixtures and kitchen fixtures, hospital equipment, heaters, and lumber;
- Removing and encapsulating contamination before demolition to minimize commingling of the wastes and to maximize reuse of the uncontaminated materials;
- Bringing down buildings piece by piece to recover the maximum amount of reusable materials; and
- Size-reducing (especially concrete) and presorting and segregating materials after demolition to increase salvage value of the recovered materials, and to decrease tipping fees for different materials in the debris; and
- Recycling materials on-site to lower both hauling and disposal costs.

ENERGY CONSUMPTION AND DISTRIBUTION

The PHSH district is served directly by PG\&E from a 4160 circuit that ties into the Trust's PHSH switch room in the main hospital building. From the switch room, power is delivered to all of the outlying buildings.

The potential impacts of development within the PHSH district on electrical use were analyzed on pages 344 through 347. The square footage for proposed land uses within the district (provided in Table 39 on page 271) was used to project the electrical use and demand. Based on the projections in Table 3 of PTMP EIS Appendix J, up to 3.64 million kilowatt-hours of electricity would be consumed at the district annually. Should the main hospital building be used primarily for residential use (i.e., greater than 200,000 square feet as indicated in Table 39), electrical use projections for the district should be considered conservative, as residential use consume approximately half the energy (per $\mathrm{kWh} / \mathrm{sf}$) than the other specified uses (lodging and cultural/educational). The PTMP EIS assumes that the project development team would work directly with the Trust (or PG\&E) ${ }^{18}$ to upgrade the electrical system serving the district for safety and efficiency, including repair and rehabilitation of old cables, and where possible, undergrounding of overhead lines.

[^17]As required by Mitigation Measure UT-11 Energy Conservation, the following practices would be employed within the district to assist the Trust in meeting the goals of Executive Order 13123 and to minimize the environmental impacts of energy consumption:

- Meeting or surpassing the energy conservation requirements of California Title 24 energy code during building rehabilitation where these requirements do not conflict with historic preservation objectives;
- Carrying out cost-effective energy conservation retrofits of buildings and utility infrastructure;
- Educating tenants and visitors about energy conservation;
- Developing energy conservation and efficient energy generation demonstration projects in individual buildings;
- Participating in energy efficient appliance and computer purchasing programs; and
- Installing energy management systems in all non-residential buildings both to monitor energy use and to enable remote troubleshooting and building controls.

NATURAL GAS SUPPLY

PG\&E owns and maintains the gas infrastructure on the Presidio. Currently, Building 1801 does not have any gas service and it is currently disconnected from the central boiler system. The remaining buildings within the complex are served from a centrally fired, low pressure steam system operating out of Building 1802.

The natural gas demand of Presidio-wide development is estimated on pages 347 through 350 of the PTMP EIS. The natural gas use projections in Table 56 of the PTMP EIS take into account proposed uses (by square foot) within the PHSH district as a factor for estimating future demand, which was then compared to peak demand to determine if adequate infrastructure exists to meet projected demand. ${ }^{19}$ The PTMP EIS assumes that development within the district would adopt the principles of sustainable design and technology, and conservation measures would be practiced to minimize natural gas usage. The analysis concluded that the existing natural gas distribution infrastructure has adequate capacity to meet proposed demand. However, upgrades to the infrastructure to and within the district are likely necessary.

[^18]Implementation of Mitigation Measure UT-11 Energy Conservation would also reduce natural gas usage.

CUMULATIVE IMPACTS

The cumulative impacts of PHSH district and other development in the Presidio are analyzed within the PTMP EIS. ${ }^{20}$ Table 62, which provides the context for the discussion, enumerated past, present and reasonably foreseeable actions, including projects by other agencies (NPS, USFWS and the City and County of San Francisco Planning Department), that were specifically considered in the analysis (in addition to background growth). The identified actions were chosen based on their proximity to the Presidio, their potential influence on the same resources that could be affected by implementation of the PTMP (i.e., whether the effects of these actions would be similar to those of the project), and the likelihood of their occurrence. The actions were identified by consulting with various agencies within a project impact zone (which varied for each resource) and investigating their actions in the planning, budgeting, or execution phase. In some cases, cumulative effects were also compared to appropriate national, state, regional, or community goals to determine whether the total effect would be significant. In all but one resource area, the analysis in the PTMP EIS determined that cumulative impacts would not be significant and that the resources of concern would not be degraded to unacceptable levels. Cumulative air quality issues were found to be potentially significant because of contributions to regional growth (i.e., not because of localized air quality impacts). Development within the PHSH district would contribute to the referenced cumulative impacts. No mitigation measures for cumulative impacts have been previously identified.

References

Architectural Resources Group (ARG)

1991 Assessment of the Public Health Services Hospital, San Francisco Presidio.

 Prepared for the National Park Service. San Francisco, CA.1995 Guidelines for Rehabilitating Buildings at the Presidio of San Francisco. Dated March.

Bay Area Air Quality Management District (BAAQMD)
1999 Guidelines for Environmental Processes Under the California Environmental Quality Act (CEQA). San Francisco, CA.

[^19]California Department of Conservation, California Geological Survey
1997a Seismic Hazard Evaluation of the South Half of San Francisco North and Part of the Oakland West 7.5-Minute Quadrangles, San Francisco County, California. Open-File Report 97-05.

1997b Guidelines for Evaluating and Mitigating Seismic Hazards in California. Special Publication 117. Sacramento, CA. Adopted March 13, 1997 and updated May 28, 2002.

California Department of Transportation (Caltrans)
1999 Review of Preliminary Proposals for Providing Access to Park Presidio Boulevard (State Route 1) from the Public Health Services Hospital in the Presidio in San Francisco. Letter from Rodney N. Oto to Richard Tilles. Dated June 18.

California Department of Health Services
1997 Letter from Clifford L. Bowen, District Engineer, San Francisco District, Drinking Water Field Operations Branch to Brian O'Neill, Superintendent, GGNRA. Re: Presidio of San Francisco Domestic Water Supply Permit No. 02-04-97P-3810700. Dated May 9.

Dames \& Moore
1994 Presidio of San Francisco Storm Water Management Plan. Prepared for the National Park Service Department of the Interior, Denver Service Center, Technical Information Center. (Contract No. 1443CX200092035.) Draft Work-in-Progress. Dated October.

Faye Bernstein \& Associates
1999 Structural Engineering Report for the Presidio Public Health Services Hospital. Dated June.

Fong \& Chan Architects
1990 Reactivation Master Plan for the U.S. PHSH, San Francisco, California. Prepared for the City and County of San Francisco.

LSA Associates, Inc.
2001 Golden Gate Audubon Society's Save the Quail Campaign - Plan for Restoring California Quail in San Francisco. Submitted to Golden Gate Audubon Society. Dated November 14.

Maniery, Mary L., PAR Environmental Services
1994 Summary of the San Francisco Marine Hospital Cemetery, Presidio of San Francisco, California. Submitted to US Army Corps of Engineers, Sacramento District.

National Park Service (NPS), U.S. Department of the Interior
1992a The Secretary of the Interior's Standards for the Rehabilitation of Historic Properties.

1992b The Secretary of the Interior's Guidelines for the Treatment of Cultural Landscapes.

1999 Presidio of San Francisco Vegetation Management Plan and Environmental Assessment. Golden Gate National Recreation Area.

NPS and Presidio Trust
2002 Presidio Trails and Bikeways Master Plan \& Environmental Assessment. Draft. November.

Phillip Williams and Associates, Ltd, Harding-Lawson and Associates, Inc., and KCA Engineers

1995 Restoration Plan for Lobos Creek. Prepared for the Golden Gate National Recreation Area, San Francisco, CA. Dated December.

Presidio Trust (Trust)
2002a Presidio Trust Comments on Draft Recovery Plan for Coastal Plants of the Northern San Francisco Peninsula. Letter from Craig Middleton to Field Supervisor, Sacramento Fish and Wildlife Office, USFWS. Dated April 25.

2002b Presidio Trust Management Plan - Land Use Policies for Area B of the Presidio of San Francisco. Dated May.

2002c Final Environmental Impact Statement. Presidio Trust Management Plan Land Use Policies for Area B of the Presidio of San Francisco. Volumes I, II and III. Dated May.

2002d Record of Decision. Presidio Trust Management Plan - Land Use Policies for Area B of the Presidio of San Francisco. . Dated August.

2002e Presidio California Quail Habitat Enhancement Action Plan.
2003a Access Study at $14^{\text {th }} / 15^{\text {th }}$ Avenue Gates. Draft dated February 11.
2003b Public Health Service Hospital Draft Planning and Design Guidelines. Dated March.

2003c Summary of Environmental Remediation. Dated March.
URS Corporation (URS)
2003 Letter to Cherilyn Widell Reporting Discoveries of Human Skeletal Remains at Landfill 8. Dated February 11.
U.S. Fish and Wildlife Service (USFWS)

2001 Draft Recovery Plan for Coastal Plants of the Northern San Francisco Peninsula. Portland, Oregon, xv + 253 pp.

2002 Memorandum from Acting Field Supervisor, Sacramento Fish and Wildlife Office, Sacramento, California to Superintendent, GGNRA, NPS, San

Francisco, California. Subject: Formal Consultation on Four Projects at the Presidio of San Francisco and GGNRA, San Francisco, CA. Dated July 23.

Urban Watershed Project
2001 Lobos Creek Water Quality Management Plan. Prepared for Resource Management and Planning, Golden Gate National Recreation Area, National Park Service.

Wilbur Smith Associates
1999 Presidio Public Health Service Hospital Transportation Study. Implementation Planning for the Presidio. Dated July 6.

The Presidio Trust
34 Graham Street, P.O. Box 29052
San Francisco, CA 94129
(t) 415/561-4183 (f) 415/561-2716
www.presidio.gov

[^0]: Presidio of San Francisco - 1999 Pedestrian and Bicycle Count Program, Technical Memorandum, Robert Peccia \& Associates

[^1]: The City and Count of San Francisco generally considers intersection D or better to beration at acceptable, and intersection operation at LOS E or F to be unacceptable

[^2]: Year 2025 －PM Peak（Alt 3 ）
 Wilbur Smith Associates

[^3]: The City and County of San Francisco generally considers intersection operation at LOS D or better to be acceptable, and intersection operation at LOS E or F to be unacceptable

[^4]: Source: Wilbur Smith Associates - February 2006

[^5]: The PTMP EIS proposed installing all-way stop control at this intersction, and if that were not feasible because of letter on the PTMP EIS, thatacent intersection on Park Presidio Boulevard, installing a traffic signal. In a commen letter on the PTMP EIS, the San Francisco Department of Parking and Traffic (DPT) expressed concern about the
 reasonableness of signalization at this intersection. The alternatives to signalization developed for the intersection of Lake Stree/t14th Avenue (right-turn-only restrictions) would also likely improve the operation of the minor approaches of the intersection of California Street $14^{\text {th }}$ Avenue.

[^6]: ${ }^{1}$ The Council on Environmental Quality (CEQ) NEPA Regulations encourage the use of tiered documents to "eliminate repetitive discussions of the same issues" (40 CFR 1502.20) and to "focus on the issues which are ripe for decision and exclude from consideration issues already decided or not yet ripe" (40 CFR 1508.28). The PTMP EIS can be viewed at the Presidio Trust Library, 34 Graham Street, San Francisco, California.

[^7]: ${ }^{2}$ A significant archeological resource on the upper plateau that dates back to the 1880s.

[^8]: ${ }^{3}$ As discussed in the PTMP Appendix D - Transportation Demand Management Program.
 ${ }^{4}$ Refer to Attachment 1 (Mitigation Monitoring and Enforcement Program) within the Record of Decision (Trust 2002d) for a complete list of all practicable mitigation measures identified in the PTMP EIS for implementation.

[^9]: ${ }^{5}$ See PTMP EIS Appendix D - Final Programmatic Agreement
 ${ }^{6}$ A requirement for recordation is unlikely because the additions are not considered significant or historic.

[^10]: ${ }^{7}$ The California Geological Survey has calculated the ground motion using probabilistic seismic hazard methods as outlined in the joint Division and U.S. Geological Survey report, Division Open-File Report 9608. For the Design Basis Earthquake (i.e., 10 percent chance of exceedance in 50 years), ground motion is calculated to be Peak Ground Acceleration (PGA) $=0.67 \mathrm{~g}$. A value over 0.65 g is considered "violent shaking," with the potential for "heavy" damage to structures.
 ${ }^{8}$ An investigation of slope stability at Landfill 10 is underway, and will help to determine the configuration of the parking area west of the main hospital (Trust 2003c).
 ${ }^{9}$ Defined as an area where historic occurrence of liquefaction, or local geological, geotechnical and groundwater conditions indicates a potential for permanent ground displacements such that mitigation as defined in Public Resources Code Section 2693(c) would be required (California Geological Survey 1997a).

[^11]: ${ }^{10}$ Additionally, this buffer would reduce the potential for lessingia establishment directly adjacent to the building.

[^12]: ${ }^{11}$ As required by Mitigation Measure NR-21 Transportation Control Measures.
 ${ }^{12}$ As required by Mitigation Measure NR-22 Deconstruction/Demolition Techniques.

[^13]: ${ }^{13}$ Impacts on visitor experience include visitor orientation, interpretation, public access, park tenants, and events and cultural programs.

[^14]: ${ }^{14}$ In addition, the PTMP and the PTMP EIS assumed that the tennis court would be removed to expand natural habitat and enhance the cultural landscape, relocated and made available to the public at a nearby site.
 ${ }^{15}$ The Presidio is exempt from state and local property taxes. Presidio Trust tenancies are subject to a service district charge to pay for Presidio-provided services, such as fire protection, police protection, road maintenance, street lighting, off-site landscape maintenance, stormwater drainage, and emergency medical response. This charge is subject to periodic adjustment.

[^15]: ${ }^{16}$ Mitigation Measure TR-11 14th Avenue/Lake Street Intersection Improvements requires that when needed (i.e., prior to the intersection operations deteriorating to LOS E or F), the 15th Avenue Gate should be designated for outbound traffic, and the 14th Avenue Gate opened for inbound traffic.

[^16]: ${ }^{17}$ Lodging and Cultural/Educational uses would demand 0.27 and 0.18 gallons per square foot per day, respectively, while residential use would demand 0.13 gallons per square foot per day (page H-1, PTMP EIS Appendix H).

[^17]: ${ }^{18}$ While the Trust operates and maintains the electrical distribution system at the Presidio, it is a bundled service customer of PG\&E. Therefore, the development team may choose service directly from PG\&E.

[^18]: ${ }^{19}$ Should the main hospital building be used primarily for residential use (i.e., greater than 200,000 square feet as indicated in Table 39), natural gas consumption within the district would be less than projected, as residential use would consume less natural gas (therms/sf) than the other specified uses (lodging and cultural/educational).

[^19]: ${ }^{20}$ Cumulative impacts result when the impacts arising from an action are added to those of other past, present, and reasonably foreseeable future actions. Cumulative impacts can result from individually minor but collectively significant actions occurring over time (40 CFR Section 1508.7 as cited on page 363 of the PTMP EIS).

